1
|
Antonio J, Evans C, Ferrando AA, Stout JR, Antonio B, Cinteo H, Harty P, Arent SM, Candow DG, Forbes SC, Kerksick CM, Pereira F, Gonzalez D, Kreider RB. Common questions and misconceptions about protein supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2024; 21:2341903. [PMID: 38626029 PMCID: PMC11022925 DOI: 10.1080/15502783.2024.2341903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/07/2024] [Indexed: 04/18/2024] Open
Abstract
Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Cassandra Evans
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Science, Orlando, FL, USA
| | - Brandi Antonio
- University of Central Florida, School of Kinesiology and Rehabilitation Science, Orlando, FL, USA
| | - Harry Cinteo
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Patrick Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, Canada
| | - Scott C. Forbes
- Brandon University, Department of Physical Education, Faculty of Education, Brandon, MB, Canada
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, St. Charles, MO, USA
| | - Flavia Pereira
- Keiser University, Exercise and Sport Science, West Palm Beach Flagship Campus, West Palm Beach, FL, USA
| | - Drew Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| |
Collapse
|
2
|
Custodio-Mendoza JA, Pokorski P, Aktaş H, Kurek MA. Rapid and efficient high-performance liquid chromatography-ultraviolet determination of total amino acids in protein isolates by ultrasound-assisted acid hydrolysis. ULTRASONICS SONOCHEMISTRY 2024; 111:107082. [PMID: 39341051 PMCID: PMC11470170 DOI: 10.1016/j.ultsonch.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
This study presents the optimization and validation of an ultrasound-assisted acid method for the HPLC-UV determination of amino acids in plant-based proteins. The research focuses on enhancing hydrolysis efficiency and reducing environmental impact. Ultrasound treatment significantly accelerated hydrolysis by creating cavitation, which increases local pressure and temperature, leading to faster reaction rates. The optimal condition was a 30-minute treatment at 90 °C with 6 M hydrochloric acid. The 9-fluorenylmethyloxycarbonyl chloride derivatization was best performed at pH 9.0 using borate buffer, ethanol as the organic solvent, and a 5-minute derivatization time with a 5 mM concentration. The method's analytical performance, validated according to FDA guidelines, showed excellent selectivity, specificity, linearity (r2 > 0.999), accuracy (recovery between 80-118 %), and precision (RSD<10.9). The analysis of 15 plant-based proteins revealed distinct amino acid profiles. Compared to traditional acid hydrolysis methods, the ultrasound-assisted approach demonstrated no significant difference in results (p-value > 0.05), confirming its reliability. The optimized ultrasound-assisted method is a reliable and efficient alternative for amino acid analysis, offering significant cost and time savings while maintaining high analytical performance. These findings are crucial for nutritional planning and developing functional foods to improve health outcomes.
Collapse
Affiliation(s)
- Jorge A Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland
| | - Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland
| | - Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland.
| |
Collapse
|
3
|
Holwerda AM, Atherton PJ, Smith K, Wilkinson DJ, Phillips SM, van Loon LJ. Assessing Muscle Protein Synthesis Rates In Vivo in Humans: The Deuterated Water ( 2H 2O) Method. J Nutr 2024:S0022-3166(24)01029-0. [PMID: 39278410 DOI: 10.1016/j.tjnut.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle tissue is in a constant state of turnover, with muscle tissue protein synthesis and breakdown rates ranging between 1% and 2% across the day in vivo in humans. Muscle tissue remodeling is largely controlled by the up- and down-regulation of muscle tissue protein synthesis rates. Research studies generally apply stable isotope-labeled amino acids to assess muscle protein synthesis rates in vivo in humans. Following labeled amino acid administration in a laboratory setting, muscle tissue samples are collected over several hours to assess the incorporation rate of these labeled amino acids in muscle tissue protein. To allow quantification of bulk muscle protein synthesis rates over more prolonged periods, the use of deuterated water methodology has regained much interest. Ingestion of daily boluses of deuterium oxide results in 2H enrichment of the body water pool. The available 2H-atoms become incorporated into endogenously synthesized alanine primarily through transamination of pyruvate in the liver. With 2H-alanine widely available to all tissues, it becomes incorporated into de novo synthesized tissue proteins. Assessing the increase in tissue protein-bound 2H-alanine enrichment in muscle biopsy samples over time allows for the calculation of muscle protein synthesis rates over several days or even weeks. As the deuterated water method allows for the assessment of muscle tissue protein synthesis rates under free-living conditions in nonlaboratory settings, there is an increasing interest in its application. This manuscript describes the theoretical background of the deuterated water method and offers a comprehensive tutorial to correctly apply the method to determine bulk muscle protein synthesis rates in vivo in humans.
Collapse
Affiliation(s)
- Andrew M Holwerda
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Luc Jc van Loon
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Zhao S, Xu Y, Li J, Ning Z. The Effect of Plant-Based Protein Ingestion on Athletic Ability in Healthy People-A Bayesian Meta-Analysis with Systematic Review of Randomized Controlled Trials. Nutrients 2024; 16:2748. [PMID: 39203884 PMCID: PMC11357476 DOI: 10.3390/nu16162748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Plant-based protein supplements are increasingly popular, yet their efficacy in enhancing athletic performance compared to animal protein, insect protein, or other protein types remains under investigation. This study aimed to assess the effectiveness of plant-based protein on athletic abilities such as muscle strength, endurance performance, and muscle protein synthesis (MPS) rate and compare it to no- or low-protein ingestion and non-plant protein sources. Randomized controlled trials (RCTs) evaluating the beneficial and harmful effects of plant-based protein ingestion on athletic ability in healthy individuals were considered. A systematic search of six databases yielded 2152 studies, which were screened using the Covidence systematic review tool. Thirty-one studies were included for meta-analysis after independent selection, data extraction, and risk of bias assessment by two reviewers. The meta-analysis employed a Bayesian approach using the Markov chain Monte Carlo (MCMC) method through a random-effects model. The results demonstrated that plant-based protein supplements provided greater benefits for athletic performance in healthy individuals compared to the no- or low-protein ingestion group [μ(SMD): 0.281, 95% CI: 0.159 to 0.412; heterogeneity τ: 0.18, 95% CI: 0.017 to 0.362]. However, when compared to other types of protein, plant-based protein ingestion was less effective in enhancing athletic ability [μ(SMD): -0.119, 95% CI: -0.209 to -0.028; heterogeneity τ: 0.076, 95% CI: 0.003 to 0.192]. A subgroup analysis indicated significant improvements in muscle strength and endurance performance in both young and older individuals consuming plant-based protein compared to those with no- or low-protein ingestion. Nonetheless, other protein types showed greater benefits in muscle strength compared to plant-based protein [μ(SMD): -0.133, 95% CI: -0.235 to -0.034; heterogeneity τ: 0.086, 95% CI: 0.004 to 0.214]. In conclusion, while plant-based protein ingestion demonstrates superior efficacy compared to low- or no-protein ingestion, it is not as effective as other protein types such as whey, beef, or milk protein in enhancing athletic performance in healthy individuals. Registration: Registered at the International Prospective Register of Systematic Reviews (PROSPERO) (identification code CRD42024555804).
Collapse
Affiliation(s)
- Shiao Zhao
- Faculty of Health Sciences and Sports, Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macao 999078, China; (Y.X.); (J.L.); (Z.N.)
| | | | | | | |
Collapse
|
5
|
Lim C, Janssen TAH, Currier BS, Paramanantharajah N, McKendry J, Abou Sawan S, Phillips SM. Muscle Protein Synthesis in Response to Plant-Based Protein Isolates With and Without Added Leucine Versus Whey Protein in Young Men and Women. Curr Dev Nutr 2024; 8:103769. [PMID: 38846451 PMCID: PMC11153912 DOI: 10.1016/j.cdnut.2024.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background Plant-based protein supplements often contain lower amounts of leucine and other essential amino acids (EAAs), potentially making them less effective in stimulating muscle protein synthesis (MPS) than animal-based proteins. Combining plant proteins could improve the EAA profile and more effectively support MPS. Objectives The aim of this study was to determine the effect of a novel plant-based blend protein (PBP), PBP with added leucine (PBP + Leu) to levels equivalent to whey protein isolate (WHEY) on aminoacidemia and MPS responses in young men and women. We hypothesized that PBP + Leu would stimulate MPS equivalent to WHEY, and both would be greater than PBP. Methods We employed a randomized, double-blind, crossover study consisting of 3 separate study visits to compare PBP, PBP + Leu, and WHEY. To measure MPS response to ingestion of the supplements, a primed continuous infusion of L-[ring13C6] phenylalanine was administered for 8 h at each study visit. Skeletal muscle tissue and blood samples were collected to measure aminoacidemia and MPS. Results All protein supplements increased mixed MPS above postabsorptive levels (P < 0.001). However, MPS increase following ingestion of PBP was less than that following ingestion of PBP + Leu (P = 0.002) and WHEY (P = 0.046). There were no differences in MPS between PBP + Leu and WHEY (P = 0.052). Conclusions Consumption of PBP isolate with added leucine stimulated MPS to a similar extent as whey protein in young men and women. PBPs containing higher leucine content promote anabolism to a similar extent as animal-based proteins.This study was registered at clinicaltrials.gov as NCT05139160.
Collapse
Affiliation(s)
| | | | - Brad S Currier
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sidney Abou Sawan
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Roberts MD, Moulding B, Forbes SC, Candow DG. Evidence-based nutritional approaches to enhance exercise adaptations. Curr Opin Clin Nutr Metab Care 2023; 26:514-520. [PMID: 37650704 DOI: 10.1097/mco.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this opinion paper is to provide current-day and evidence-based information regarding dietary supplements that support resistance training adaptations or acutely enhance strength-power or endurance performance. RECENT FINDINGS Several independent lines of evidence support that higher protein diets, which can be readily achieved through animal-based protein supplements, optimize muscle mass during periods of resistance training, and this likely facilitates strength increases. Creatine monohydrate supplementation and peri-exercise caffeine consumption also enhance strength and power through distinct mechanisms. Supplements that favorably affect aspects of endurance performance include peri-exercise caffeine, nitrate-containing supplements (e.g., beet root juice), and sodium bicarbonate consumption. Further, beta-alanine supplementation can enhance high-intensity endurance exercise efforts. SUMMARY Select dietary supplements can enhance strength and endurance outcomes, and take-home recommendations will be provided for athletes and practitioners aiming to adopt these strategies.
Collapse
Affiliation(s)
| | - Blake Moulding
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
7
|
van der Heijden I, Monteyne AJ, Stephens FB, Wall BT. Alternative dietary protein sources to support healthy and active skeletal muscle aging. Nutr Rev 2023; 81:206-230. [PMID: 35960188 DOI: 10.1093/nutrit/nuac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To mitigate the age-related decline in skeletal muscle quantity and quality, and the associated negative health outcomes, it has been proposed that dietary protein recommendations for older adults should be increased alongside an active lifestyle and/or structured exercise training. Concomitantly, there are growing environmental concerns associated with the production of animal-based dietary protein sources. The question therefore arises as to where this dietary protein required for meeting the protein demands of the rapidly aging global population should (or could) be obtained. Various non-animal-derived protein sources possess favorable sustainability credentials, though much less is known (compared with animal-derived proteins) about their ability to influence muscle anabolism. It is also likely that the anabolic potential of various alternative protein sources varies markedly, with the majority of options remaining to be investigated. The purpose of this review was to thoroughly assess the current evidence base for the utility of alternative protein sources (plants, fungi, insects, algae, and lab-grown "meat") to support muscle anabolism in (active) older adults. The solid existing data portfolio requires considerable expansion to encompass the strategic evaluation of the various types of dietary protein sources. Such data will ultimately be necessary to support desirable alterations and refinements in nutritional guidelines to support healthy and active aging, while concomitantly securing a sustainable food future.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Spoelder M, Koopmans L, Hartman YAW, Bongers CCWG, Schoofs MCA, Eijsvogels TMH, Hopman MTE. Supplementation with Whey Protein, but Not Pea Protein, Reduces Muscle Damage Following Long-Distance Walking in Older Adults. Nutrients 2023; 15:342. [PMID: 36678213 PMCID: PMC9867418 DOI: 10.3390/nu15020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Adequate animal-based protein intake can attenuate exercise induced-muscle damage (EIMD) in young adults. We examined the effects of 13 days plant-based (pea) protein supplementation compared to whey protein and placebo on EIMD in active older adults. Methods: 47 Physically active older adults (60+ years) were randomly allocated to the following groups: (I) whey protein (25 g/day), (II) pea protein (25 g/day) or (III) iso-caloric placebo. Blood concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH), and skeletal muscle mass, muscle strength and muscle soreness were measured prior to and 24 h, 48 h and 72 h after a long-distance walking bout (20−30 km). Results: Participants walked 20−30 km and 2 dropped out, leaving n = 15 per subgroup. The whey group showed a significant attenuation of the increase in EIMD at 24 h post-exercise compared to the pea and placebo group (CK concentration: 175 ± 90 versus 300 ± 309 versus 330 ± 165, p = p < 0.001). No differences in LDH levels, muscle strength, skeletal muscle mass and muscle soreness were observed across groups (all p-values > 0.05). Conclusions: Thirteen days of pea protein supplementation (25 g/day) does not attenuate EIMD in older adults following a single bout of prolonged walking exercise, whereas the whey protein supplementation group showed significantly lower post-exercise CK concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria T. E. Hopman
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
9
|
Park JW, Kakuta S, Sakai R, Hamasaki T, Ansai T. Effects of Both Japanese-Style Dietary Patterns and Nutrition on Falling Incidents among Community-Dwelling Elderly Individuals: A Cross-Sectional Study. Nutrients 2022; 14:nu14214663. [PMID: 36364924 PMCID: PMC9656056 DOI: 10.3390/nu14214663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Approximately 20% of the community-dwelling Japanese elderly (≥65 years) experience falling annually, with injury frequency rising with age. Increased nursing home admission/hospitalization risk influences healthy aging and QOL. Nutrition for musculoskeletal health is necessary, though the relationship of falling with nutritional status in the elderly is largely unknown. We investigated falling incidents and nutritional status, including a Japanese-style diet in a community-dwelling cohort. Using a cross-sectional design, 186 subjects (median age 83.0 years, males/females 67/119) were analyzed. Oral and systemic health conditions were assessed. A brief-type self-administered diet history questionnaire (BDHQ) was given for nutritional status. Analysis of covariance (adjusted for gender, age, BMI, articular disease/osteoporosis history, present tooth number, educational level) and the Japanese-Mediterranean diet (jMD) score adapted for Japan were used. The jMD score and falling incidents were significantly associated, with point increases related to a significantly decreased falling risk of 28% (OR: 0.72; 95%CI: 0.57−0.91). Of the 13 jMD food components, fish, eggs, and potatoes had a significant relationship with reduced falling, while significant associations of intake of animal protein, potassium, magnesium, zinc, and cholesterol (p < 0.05) were also observed. The results suggest that the jMD dietary pattern is an important factor for the prevention of falling incidents in elderly individuals.
Collapse
Affiliation(s)
- Ji-Woo Park
- Division of Community Oral Health Development, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Satoko Kakuta
- Division of Community Oral Health Development, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
- Correspondence: (S.K.); (T.A.); Tel.: +81-93-285-3089 (T.A.); Fax: +81-93-591-7736 (T.A.)
| | - Rie Sakai
- Division of Medical Nutrition Faculty of Healthcare, Tokyo Healthcare University, 3-11-3 Setagaya, Setagaya-ku, Tokyo 154-8568, Japan
| | - Tomoko Hamasaki
- Department of Nutrition, Faculty of Home Economics, Kyushu Women’s University, 1-1 Jiyugaoka, Yahatanishi-ku, Kitakyushu 807-8586, Japan
| | - Toshihiro Ansai
- Division of Community Oral Health Development, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
- Correspondence: (S.K.); (T.A.); Tel.: +81-93-285-3089 (T.A.); Fax: +81-93-591-7736 (T.A.)
| |
Collapse
|
10
|
PINCKAERS PHILIPPEJM, HENDRIKS FLORISK, HERMANS WESLEYJ, GOESSENS JOYP, SENDEN JOANM, VAN KRANENBURG JANNEAUMX, WODZIG WILLKHW, SNIJDERS TIM, VAN LOON LUCJC. Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans. Med Sci Sports Exerc 2022; 54:1572-1581. [PMID: 35438672 PMCID: PMC9390237 DOI: 10.1249/mss.0000000000002937] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l -[ ring - 13 C 6 ]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h -1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h -1 , respectively; P < 0.001), with no differences between treatments ( P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h -1 after ingesting potato and milk protein, respectively ( P < 0.001), with no differences between treatments ( P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg ( P < 0.05). CONCLUSIONS Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein.
Collapse
Affiliation(s)
- PHILIPPE J. M. PINCKAERS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - FLORIS K. HENDRIKS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - WESLEY J.H. HERMANS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - JOY P.B. GOESSENS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - JOAN M. SENDEN
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - JANNEAU M. X. VAN KRANENBURG
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - WILL K. H. W. WODZIG
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - TIM SNIJDERS
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - LUC J. C. VAN LOON
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| |
Collapse
|
11
|
Jiménez-Munoz L, Tsochatzis ED, Corredig M. Impact of the Structural Modifications of Potato Protein in the Digestibility Process under Semi-Dynamic Simulated Human Gastrointestinal In Vitro System. Nutrients 2022; 14:nu14122505. [PMID: 35745236 PMCID: PMC9230451 DOI: 10.3390/nu14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.
Collapse
Affiliation(s)
- Luis Jiménez-Munoz
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- Correspondence: author:
| | - Emmanouil D. Tsochatzis
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- European Food Safety Authority-EFSA, Via Carlo Magno 1A, 43146 Parma, Italy
| | - Milena Corredig
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
| |
Collapse
|
12
|
Effects of Icelandic yogurt consumption and resistance training in healthy untrained older males. Br J Nutr 2022; 127:1334-1342. [PMID: 34121642 DOI: 10.1017/s0007114521002166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to the important roles of resistance training and protein consumption in the prevention and treatment of sarcopenia, we assessed the efficacy of post-exercise Icelandic yogurt consumption on lean mass, strength and skeletal muscle regulatory factors in healthy untrained older males. Thirty healthy untrained older males (age = 68 ± 4 years) were randomly assigned to Icelandic yogurt (IR; n 15, 18 g of protein) or an iso-energetic placebo (PR; n 15, 0 g protein) immediately following resistance training (3×/week) for 8 weeks. Before and after training, lean mass, strength and skeletal muscle regulatory factors (insulin-like growth factor-1 (IGF-1), transforming growth factor-beta 1 (TGF-β1), growth differentiation factor 15 (GDF15), Activin A, myostatin (MST) and follistatin (FST)) were assessed. There were group × time interactions (P < 0·05) for body mass (IR: Δ 1, PR: Δ 0·7 kg), BMI (IR: Δ 0·3, PR: Δ 0·2 kg/m2), lean mass (IR: Δ 1·3, PR: Δ 0·6 kg), bench press (IR: Δ 4, PR: 2·3 kg), leg press (IR: Δ 4·2, PR: Δ 2·5 kg), IGF-1 (IR: Δ 0·5, Δ PR: 0·1 ng/ml), TGF-β (IR: Δ - 0·2, PR: Δ - 0·1 ng/ml), GDF15 (IR: Δ - 10·3, PR: Δ - 4·8 pg/ml), Activin A (IR: Δ - 9·8, PR: Δ - 2·9 pg/ml), MST (IR: Δ - 0·1, PR: Δ - 0·04 ng/ml) and FST (IR: Δ 0·09, PR: Δ 0·03 ng/ml), with Icelandic yogurt consumption resulting in greater changes compared with placebo. The addition of Icelandic yogurt consumption to a resistance training programme improved lean mass, strength and altered skeletal muscle regulatory factors in healthy untrained older males compared with placebo. Therefore, Icelandic yogurt as a nutrient-dense source and cost-effective supplement enhances muscular gains mediated by resistance training and consequently may be used as a strategy for the prevention of sarcopenia.
Collapse
|
13
|
Nichele S, Phillips SM, Boaventura BC. Plant-based food patterns to stimulate muscle protein synthesis and support muscle mass in humans: a narrative review. Appl Physiol Nutr Metab 2022; 47:700-710. [PMID: 35508011 DOI: 10.1139/apnm-2021-0806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interest in a diet with a higher proportion of plant-based foods to animal-based foods is a global food pattern trend. However, there are concerns regarding adopting plants as the main dietary protein source to support muscle protein synthesis and muscle mass. These concerns are centred on three issues: lower protein bioavailability due to antinutritional compounds in plants, lower per-serve scores of protein at similar energy intake, and amino acid scores of plants being lower than optimal. We aimed here to synthesize and discuss evidence around plant protein in human nutrition focusing on the capacity of these proteins to stimulate muscle protein synthesis as a key part of gaining or maintaining muscle mass. In this review, we address the issues of plant protein quality and provide evidence for how plant proteins can be made more effective to stimulate muscle protein synthesis and support muscle mass in partial or total replacement of consumption of products of animal origin. Novelty: ● Plant proteins are known, in general, to have lower protein quality scores than animal proteins, and this may have important implications, especially for those aiming to increase their skeletal muscle mass through exercise. ● A plant-based diet has been postulated to have lower protein quality limiting MPS responses and potentially compromising exercise-induced gains in muscle mass. ● Current evidence shows that plant proteins can stimulate MPS, as can whole foods, especially when combining food groups, increasing portion sizes, and optimizing amino acid bioavailability through processing or common preparation methods.
Collapse
Affiliation(s)
- Sarah Nichele
- Federal University of Santa Catarina, 28117, Nutrition, Florianopolis, Brazil;
| | | | | |
Collapse
|
14
|
How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022; 11:foods11040528. [PMID: 35206005 PMCID: PMC8871094 DOI: 10.3390/foods11040528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Future food security for healthy populations requires the development of safe, sustainably-produced protein foods to complement traditional dietary protein sources. To meet this need, a broad range of non-traditional protein foods are under active investigation. The aim of this review was to evaluate their potential effects on human health and to identify knowledge gaps, potential risks, and research opportunities. Non-traditional protein sources included are algae, cereals/grains, fresh fruit and vegetables, insects, mycoprotein, nuts, oil seeds, and legumes. Human, animal, and in vitro data suggest that non-traditional protein foods have compelling beneficial effects on human health, complementing traditional proteins (meat/poultry, soy, eggs, dairy). Improvements in cardiovascular health, lipid metabolism, muscle synthesis, and glycaemic control were the most frequently reported improvements in health-related endpoints. The mechanisms of benefit may arise from their diverse range of minerals, macro- and micronutrients, dietary fibre, and bioactive factors. Many were also reported to have anti-inflammatory, antihypertensive, and antioxidant activity. Across all protein sources examined, there is a strong need for quality human data from randomized controlled intervention studies. Opportunity lies in further understanding the potential effects of non-traditional proteins on the gut microbiome, immunity, inflammatory conditions, DNA damage, cognition, and cellular ageing. Safety, sustainability, and evidence-based health research will be vital to the development of high-quality complementary protein foods that enhance human health at all life stages.
Collapse
|
15
|
Effect of High-Protein Diets on Integrated Myofibrillar Protein Synthesis before Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Pilot Study. Nutrients 2022; 14:nu14030563. [PMID: 35276922 PMCID: PMC8840691 DOI: 10.3390/nu14030563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing dietary protein intake during periods of muscle disuse may mitigate the resulting decline in muscle protein synthesis (MPS). The purpose of this randomized pilot study was to determine the effect of increased protein intake during periods of disuse before anterior cruciate ligament (ACL) reconstruction on myofibrillar protein synthesis (MyoPS), and proteolytic and myogenic gene expression. Six healthy, young males (30 ± 9 y) were randomized to consume a high-quality, optimal protein diet (OP; 1.9 g·kg−1·d−1) or adequate protein diet (AP; 1.2 g·kg−1·d−1) for two weeks before ACL reconstruction. Muscle biopsies collected during surgery were used to measure integrated MyoPS during the intervention (via daily deuterium oxide ingestion) and gene expression at the time of surgery. MyoPS tended to be higher, with a large effect size in OP compared to AP (0.71 ± 0.1 and 0.54 ± 0.1%·d−1; p = 0.076; g = 1.56). Markers of proteolysis and myogenesis were not different between groups (p > 0.05); however, participants with greater MyoPS exhibited lower levels of MuRF1 gene expression compared to those with lower MyoPS (r = −0.82, p = 0.047). The data from this pilot study reveal a potential stimulatory effect of increased daily protein intake on MyoPS during injury-mediated disuse conditions that warrants further investigation.
Collapse
|
16
|
Pinckaers PJM, Trommelen J, Snijders T, van Loon LJC. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med 2021; 51:59-74. [PMID: 34515966 PMCID: PMC8566416 DOI: 10.1007/s40279-021-01540-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
There is a global trend of an increased interest in plant-based diets. This includes an increase in the consumption of plant-based proteins at the expense of animal-based proteins. Plant-derived proteins are now also frequently applied in sports nutrition. So far, we have learned that the ingestion of plant-derived proteins, such as soy and wheat protein, result in lower post-prandial muscle protein synthesis responses when compared with the ingestion of an equivalent amount of animal-based protein. The lesser anabolic properties of plant-based versus animal-derived proteins may be attributed to differences in their protein digestion and amino acid absorption kinetics, as well as to differences in amino acid composition between these protein sources. Most plant-based proteins have a low essential amino acid content and are often deficient in one or more specific amino acids, such as lysine and methionine. However, there are large differences in amino acid composition between various plant-derived proteins or plant-based protein sources. So far, only a few studies have directly compared the muscle protein synthetic response following the ingestion of a plant-derived protein versus a high(er) quality animal-derived protein. The proposed lower anabolic properties of plant- versus animal-derived proteins may be compensated for by (i) consuming a greater amount of the plant-derived protein or plant-based protein source to compensate for the lesser quality; (ii) using specific blends of plant-based proteins to create a more balanced amino acid profile; (iii) fortifying the plant-based protein (source) with the specific free amino acid(s) that is (are) deficient. Clinical studies are warranted to assess the anabolic properties of the various plant-derived proteins and their protein sources in vivo in humans and to identify the factors that may or may not compromise the capacity to stimulate post-prandial muscle protein synthesis rates. Such work is needed to determine whether the transition towards a more plant-based diet is accompanied by a transition towards greater dietary protein intake requirements.
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Salvador AF, McKenna CF, Paulussen KJM, Keeble AR, Askow AT, Fang HY, Li Z, Ulanov AV, Paluska SA, Moore DR, Burd NA. Early resistance training-mediated stimulation of daily muscle protein synthetic responses to higher habitual protein intake in middle-aged adults. J Physiol 2021; 599:4287-4307. [PMID: 34320223 DOI: 10.1113/jp281907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults. The stimulation of myofibrillar, mitochondrial or collagen protein synthesis rates during 0-3 weeks of resistance training is not further enhanced by a higher protein diet. These results show that moderate protein diets are sufficient to support the skeletal muscle adaptive response during the early phase of a resistance training programme. ABSTRACT Protein ingestion augments muscle protein synthesis (MPS) rates acutely after resistance exercise and can offset age-related loss in muscle mass. Skeletal muscle contains a variety of protein pools, such as myofibrillar (contractile), mitochondrial (substrate oxidation), and collagen (structural support) proteins, and the sensitivity to nutrition and exercise seems to be dependent on the major protein fraction studied. However, it is unknown how free-living conditions with high dietary protein density and habitual resistance exercise mediates muscle protein subfraction synthesis. Therefore, we investigated the effect of moderate (MOD: 1.06 ± 0.22 g kg-1 day-1 ) or high (HIGH: 1.55 ± 0.25 g kg-1 day-1 ) protein intake on daily MPS rates within the myofibrillar (MyoPS), mitochondrial (MitoPS) and collagen (CPS) protein fractions in middle-aged men and women (n = 20, 47 ± 1 years, BMI 28 ± 1 kg m-2 ) during the early phase (0-3 weeks) of a dietary counselling-controlled resistance training programme. Participants were loaded with deuterated water, followed by daily maintenance doses throughout the intervention. Muscle biopsies were collected at baseline and after weeks 1, 2 and 3. MyoPS in the HIGH condition remained constant (P = 1.000), but MOD decreased over time (P = 0.023). MitoPS decreased after 0-3 weeks when compared to 0-1 week (P = 0.010) with no effects of protein intake (P = 0.827). A similar decline with no difference between groups (P = 0.323) was also observed for CPS (P = 0.007). Our results demonstrated that additional protein intake above moderate amounts does not potentiate the stimulation of longer-term MPS responses during the early stage of resistance training adaptations in middle-aged adults.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin J M Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander R Keeble
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
18
|
Comparative Assessment of the Acute Effects of Whey, Rice and Potato Protein Isolate Intake on Markers of Glycaemic Regulation and Appetite in Healthy Males Using a Randomised Study Design. Nutrients 2021; 13:nu13072157. [PMID: 34201703 PMCID: PMC8308460 DOI: 10.3390/nu13072157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023] Open
Abstract
Global protein consumption has been increasing for decades due to changes in demographics and consumer shifts towards higher protein intake to gain health benefits in performance nutrition and appetite regulation. Plant-derived proteins may provide a more environmentally sustainable alternative to animal-derived proteins. This study, therefore, aimed to investigate, for the first time, the acute effects on glycaemic indices, gut hormones, and subjective appetite ratings of two high-quality, plant-derived protein isolates (potato and rice), in comparison to a whey protein isolate in a single-blind, triple-crossover design study with nine male participants (30.8 ± 9.3 yrs). Following a 12 h overnight fast, participants consumed an equal volume of the three isocaloric protein shakes on different days, with at least a one-week washout period. Glycaemic indices and gut hormones were measured at baseline, then at 30, 60, 120, 180 min at each visit. Subjective palatability and appetite ratings were measured using visual analogue scales (VAS) over the 3 h, at each visit. This data showed significant differences in insulin secretion with an increase in whey (+141.8 ± 35.1 pmol/L; p = 0.011) and rice (−64.4 ± 20.9 pmol/L; p = 0.046) at 30 min compared to potato protein. A significantly larger total incremental area under the curve (iAUC) was observed with whey versus potato and rice with p < 0.001 and p = 0.010, respectively. There was no significant difference observed in average appetite perception between the different proteins. In conclusion, this study suggests that both plant-derived proteins had a lower insulinaemic response and improved glucose maintenance compared to whey protein.
Collapse
|
19
|
Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients 2021; 13:nu13061962. [PMID: 34200501 PMCID: PMC8230006 DOI: 10.3390/nu13061962] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Adequate dietary protein is important for many aspects of health with current evidence suggesting that exercising individuals need greater amounts of protein. When assessing protein quality, animal sources of protein routinely rank amongst the highest in quality, largely due to the higher levels of essential amino acids they possess in addition to exhibiting more favorable levels of digestibility and absorption patterns of the amino acids. In recent years, the inclusion of plant protein sources in the diet has grown and evidence continues to accumulate on the comparison of various plant protein sources and animal protein sources in their ability to stimulate muscle protein synthesis (MPS), heighten exercise training adaptations, and facilitate recovery from exercise. Without question, the most robust changes in MPS come from efficacious doses of a whey protein isolate, but several studies have highlighted the successful ability of different plant sources to significantly elevate resting rates of MPS. In terms of facilitating prolonged adaptations to exercise training, multiple studies have indicated that a dose of plant protein that offers enough essential amino acids, especially leucine, consumed over 8–12 weeks can stimulate similar adaptations as seen with animal protein sources. More research is needed to see if longer supplementation periods maintain equivalence between the protein sources. Several practices exist whereby the anabolic potential of a plant protein source can be improved and generally, more research is needed to best understand which practice (if any) offers notable advantages. In conclusion, as one considers the favorable health implications of increasing plant intake as well as environmental sustainability, the interest in consuming more plant proteins will continue to be present. The evidence base for plant proteins in exercising individuals has seen impressive growth with many of these findings now indicating that consumption of a plant protein source in an efficacious dose (typically larger than an animal protein) can instigate similar and favorable changes in amino acid update, MPS rates, and exercise training adaptations such as strength and body composition as well as recovery.
Collapse
|
20
|
Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
21
|
Protein Source and Muscle Health in Older Adults: A Literature Review. Nutrients 2021; 13:nu13030743. [PMID: 33652669 PMCID: PMC7996767 DOI: 10.3390/nu13030743] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Research shows that higher dietary protein of up to 1.2 g/kgbodyweight/day may help prevent sarcopenia and maintain musculoskeletal health in older individuals. Achieving higher daily dietary protein levels is challenging, particularly for older adults with declining appetites and underlying health conditions. The negative impact of these limitations on aging muscle may be circumvented through the consumption of high-quality sources of protein and/or supplementation. Currently, there is a debate regarding whether source of protein differentially affects musculoskeletal health in older adults. Whey and soy protein have been used as the most common high-quality proteins in recent literature. However, there is growing consumer demand for additional plant-sourced dietary protein options. For example, pea protein is rapidly gaining popularity among consumers, despite little to no research regarding its long-term impact on muscle health. Therefore, the objectives of this review are to: (1) review current literature from the past decade evaluating whether specific source(s) of dietary protein provide maximum benefit to muscle health in older adults; and (2) highlight the need for future research specific to underrepresented plant protein sources, such as pea protein, to then provide clearer messaging surrounding plant-sourced versus animal-sourced protein and their effects on the aging musculoskeletal system.
Collapse
|
22
|
Pettersson S, Edin F, Hjelte C, Scheinost D, Wagner S, Ekblom B, Jessen N, Madsen K, Andersson-Hall U. Six Weeks of Aerobic Exercise in Untrained Men With Overweight/Obesity Improved Training Adaptations, Performance and Body Composition Independent of Oat/Potato or Milk Based Protein-Carbohydrate Drink Supplementation. Front Nutr 2021; 8:617344. [PMID: 33659268 PMCID: PMC7917245 DOI: 10.3389/fnut.2021.617344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Protein availability around aerobic exercise might benefit aerobic capacity and body composition in normal weight adults. However, it is unknown if individuals with overweight/obesity elicit similar adaptations or improve other cardiometabolic/health-related markers in response to different types of protein. Thus, our aim was to study the effect of supplementation of two different protein drinks in conjunction with exercise on aerobic capacity, body composition and blood health markers in untrained subjects with overweight or obesity. Methods: The present study measured training adaptation and health parameters over a 6 week period in untrained men with overweight/obesity (n = 28; BMI 30.4 ± 2.2 kg/m2) ingesting either plant- (Oat/Potato; n = 8) or animal-based (Milk; n = 10) protein-carbohydrate drinks (10 g of protein/serving), or a control carbohydrate drink (n = 10) acutely before and after each training session (average three sessions/week @ 70% HRmax). Pre-post intervention V˙O2peak, muscle biopsies and blood samples were collected, body composition measured (DXA) and two different exercise tests performed. Body weight was controlled with participants remaining weight stable throughout the intervention. Results: For the groups combined, the training intervention significantly increased V˙O2peak (8%; P < 0.001), performance in a time-to-exhaustion trial (~ 100%; P < 0.001), mitochondrial protein content and enzyme activity (~20–200%). Lean body mass increased (1%; P < 0.01) and fat mass decreased (3%; P < 0.01). No significant effects on fasting blood glucose, insulin, lipids or markers of immune function were observed. There were no significant interactions between drink conditions for training adaptation or blood measurements. For body composition, the Oat/Potato and carbohydrate group decreased leg fat mass significantly more than the Milk group (interaction P < 0.05). Conclusions: Aerobic capacity and body composition were improved and a number of mitochondrial, glycolytic and oxidative skeletal muscle proteins and enzyme activities were upregulated by a 6 week training intervention. However, none of the parameters for endurance training adaptation were influenced by protein supplementation before and after each training session.
Collapse
Affiliation(s)
- Stefan Pettersson
- Department of Food and Nutrition, and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Edin
- Department of Food and Nutrition, and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Carl Hjelte
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Scheinost
- Department of Food and Nutrition, and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Sandro Wagner
- Department of Food and Nutrition, and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Björn Ekblom
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Klavs Madsen
- Department of Food and Nutrition, and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden.,The Norwegian School of Sports Sciences, Oslo, Norway
| | - Ulrika Andersson-Hall
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Hertzler SR, Lieblein-Boff JC, Weiler M, Allgeier C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020; 12:E3704. [PMID: 33266120 PMCID: PMC7760812 DOI: 10.3390/nu12123704] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Consumer demand for plant protein-based products is high and expected to grow considerably in the next decade. Factors contributing to the rise in popularity of plant proteins include: (1) potential health benefits associated with increased intake of plant-based diets; (2) consumer concerns regarding adverse health effects of consuming diets high in animal protein (e.g., increased saturated fat); (3) increased consumer recognition of the need to improve the environmental sustainability of food production; (4) ethical issues regarding the treatment of animals; and (5) general consumer view of protein as a "positive" nutrient (more is better). While there are health and physical function benefits of diets higher in plant-based protein, the nutritional quality of plant proteins may be inferior in some respects relative to animal proteins. This review highlights the nutritional quality of plant proteins and strategies for wisely using them to meet amino acid requirements. In addition, a summary of studies evaluating the potential benefits of plant proteins for both health and physical function is provided. Finally, potential safety issues associated with increased intake of plant proteins are addressed.
Collapse
Affiliation(s)
- Steven R. Hertzler
- Scientific and Medical Affairs, Abbott Nutrition, 2900 Easton Square Place, Columbus, OH 43219, USA; (J.C.L.-B.); (M.W.); (C.A.)
| | | | | | | |
Collapse
|
24
|
Nutrient-dense protein as a primary dietary strategy in healthy ageing: please sir, may we have more? Proc Nutr Soc 2020; 80:264-277. [PMID: 33050965 DOI: 10.1017/s0029665120007892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A progressive decrement in muscle mass and muscle function, sarcopoenia, accompanies ageing. The loss of skeletal muscle mass and function is the main feature of sarcopoenia. Preventing the loss of muscle mass is relevant since sarcopoenia can have a significant impact on mobility and the quality of life of older people. Dietary protein and physical activity have an essential role in slowing muscle mass loss and helping to maintain muscle function. However, the current recommendations for daily protein ingestion for older persons appear to be too low and are in need of adjustment. In this review, we discuss the skeletal muscle response to protein ingestion, and review the data examining current dietary protein recommendations in the older subjects. Furthermore, we review the concept of protein quality and the important role that nutrient-dense protein (NDP) sources play in meeting overall nutrient requirements and improving dietary quality. Overall, the current evidence endorses an increase in the daily ingestion of protein with emphasis on the ingestion of NDP choices by older adults.
Collapse
|
25
|
Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes. Nutrients 2020; 12:nu12092670. [PMID: 32883033 PMCID: PMC7551889 DOI: 10.3390/nu12092670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary protein is critical for the maintenance of musculoskeletal health, where appropriate intake (i.e., source, dose, timing) can mitigate declines in muscle and bone mass and/or function. Animal-derived protein is a potent anabolic source due to rapid digestion and absorption kinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion and maintenance. However, global concerns surrounding environmental sustainability has led to an increasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources. This is despite the lower anabolic profile of plant and collagen protein due to the inferior essential amino acid profile (e.g., lower leucine content) and subordinate digestibility (versus animal). This review evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and as protein blends, for augmenting muscle and bone metabolism and health in the context of ageing, exercise and energy restriction.
Collapse
|
26
|
McKendry J, Currier BS, Lim C, Mcleod JC, Thomas AC, Phillips SM. Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients 2020; 12:E2057. [PMID: 32664408 PMCID: PMC7399875 DOI: 10.3390/nu12072057] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle plays an indispensable role in metabolic health and physical function. A decrease in muscle mass and function with advancing age exacerbates the likelihood of mobility impairments, disease development, and early mortality. Therefore, the development of non-pharmacological interventions to counteract sarcopenia warrant significant attention. Currently, resistance training provides the most effective, low cost means by which to prevent sarcopenia progression and improve multiple aspects of overall health. Importantly, the impact of resistance training on skeletal muscle mass may be augmented by specific dietary components (i.e., protein), feeding strategies (i.e., timing, per-meal doses of specific macronutrients) and nutritional supplements (e.g., creatine, vitamin-D, omega-3 polyunsaturated fatty acids etc.). The purpose of this review is to provide an up-to-date, evidence-based account of nutritional strategies to enhance resistance training-induced adaptations in an attempt to combat age-related muscle mass loss. In addition, we provide insight on how to incorporate the aforementioned nutritional strategies that may support the growth or maintenance of skeletal muscle and subsequently extend the healthspan of older individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.M.); (B.S.C.); (C.L.); (J.C.M.); (A.C.Q.T.)
| |
Collapse
|