1
|
Ivashkin VT, Maev IV, Lapina TL, Kucheryavyy YA, Abdulkhakov SR, Alekseeva OP, Alekseenko SA, Andreev DN, Bakulin IG, Bakulina NV, Bordin DS, Galeeva ZM, Dekhnich NN, Korochanskaya NV, Kuvaev RO, Livzan MA, Osipenko MF, Pirogov SS, Simanenkov VI, Storonova OA, Tertychnyy AS, Trukhmanov AS, Uspenskiy YP, Khlynov IB, Tsukanov VV. H. pylori-Associated Gastritis, Gastritis after H. pylori Eradication and H. pylori-Negative Gastritis: Algorithm of Diagnosis and Treatment (Literature Review and Resolution of the Expert Panel of the Russian Gastroenterological Association). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:7-23. [DOI: 10.22416/1382-4376-2024-34-3-7-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Aim: to provide the basic points of the Expert Panel of the Russian Gastroenterological Association with discussion of measures to improve diagnostics, treatment and management of chronic gastritis patients.Key points. In the Russian Federation in 2021 more than 30 million patients diagnosed with “Gastritis and duodenitis” were recorded (K29 in accordance with International Classification of Diseases-10). H. pylori incidence rate in the Russian population has reduced and presently is about 40 %. In chronic gastritis pattern H. pylori-associated gastritis has still dominated though gastritis percent after successful H. pylori eradication, reactive gastropathy (including reflux gastritis) and autoimmune gastritis, has increased. Endoscopic and histologic examinations serve as key diagnostic techniques that provide a means for assessing the ethiology of gastritis, topography and degree of atrophic changes, gastritis staging as per OLGA/OLGIM system that properly correlates with the risk of stomach cancer and determines endoscopic examination strategy. H. pylori eradication therapy of gastritis serves as an etiotropic treatment and makes it possible to prevent progression of atrophy and stomach cancer. Conventional triple therapy combined with bismuth tripotassium dicitrate allows for achieving optimal cure rates of H. pylori eradication. Addition of rebamipide to regimens of H. pylori eradication improves their efficiency. Rebamipide arrests symptoms of dyspepsia in the case of chronic gastritis and functional dyspepsia. The administration of rebamipide for chronic gastritis makes it possible to influence the syndrome of increased epithelial permeability and inflammation, which makes it advisable to study it as a means of preventing stomach cancer and the progression of atrophy in various types of chronic gastritis.Conclusion. Members of the Expert Panel has approved the algorithm of diagnosis and treatment of H. pylori-associated gastritis, gastritis after H. pylori eradication and H. pylori-negative gastritis at the diagnostic stage in the case of initial presentation and long-term follow-up when needed.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - T. L. Lapina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - S. R. Abdulkhakov
- Kazan (Volga Region) Federal University; Kazan State Medical University
| | | | | | | | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | - N. V. Bakulina
- North-Western State Medical University named after I.I. Mechnikov
| | - D. S. Bordin
- Russian University of Medicine; A.S. Loginov Moscow Clinical Scientific Center; Tver State Medical University
| | - Z. M. Galeeva
- Kazan State Medical Academy — Branch of the Russian Medical Academy of Continuous Professional Education
| | | | | | - R. O. Kuvaev
- Clinical Oncological Hospital; N.I. Pirogov Russian National Research Medical University
| | | | | | - S. S. Pirogov
- Moscow Research Oncological Institute named after P.A. Gertsen — Branch of National Medical Research Radiological Center
| | - V. I. Simanenkov
- North-Western State Medical University named after I.I. Mechnikov
| | - O. A. Storonova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Tertychnyy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu. P. Uspenskiy
- First Saint-Petersburg State Medical University named after Academician I.P. Pavlov; Saint Petersburg State Pediatric Medical University
| | | | - V. V. Tsukanov
- Federal Research Center “Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences”, Separate Division “Scientific Research Institute of Medical Problems of the North”
| |
Collapse
|
2
|
Ge Q, Hou CL, Rao XH, Zhang AQ, Xiao GM, Wang LY, Jin KN, Sun PL, Chen LC. In vitro fermentation characteristics of polysaccharides from coix seed and its effects on the gut microbiota. Int J Biol Macromol 2024; 262:129994. [PMID: 38325690 DOI: 10.1016/j.ijbiomac.2024.129994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Coix seed polysaccharides had received increasing attention due to their diverse biological activities. In this study, a homogeneous polysaccharide (CSPW) was extracted and purified from coix seed. Furthermore, the saliva-gastrointestinal digestion and fecal fermentation behavior of CSPW were simulated in vitro. The results showed that CSPW was mainly composed of glucose. It cannot be degraded by the simulated salivary and intestinal digestive system, but can be degraded by the simulated gastric digestive system. After fermentation for 24 h, CSPW promoted the production of short-chain fatty acids (SCFAs), with acetic acid, propionic acid and n-butyric acid being the main metabolites. In addition, CSPW could significantly regulate the composition and microbial diversity of gut microbiota by increasing the relative abundance of beneficial bacteria, such as Limosilicactobacillus, Bifidobacterium and Collinsella. Finally, further analysis of functional prediction revealed that amino acid metabolism, nucleotide metabolism and carbohydrate metabolism were the most important pathways for CSPW to promote health. In summary, our findings suggested that CSPW could potentially be used as a good source of prebiotics because it can be used by gut microbiota to produce SCFAs and regulate the gut microbiota.
Collapse
Affiliation(s)
- Qing Ge
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
| | - Chen-Long Hou
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China
| | - Xiu-Hua Rao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China
| | - An-Qiang Zhang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guo-Ming Xiao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China
| | - Lu-Yao Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China
| | - Kai-Ning Jin
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China
| | - Pei-Long Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Li-Chun Chen
- School of Food Science and Biological engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, PR China
| |
Collapse
|
3
|
Khayyat YM. Potential therapeutic benefit of ursodeoxycholic acid in the management of non hepato-biliary upper gastrointestinal disorders. Saudi Med J 2023; 44:431-439. [PMID: 37182914 PMCID: PMC10187751 DOI: 10.15537/smj.2023.44.5.20220886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES To examine the potential therapeutic effects of ursodeoxycholic acid (UDCA) on diseases of the esophagus, stomach, and duodenum. METHODS A search was conducted using EBSCO, Medline, PubMed, Google Scholar and Web of Science as well as international guidelines using MESH terms for treatment of UDCA for diseases of the upper gastrointestinal disorders in adult humans without regard to publication language or date restrictions. RESULTS A total of 256 articles and 22 guidelines were initially identified, and 221 were excluded. Final revision of 13 articles and 22 guidelines confirmed that UDCA is found to have a cytoprotective role in Barret's esophagus within esophageal disorders, improves abdominal pain in functional dyspepsia, and does not alter Helicobacter pylori colonization or inflammation. Conflicting results are noted regarding the role of UDCA in the duodenum as chemopreventive treatment for familial adenomatous polyposis, with polyps regressing and their growth characteristics improving with low doses (10-25 mg/kg/day). On the contrary, no positive effect was noted upon the combination with Celecoxib and with doses of 1000-2000 mg or 20-30 mg/kg/d. Gastrointestinal side effects were predominantly reported. No side effects necessitated hospitalization or ICU admission. CONCLUSION Ursodeoxycholic acid has a limited therapeutic role in functional dyspepsia. There is promising evidence that it may serve as a chemopreventive for Familial adenomatous polyposis and Barret's esophagus, although further research is needed to confirm these findings.PROSPERO No.: CRD 42021267689.
Collapse
Affiliation(s)
- Yasir M. Khayyat
- From the Department of Medicine, Faculty of Medicine, Umm AlQura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Maeda Y, Murakami T. Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics (Basel) 2023; 12:antibiotics12020263. [PMID: 36830173 PMCID: PMC9952535 DOI: 10.3390/antibiotics12020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is characterized as the increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract and accompanies various bowel symptoms such as abdominal pain, bloating, gases, diarrhea, and so on. Clinically, SIBO is diagnosed by microbial culture in duodenum/jejunum fluid aspirates and/or the breath tests (BT) of hydrogen/methane gases after ingestion of carbohydrates such as glucose. The cultural analysis of aspirates is regarded as the golden standard for the diagnosis of SIBO; however, this is invasive and is not without risk to the patients. BT is an inexpensive and safe diagnostic test but lacks diagnostic sensitivity and specificity depending on the disease states of patients. Additionally, the urinary excretion tests are used for the SIBO diagnosis using chemically synthesized bile acid conjugates such as cholic acid (CA) conjugated with para-aminobenzoic acid (PABA-CA), ursodeoxycholic acid (UDCA) conjugated with PABA (PABA-UDCA) or conjugated with 5-aminosalicylic acid (5-ASA-UDCA). These conjugates are split by bacterial bile acid (cholylglycine) hydrolase. In the tests, the time courses of the urinary excretion rates of PABA or 5-ASA, including their metabolites, are determined as the measure of hydrolytic activity of intestinal bacteria. Although the number of clinical trials with this urinary excretion tests is small, results demonstrated the usefulness of bile acid conjugates as SIBO diagnostic substrates. PABA-UDCA disulfate, a single-pass type unabsorbable compound without the hydrolysis of conjugates, was likely to offer a simple and rapid method for the evaluation of SIBO without the use of radioisotopes or expensive special apparatus. Treatments of SIBO with antibiotics, probiotics, therapeutic diets, herbal medicines, and/or fecal microbiota transplantation are also reviewed.
Collapse
Affiliation(s)
- Yorinobu Maeda
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Sanzou, Gakuen-cho, Fukuyama 729-0292, Hiroshima, Japan
| | - Teruo Murakami
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure 737-0112, Hiroshima, Japan
- Correspondence: ; Tel.: +81-82-872-4310
| |
Collapse
|
5
|
Simanenkov V, Maev I, Tkacheva O, Alekseenko S, Andreev D, Bakulina N, Bakulin I, Bordin D, Vlasov T, Vorobyeva N, Grinevich V, Gubonina I, Drobizhev M, Efremov N, Karateev A, Kotovskaya Y, Kravchuk I, Krivoborodov G, Kulchavenya E, Lila A, Maevskaya M, Nekrasova A, Poluektova E, Popkova T, Sablin O, Solovyeva O, Suvorov A, Tarasova G, Trukhan D, Fedotova A. Epithelial protective therapy in comorbid diseases. Practical Guidelines for Physicians. TERAPEVT ARKH 2022; 94:940-956. [PMID: 36286974 DOI: 10.26442/00403660.2022.08.201523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
In 2021 the first multidisciplinary National Consensus on the pathophysiological and clinical aspects of Increased Epithelial Permeability Syndrome was published. The proposed guidelines are developed on the basis of this Consensus, by the same team of experts. Twenty-eight Practical Guidelines for Physicians statements were adopted by the Expert Council using the "delphic" method. Such main groups of epithelial protective drugs as proton pump inhibitors, bismuth drugs and probiotics are discussed in these Guidelines from the positions of evidence-based medicine. The clinical and pharmacological characteristics of such a universal epithelial protector as rebamipide, acting at the preepithelial, epithelial and subepithelial levels, throughout gastrointestinal tract, are presented in detail.
Collapse
|
6
|
Wang D, Doestzada M, Chen L, Andreu-Sánchez S, van den Munckhof ICL, Augustijn HE, Koehorst M, Ruiz-Moreno AJ, Bloks VW, Riksen NP, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Zhernakova A, Kuipers F, Fu J. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 2021; 29:1802-1814.e5. [PMID: 34847370 DOI: 10.1016/j.chom.2021.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) facilitate intestinal fat absorption and act as important signaling molecules in host-gut microbiota crosstalk. BA-metabolizing pathways in the microbial community have been identified, but it remains largely unknown how the highly variable genomes of gut bacteria interact with host BA metabolism. We characterized 8,282 structural variants (SVs) of 55 bacterial species in the gut microbiomes of 1,437 individuals from two cohorts and performed a systematic association study with 39 plasma BA parameters. Both variations in SV-based continuous genetic makeup and discrete clusters showed correlations with BA metabolism. Metagenome-wide association analysis identified 809 replicable associations between bacterial SVs and BAs and SV regulators that mediate the effects of lifestyle factors on BA metabolism. This is the largest microbial genetic association analysis to demonstrate the impact of bacterial SVs on human BA composition, and it highlights the potential of targeting gut microbiota to regulate BA metabolism through lifestyle intervention.
Collapse
Affiliation(s)
- Daoming Wang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Marwah Doestzada
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Lianmin Chen
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Hannah E Augustijn
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Martijn Koehorst
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen 9713AV, the Netherlands
| | - Angel J Ruiz-Moreno
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Vincent W Bloks
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53113, Germany; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands
| | - Folkert Kuipers
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen 9713AV, the Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands.
| |
Collapse
|
7
|
Microbiome Metabolites and Thyroid Dysfunction. J Clin Med 2021; 10:jcm10163609. [PMID: 34441905 PMCID: PMC8397005 DOI: 10.3390/jcm10163609] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid diseases are common conditions that have a negative impact on the health of all populations. The literature sheds light on the differences in the composition of the intestinal microbiota in patients suffering from thyroid diseases compared to healthy individuals. The microbiome affects the proper functioning of the thyroid gland, and the existence of the gut–thyroid axis is discussed in the context of both thyroid diseases and intestinal dysbiosis. The purpose of this review is to describe associations between the microbiome and its metabolites and thyroid dysfunction. We try to explain the role of the microbiome in the metabolism of thyroid hormones and the impact of thyroid autoimmune diseases. In addition, we raise issues related to the influence of bacterial metabolites, such as short-chain fatty acids or secondary bile acids, in the functioning of the thyroid gland. Last but not least, we explored the interactions between the gut microbiota and therapeutics and supplements typically administered to patients with thyroid diseases.
Collapse
|
8
|
Liu XJ, Xie WR, Wu LH, Ye ZN, Zhang XY, Zhang R, He XX. Changes in oral flora of patients with functional dyspepsia. Sci Rep 2021; 11:8089. [PMID: 33850203 PMCID: PMC8044088 DOI: 10.1038/s41598-021-87600-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
To explore the changes in oral flora in people with functional dyspepsia (FD). Unstimulated saliva was collected from 21 FD patients diagnosed according to the Rome IV criteria and from 12 healthy controls (HCs) for 16SrRNA sequencing. The pH of saliva samples and community periodontal index (CPI) were tested. The prevalence of small intestinal bacterial overgrowth (SIBO) was obtained by the methane-and hydrogen-based breath test. At the phylum level, FD patients had a higher relative abundance of Spirochaetes and a lower relative abundance of Fusobacteria, TM7 and Proteobacteria than HCs (p < 0.01). In the saliva, Kingella and Abiotrophia genus levels showed significant changes between the FD and HC groups (p < 0.01). Salivary species level marker Intermedia was significantly different between FD and HC groups (p < 0.01). The oral pH of FD patients was higher than that of HCs (p < 0.01). The mean CPI of the FD group was 1.52 and that of the HC group was 0.17 (p < 0.01). Moreover, 71.4% of the FD group was positive for SIBO. The oral flora of FD patients was different from that of HCs. Spirochaetes, Kingella, Abiotrophia, and Intermedia may be diagnostic indicators of FD.
Collapse
Affiliation(s)
- Xu-Juan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
- Integrated Hospital of Traditional Chinese, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Rui Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Li-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Zhi-Ning Ye
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Xue-Yuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Ran Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China.
- Research Center for Engineering Techniques Therapies of Guangdong Province, NO 19, Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Winston JA, Rivera A, Cai J, Patterson AD, Theriot CM. Secondary bile acid ursodeoxycholic acid alters weight, the gut microbiota, and the bile acid pool in conventional mice. PLoS One 2021; 16:e0246161. [PMID: 33600468 PMCID: PMC7891722 DOI: 10.1371/journal.pone.0246161] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Ursodeoxycholic acid (commercially available as ursodiol) is a naturally occurring bile acid that is used to treat a variety of hepatic and gastrointestinal diseases. Ursodiol can modulate bile acid pools, which have the potential to alter the gut microbiota community structure. In turn, the gut microbial community can modulate bile acid pools, thus highlighting the interconnectedness of the gut microbiota-bile acid-host axis. Despite these interactions, it remains unclear if and how exogenously administered ursodiol shapes the gut microbial community structure and bile acid pool in conventional mice. This study aims to characterize how ursodiol alters the gastrointestinal ecosystem in conventional mice. C57BL/6J wildtype mice were given one of three doses of ursodiol (50, 150, or 450 mg/kg/day) by oral gavage for 21 days. Alterations in the gut microbiota and bile acids were examined including stool, ileal, and cecal content. Bile acids were also measured in serum. Significant weight loss was seen in mice treated with the low and high dose of ursodiol. Alterations in the microbial community structure and bile acid pool were seen in ileal and cecal content compared to pretreatment, and longitudinally in feces following the 21-day ursodiol treatment. In both ileal and cecal content, members of the Lachnospiraceae Family significantly contributed to the changes observed. This study is the first to provide a comprehensive view of how exogenously administered ursodiol shapes the healthy gastrointestinal ecosystem in conventional mice. Further studies to investigate how these changes in turn modify the host physiologic response are important.
Collapse
Affiliation(s)
- Jenessa A. Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Alissa Rivera
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|