1
|
Tomisova K, Jarosova V, Marsik P, Bergo AM, Cinek O, Hlinakova L, Kloucek P, Janousek V, Valentová K, Havlik J. Mutual Interactions of Silymarin and Colon Microbiota in Healthy Young and Healthy Elder Subjects. Mol Nutr Food Res 2024; 68:e2400500. [PMID: 39473280 PMCID: PMC11605779 DOI: 10.1002/mnfr.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Indexed: 11/30/2024]
Abstract
SCOPE This multi-omic study investigates the bidirectional interactions between gut microbiota and silymarin metabolism, highlighting the differential effects across various age groups. Silymarin, the extract from Silybum marianum (milk thistle), is commonly used for its hepatoprotective effects. METHODS AND RESULTS An in vitro fermentation colon model was used with microbiota from 20 stool samples obtained from healthy donors divided into two age groups. A combination of three analytical advanced techniques, namely proton nuclear magnetic resonance (1H NMR), next-generation sequencing (NGS), and liquid chromatography-mass spectrometry (LC-MS) was used to determine silymarin microbial metabolites over 24 h, overall metabolome, and microbiota composition. Silymarin at a low diet-relevant dose of 50 µg mL-1 significantly altered gut microbiota metabolism, reducing short-chain fatty acid (acetate, butyrate, propionate) production, glucose utilization, and increasing alpha-diversity. Notably, the study reveals age-related differences in silymarin catabolism. Healthy elderly donors (70-80 years) exhibited a significant increase in a specific catabolite associated with Oscillibacter sp., whereas healthy young donors (12-45 years) showed a faster breakdown of silymarin components, particularly isosilybin B, which is associated with higher abundance of Faecalibacterium and Erysipelotrichaceae UCG-003. CONCLUSION This study provides insights into microbiome functionality in metabolizing dietary flavonolignans, highlighting implications for age-specific nutritional strategies, and advancing our understanding of dietary (poly)phenol metabolism.
Collapse
Affiliation(s)
- Katerina Tomisova
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Veronika Jarosova
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Petr Marsik
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Ondrej Cinek
- Department of PediatricsCharles University and University Hospital MotolV Uvalu 84Prague150 06Czech Republic
| | - Lucie Hlinakova
- Department of PediatricsCharles University and University Hospital MotolV Uvalu 84Prague150 06Czech Republic
| | - Pavel Kloucek
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | | | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of SciencesVidenska 1083Prague142 00Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| |
Collapse
|
2
|
Liu H, Huang Z, Xin T, Dong L, Deng M, Han L, Huang F, Su D. Effects of polysaccharides on colonic targeting and colonic fermentation of ovalbumin-ferulic acid based emulsion. Food Chem 2024; 453:139630. [PMID: 38781895 DOI: 10.1016/j.foodchem.2024.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.
Collapse
Affiliation(s)
- Hesheng Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenzhen Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ting Xin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lipeng Han
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Hou C, Shi H, Xiao J, Song X, Luo Z, Ma X, Shi L, Wei H, Li J. Pomegranate Juice Supplemented with Inulin Modulates Gut Microbiota and Promotes the Production of Microbiota-Associated Metabolites in Overweight/Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14663-14677. [PMID: 38887904 DOI: 10.1021/acs.jafc.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pomegranate juice (PJ) and inulin have been reported to ameliorate diet-induced metabolic disorders by regulating gut microbiota dysbiosis. However, there was a lack of clinical evidence for the combined effects of PJ and inulin on regulating gut microbiota in individuals with metabolic disorders. A double-blind, parallel, randomized, placebo-controlled trial was conducted, and 68 overweight/obese individuals (25 ≤ BMI ≤ 35 kg/m2) were randomly assigned to receive 200 mL/d PJ, PJ supplemented with inulin, or placebo for 3 weeks. Our results showed that PJ and PJ+inulin did not significantly alter the levels of anthropometric and blood biochemical indicators after 3 weeks of treatment. However, there was an increasingly significant impact from placebo to PJ to PJ+inulin on the composition of gut microbiota. Detailed bacterial abundance analysis further showed that PJ+inulin treatment more profoundly resulted in significant changes in the abundance of gut microbiota at each taxonomic level than PJ. Moreover, PJ+inulin treatment also promoted the production of microbiota-associated short-chain fatty acids and pomegranate polyphenol metabolites, which correlated with the abundance of the bacterial genus. Our results suggested that PJ supplemented with inulin modulates gut microbiota composition and thus promotes the production of microbiota-associated metabolites that exert potential beneficial effects in overweight/obese subjects.
Collapse
Affiliation(s)
- Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Haidan Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyu Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuoting Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Hongliang Wei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Xu L, Liao J, Li X, Zhu L, Wang X, Xu B, Li L, Ze X, Sun H, Li J. Exploring the mechanism of probiotics in enhancing the utilization of chemical components (or polyphenols) of grape seed extract. Food Chem 2024; 438:137982. [PMID: 37979272 DOI: 10.1016/j.foodchem.2023.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Fecal samples from 20 healthy adults were collected for in vitro fermentation experiments to investigate the effects of combined probiotics on the utilization of grape seed extract in humans. After fermenting for 24 h, short-chain fatty acids, metabolites, and gut microbiota composition were analyzed. Short-chain fatty acids in the grape seed extract probiotics group were significantly higher than those in the grape seed extract group. Probiotics significantly enhanced the conversion and utilization of catechins and epicatechins in grape seed extract group and increased the production of 3-hydroxyphenylacetic acid. The 16S rRNA sequencing results revealed that compound probiotics significantly increased the relative abundance of Lacticaseibacillus, HT002, Bifidobacterium, and Lactobacillus and reduced that of Escherichia-Shigella. Our findings showed considerable individual variability in the metabolic utilization of grape seed extract in humans. The consumption of probiotics appears to significantly enhance the utilization.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Jiahao Liao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Benhong Xu
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Liang Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan 030000, China.
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Whitman JA, Doherty LA, Pantoja-Feliciano de Goodfellow IG, Racicot K, Anderson DJ, Kensil K, Karl JP, Gibson GR, Soares JW. In Vitro Fermentation Shows Polyphenol and Fiber Blends Have an Additive Beneficial Effect on Gut Microbiota States. Nutrients 2024; 16:1159. [PMID: 38674850 PMCID: PMC11053737 DOI: 10.3390/nu16081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols and fermentable fibers have shown favorable effects on gut microbiota composition and metabolic function. However, few studies have investigated whether combining multiple fermentable fibers or polyphenols may have additive beneficial effects on gut microbial states. Here, an in vitro fermentation model, seeded with human stool combined from 30 healthy volunteers, was supplemented with blends of polyphenols (PP), dietary fibers (FB), or their combination (PPFB) to determine influence on gut bacteria growth dynamics and select metabolite changes. PP and FB blends independently led to significant increases in the absolute abundance of select beneficial taxa, namely Ruminococcus bromii, Bifidobacterium spp., Lactobacillus spp., and Dorea spp. Total short-chain fatty acid concentrations, relative to non-supplemented control (F), increased significantly with PPFB and FB supplementation but not PP. Indole and ammonia concentrations decreased with FB and PPFB supplementation but not PP alone while increased antioxidant capacity was only evident with both PP and PPFB supplementation. These findings demonstrated that, while the independent blends displayed selective positive impacts on gut states, the combination of both blends provided an additive effect. The work outlines the potential of mixed substrate blends to elicit a broader positive influence on gut microbial composition and function to build resiliency toward dysbiosis.
Collapse
Affiliation(s)
- Jordan A. Whitman
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Laurel A. Doherty
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Ida G. Pantoja-Feliciano de Goodfellow
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Kenneth Racicot
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Danielle J. Anderson
- Combat Feeding Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (D.J.A.); (K.K.)
| | - Katherine Kensil
- Combat Feeding Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (D.J.A.); (K.K.)
| | - J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA 01760, USA;
| | - Glenn R. Gibson
- Food and Nutritional Sciences, University of Reading, Reading RG6 6AH, UK;
| | - Jason W. Soares
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| |
Collapse
|
6
|
Liu S, Loo YT, Zhang Y, Ng K. Electrospray alginate microgels co-encapsulating degraded Konjac glucomannan and quercetin modulate human gut microbiota in vitro. Food Chem 2024; 434:137508. [PMID: 37738812 DOI: 10.1016/j.foodchem.2023.137508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Alginate microgels co-encapsulating degraded Konjac glucomannan (KGM60) underwent in vitro fecal fermentation and their effects on human microbiota and metabolites were investigated. KGM60 delayed quercetin release and enhanced phenolic metabolites production. Microgels co-encapsulating KGM60 and quercetin increased linear short chain fatty acid but decreased branched chain fatty acid production. Microgels encapsulated with quercetin with or without KGM60 decreased Firmicutes while increased Bacteroidetes over 24 h of fermentation, at genus level promoted Bacteroides growth at 24 h and decreased the abundance of Negativibacillus, Ruminococcus_NK4A214, and Christensenellaceae R_7. Faecalibacterium and Collinsella levels were exclusively promoted by microgels encapsulating KGM60 with or without quercetin, highlighting prebiotic effect of KGM60. Only microgels co-encapsulating both KGM60 and quercetin enhanced Dialister while inhibited Lachnoclostridium, indicating synergism between KGM60 and quercetin. Our study indicates that co-encapsulating KGM60 and quercetin in alginate microgel is effective in modulating human gut microbiota and metabolites production potentially beneficial to gut health.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yit Tao Loo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yianna Zhang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Núñez-Gómez V, Jesús Periago M, Luis Ordóñez-Díaz J, Pereira-Caro G, Manuel Moreno-Rojas J, González-Barrio R. Dietary fibre fractions rich in (poly)phenols from orange by-products and their metabolisation by in vitro digestion and colonic fermentation. Food Res Int 2024; 177:113718. [PMID: 38225107 DOI: 10.1016/j.foodres.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Orange peel is an interesting by-product because of its composition, particularly its dietary fibre and flavanones. The aim of this work was to extract different fibre fractions from orange peel to obtain potential added-value ingredients and evaluate how the presence of fibre may interfere with (poly)phenol metabolism. Using an aqueous extraction, as a green extraction method, an insoluble fibre fraction (IFF) and a water-soluble extract (WSE) were obtained. Those fractions were analysed to determine the proximate and dietary fibre composition, hydration properties, (poly)phenol composition and antioxidant capacity, comparing the results with the orange peel (OP). The IFF presented the highest content of insoluble dietary fibre and the WSE showed the highest content of (poly)phenols, these being mainly flavanones. An in vitro faecal fermentation was carried out to evaluate the production of short-chain fatty acids (SCFAs) and lactate as prebiotic indicators; the IFF gave the highest production, derived from the greater presence of dietary fibre. Moreover, catabolites from (poly)phenol metabolism were also analysed, phenylpropanoic acids being the major ones, followed by phenylacetic acids and benzoic acids. These catabolites were found in higher quantities in WSE, because of the greater presence of (poly)phenols in its composition. IFF also showed a significant production of these catabolites, which was delayed by the greater presence of fibre. These results reveal that the new ingredients, obtained by an environmentally friendly water extraction procedure, could be used for the development of new foods with enhanced nutritional and healthy properties.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, 30100, Spain
| | - María Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, 30100, Spain
| | - José Luis Ordóñez-Díaz
- Area of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Area of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Jose Manuel Moreno-Rojas
- Area of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, 30100, Spain.
| |
Collapse
|
8
|
Expósito-Almellón X, Duque-Soto C, López-Salas L, Quirantes-Piné R, de Menezes CR, Borrás-Linares I, Lozano-Sánchez J. Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients 2023; 15:3880. [PMID: 37764662 PMCID: PMC10538179 DOI: 10.3390/nu15183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The nature and composition of the waste produced by food industrial processing make its abundance and accumulation an environmental problem. Since these by-products may present a high potential for revalorization and may be used to obtain added-value compounds, the main goals of the technological advancements have been targeted at reducing the environmental impact and benefiting from the retrieval of active compounds with technological and health properties. Among the added-value substances, nondigestible carbohydrates have demonstrated promise. In addition to their well-known technological properties, they have been discovered to modify the gut microbiota and enhance immune function, including the stimulation of immune cells and the control of inflammatory reactions. Furthermore, the combination of these compounds with other substances such us phenols could improve their biological effect on different noncommunicable diseases through microbiota modulation. In order to gain insight into the implementation of this combined strategy, a broader focus concerning different aspects is needed. This review is focused on the optimized green and advanced extraction system applied to obtain added-value nondigestible carbohydrates, the combined administration with phenols and their beneficial effects on microbiota modulation intended for health and/or illness prevention, with particular emphasis on noncommunicable diseases. The isolation of nondigestible carbohydrates from by-products as well as in combination with other bioactive substances could provide an affordable and sustainable source of immunomodulatory chemicals.
Collapse
Affiliation(s)
- Xavier Expósito-Almellón
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Lucía López-Salas
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain;
| | | | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva s/n, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| |
Collapse
|
9
|
Nordin E, Hellström PM, Vuong E, Ribbenstedt A, Brunius C, Landberg R. IBS randomized study: FODMAPs alter bile acids, phenolic- and tryptophan metabolites, while gluten modifies lipids. Am J Physiol Regul Integr Comp Physiol 2023; 325:R248-R259. [PMID: 37399002 DOI: 10.1152/ajpregu.00016.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Diet is considered a culprit for symptoms in irritable bowel syndrome (IBS), although the mechanistic understanding of underlying causes is lacking. Metabolomics, i.e., the analysis of metabolites in biological samples may offer a diet-responsive fingerprint for IBS. Our aim was to explore alterations in the plasma metabolome after interventions with fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) or gluten versus control in IBS, and to relate such alterations to symptoms. People with IBS (n = 110) were included in a double-blind, randomized, crossover study with 1-wk provocations of FODMAPs, gluten, or placebo. Symptoms were evaluated with the IBS severity scoring system (IBS-SSS). Untargeted metabolomics was performed on plasma samples using LC-qTOF-MS. Discovery of metabolite alterations by treatment was performed using random forest followed by linear mixed modeling. Associations were studied using Spearman correlation. The metabolome was affected by FODMAP [classification rate (CR) 0.88, P < 0.0001], but less by gluten intake CR 0.72, P = 0.01). FODMAP lowered bile acids, whereas phenolic-derived metabolites and 3-indolepropionic acid (IPA) were higher compared with placebo. IPA and some unidentified metabolites correlated weakly to abdominal pain and quality of life. Gluten affected lipid metabolism weakly, but with no interpretable relationship to IBS. FODMAP affected gut microbial-derived metabolites relating to positive health outcomes. IPA and unknown metabolites correlated weakly to IBS severity. Minor symptom worsening by FODMAP intake must be weighed against general positive health aspects of FODMAP. The gluten intervention affected lipid metabolism weakly with no interpretable association to IBS severity. Registration: www.clinicaltrials.gov as NCT03653689.NEW & NOTEWORTHY In irritable bowel syndrome (IBS), fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) affected microbial-derived metabolites relating to positive health outcomes such as reduced risk of colon cancer, inflammation, and type 2 diabetes, as shown in previous studies. The minor IBS symptom induction by FODMAP intake must be weighed against the positive health aspects of FODMAP consumption. Gluten affected lipids weakly with no association to IBS severity.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Eddie Vuong
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Anton Ribbenstedt
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Hu B, Shi Y, Lu C, Chen H, Zeng Y, Deng J, Zhang L, Lin Q, Li W, Chen Y, Zhong F, Xia X. Raspberry polyphenols alleviate neurodegenerative diseases: through gut microbiota and ROS signals. Food Funct 2023; 14:7760-7779. [PMID: 37555470 DOI: 10.1039/d3fo01835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Neurodegenerative diseases are neurological disorders that become more prevalent with age, usually caused by damage or loss of neurons or their myelin sheaths, such as Alzheimer's disease and epilepsy. Reactive oxygen species (ROS) are important triggers for neurodegenerative disease development, and mitigation of oxidative stress caused by ROS imbalance in the human body is important for the treatment of these diseases. As a widespread delicious fruit, the raspberry is widely used in the field of food and medicine because of its abundant polyphenols and other bioactive substances. Polyphenols from a wide variety of raspberry sources could alleviate neurodegenerative diseases. This review aims to summarize the current roles of these polyphenols in maintaining neurological stability by regulating the composition and metabolism of the intestinal flora and the gut-brain axis signal transmission. Especially, we discuss the therapeutic effects on neurodegenerative diseases of raspberry polyphenols through intestinal microorganisms and ROS signals, by means of summary and analysis. Finally, methods of improving the digestibility and utilization of raspberry polyphenols are proposed, which will provide a potential way for raspberry polyphenols to guarantee the health of the human nervous system.
Collapse
Affiliation(s)
- Boyong Hu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Chunyue Lu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Haixin Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuqing Zeng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuan Chen
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
- Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua 418000, Hunan, China
| |
Collapse
|
11
|
Liu S, Loo YT, Li Z, Ng K. Alginate-inulin-chitosan based microspheres alter metabolic fate of encapsulated quercetin, promote short chain fatty acid production, and modulate pig gut microbiota. Food Chem 2023; 418:135802. [PMID: 36965386 DOI: 10.1016/j.foodchem.2023.135802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
Quercetin loaded alginate microspheres, fabricated with the inclusion of inulin as a prebiotic source and chitosan as protective coating (ALINCH-Q), were subjected to in vitro colonic fermentation using pig fecal microbiota, with empty microspheres ALINCH-E, unencapsulated quercetin UQ and media only Blank as parallel studies. ALINCH-Q altered quercetin biotransformation towards higher production of 3-hydroxyphenylpropionic acid and 3-hydroxyphenylacetic acid, and further metabolism of 3,4-dihydroxyphenylacetic acid and 4-hydroxyphenylacetic acid compared to UQ. In addition, ALINCH-Q but not ALINCH-E or UQ significantly promoted SCFAs production compared to Blank. Furthermore, the ALINCH-Q microspheres altered the microbial compositions, increased the relative abundance of Lactobacillus, Turicibacter, Eubacterium, and Clostridium, while decreased that of the potentially pathogenic Enterococcus. The results suggest an interplay between the dietary fiber matrix and quercetin in producing these effects, and that ALINCH-Q could serve as a potential targeted delivery vehicle for quercetin to exert beneficial biological effects in the colon.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yit Tao Loo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhenzhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Wang H, Huang X, Xia S, Chen X, Chen C, Zhang Y, Xiao J, Nie S. Antagonistic effect of kale soluble dietary fiber and kale flavonoids, fails to alleviate colitis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Affiliation(s)
- Hui Wang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Shengkun Xia
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
- Jiangxi General Institute of Testing and Certification Institute for Food Control Nanchang China
| | - Xiaomin Chen
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Ourense Campus Ourense Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| |
Collapse
|
13
|
Cheng H, Chen J, Liu X, Shen Y, Zhang Q. A flower-like ionic molecularly imprinted membrane for the deglycosylation of rutin. ANAL SCI 2022; 38:1047-1055. [PMID: 35705836 DOI: 10.1007/s44211-022-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/01/2022]
Abstract
A kind of molecularly imprinted polymer based on ionic liquids (MIPIL) with flower-like shape was developed for the adsorption of rutin and its deglycosylated product. The MIPIL film was characterized by scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The adsorption capacity of quercetin on the proposed imprinted cavity of rutin in the presence of glucose and rhamnose was 3.7 ± 0.017 times as much as that in the absence of glucose and rhamnose. And the adsorption capacity of quercetin varied with the concentration of glucose and rhamnose changing. Thus, the proposed MIPIL film coupled with HPLC was used to explore the deglycosylation of rutin by tracking rutin and quercetin, which confirmed to the pseudo-first-order reaction kinetic with the constant of 0.044 ± 1.5 × 10-4 min-1 at 35 °C. The rutin and quercetin were quantified using the above MIPIL film in the two Ginkgo leaves extracted by pure water and pure ethanol, respectively. Because of lower solubility in water, the content of rutin in ethanol extraction solution was higher than in water solution. On the contrary, the content of quercetin in water extraction solution was higher than in ethanol solution, which resulted from the higher solubility of glucose and rhamnose in water. The RSD ranged from 2.8 to 4.5%, and the recovery rate ranged from 91.9 to 105.3%.
Collapse
Affiliation(s)
- Hongying Cheng
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Jingqi Chen
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xuan Liu
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Yifan Shen
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Qianli Zhang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| |
Collapse
|
14
|
Yao W, Gong Y, Li L, Hu X, You L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem X 2022; 13:100252. [PMID: 35498986 PMCID: PMC9040006 DOI: 10.1016/j.fochx.2022.100252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The physicochemical properties of DFs are related to their digestive behaviors. DFs are degraded in the intestines due to the fermentation of gut microbiota. DFs and their metabolites exert beneficial effects on gut microbiota. The fermentation of DFs improve gut barrier function and immune function.
Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yufeng Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
15
|
Liu S, Fang Z, Ng K. Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases. Crit Rev Food Sci Nutr 2022; 63:6860-6884. [PMID: 35225102 DOI: 10.1080/10408398.2022.2043236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phenolics have been shown by in vitro and animal studies to have multiple pharmacological effects against various colonic diseases. However, their efficacy against colonic diseases, such as inflammatory bowel diseases, Crohn's disease, and colorectal cancer, is significantly compromised due to their chemical instability and susceptibility to modification along the gastrointestinal tract (GIT) before reaching the colonic site. Dietary fibers are promising candidates that can form phenolic-dietary fiber composites (PDC) to carry phenolics to the colon, as they are natural polysaccharides that are non-digestible in the upper intestinal tract but can be partially or fully degradable by gut microbiota in the colon, triggering the release at this targeted site. In addition, soluble and fermentable dietary fibers confer additional health benefits as prebiotics when used in the PDC fabrication, and the possibility of synergistic relationship between phenolics and fibers in alleviating the disease conditions. The functionalities of PDC need to be characterized in terms of their particle characteristics, molecular interactions, release profiles in simulated digestion and colonic fermentation to fully understand the metabolic fate and health benefits. This review examines recent advancements regarding the approaches for fabrication, characterization, and evaluation of PDC in in vitro conditions.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11010109. [PMID: 35052613 PMCID: PMC8772845 DOI: 10.3390/antiox11010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection affects more than half of the world’s population, and thus, about 10 to 20% of people with H. pylori suffer from peptic ulcers, which may ultimately lead to gastric cancer. The increase in antibiotic resistance and susceptibility has encouraged the search for new alternative therapies to eradicate this pathogen. Several plant species are essential sources of polyphenols, and these bioactive compounds have demonstrated health-promoting properties, such as the gut microbiota stimulation, inflammation reduction, and bactericidal effect. Therefore, this review aims to discuss the potential effect of plant-based polyphenols against H. pylori and their role in the gut microbiota improvement.
Collapse
|
17
|
Houron C, Ciocan D, Trainel N, Mercier-Nomé F, Hugot C, Spatz M, Perlemuter G, Cassard AM. Gut Microbiota Reshaped by Pectin Treatment Improves Liver Steatosis in Obese Mice. Nutrients 2021; 13:3725. [PMID: 34835981 PMCID: PMC8621973 DOI: 10.3390/nu13113725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pectin, a soluble fiber, improves non-alcoholic fatty-liver disease (NAFLD), but its mechanisms are unclear. We aimed to investigate the role of pectin-induced changes in intestinal microbiota (IM) in NAFLD. We recovered the IM from mice fed a high-fat diet, treated or not with pectin, to perform a fecal microbiota transfer (FMT). Mice fed a high-fat diet, which induces NAFLD, were treated with pectin or received a fecal microbiota transfer (FMT) from mice treated with pectin before (preventive FMT) or after (curative FMT) being fed a high-fat diet. Pectin prevented the development of NAFLD, induced browning of adipose tissue, and modified the IM without increasing the abundance of proteobacteria. Preventive FMT also induced browning of white adipose tissue but did not improve liver steatosis, in contrast to curative FMT, which induced an improvement in steatosis. This was associated with an increase in the concentration of short-chain fatty acids (SCFAs), in contrast to preventive FMT, which induced an increase in the concentration of branched SCFAs. Overall, we show that the effect of pectin may be partially mediated by gut bacteria.
Collapse
Affiliation(s)
- Camille Houron
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Dragos Ciocan
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
- AP-HP, Hepato-Gastroenterology and Nutrition, Hôpital Antoine-Béclère, 92140 Clamart, France
| | - Nicolas Trainel
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, Inserm, CNRS, Institut Paris Saclay d’Innovation Thérapeutique, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France;
| | - Cindy Hugot
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Madeleine Spatz
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Gabriel Perlemuter
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
- AP-HP, Hepato-Gastroenterology and Nutrition, Hôpital Antoine-Béclère, 92140 Clamart, France
| | - Anne-Marie Cassard
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| |
Collapse
|
18
|
Bland JS. Application of Phytochemicals in Immune Disorders: Their Roles Beyond Antioxidants. Integr Med (Encinitas) 2021; 20:16-21. [PMID: 34803535 PMCID: PMC8594972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We are witnessing increased global pressure on immune system function as a result of climate change, exposure to xenobiotics, poor quality diets, increased psycho-social stress, and exposure to new infectious agents. Understanding how various phytochemicals and their metabolic byproducts produced by the microbiome modulate immune-related signal transduction pathways has opened a new chapter in medical nutrition that moves far beyond that of generalized antioxidant effects. Not only is precision nutrition now possible, there is an urgent need for it.
Collapse
|
19
|
Abstract
Research characterising the gut microbiota in different populations and diseases has mushroomed since the advent of next-generation sequencing techniques. However, there has been less emphasis on the impact of dietary fibres and other dietary components that influence gut microbial metabolic activities. Dietary fibres are the main energy source for gut bacteria. However, fibres differ in their physicochemical properties, their effects on the gut and their fermentation characteristics. The diversity of carbohydrates and associated molecules in fibre-rich foods can have a major influence on microbiota composition and production of bioactive molecules, for example SCFAs and phenolic acids. Several of these microbial metabolites may influence the functions of body systems including the gut, liver, adipose tissues and brain. Dietary fibre intake recommendations have recently been increased (to 30 g daily) in response to growing obesity and other health concerns. Increasing intakes of specific fibre and plant food sources may differentially influence the bacteria and their metabolism. However, in vitro studies show great individual variability in the response of the gut microbiota to different fibres and fibre combinations, making it difficult to predict which foods or food components will have the greatest impact on levels of bioactive molecules produced in the colon of individuals. Greater understanding of individual responses to manipulation of the diet, in relation to microbiome composition and production of metabolites with proven beneficial impact on body systems, would allow the personalised approach needed to best promote good health.
Collapse
Affiliation(s)
- Catriona Thomson
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Screening of Human Gut Bacterial Culture Collection Identifies Species That Biotransform Quercetin into Metabolites with Anticancer Properties. Int J Mol Sci 2021; 22:ijms22137045. [PMID: 34208885 PMCID: PMC8269047 DOI: 10.3390/ijms22137045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that flavonoid metabolites inhibit cancer cell proliferation through both CDK-dependent and -independent mechanisms. The existing evidence suggests that gut microbiota is capable of flavonoid biotransformation to generate bioactive metabolites including 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA), 3,4,5-trihyroxybenzoic acid (3,4,5-THBA) and 3,4-dihydroxyphenylacetic acid (DOPAC). In this study, we screened 94 human gut bacterial species for their ability to biotransform flavonoid quercetin into different metabolites. We demonstrated that five of these species were able to degrade quercetin including Bacillus glycinifermentans, Flavonifractor plautii, Bacteroides eggerthii, Olsenella scatoligenes and Eubacterium eligens. Additional studies showed that B. glycinifermentans could generate 2,4,6-THBA and 3,4-DHBA from quercetin while F. plautii generates DOPAC. In addition to the differences in the metabolites produced, we also observed that the kinetics of quercetin degradation was different between B. glycinifermentans and F. plautii, suggesting that the pathways of degradation are likely different between these strains. Similar to the antiproliferative effects of 2,4,6-THBA and 3,4-DHBA demonstrated previously, DOPAC also inhibited colony formation ex vivo in the HCT-116 colon cancer cell line. Consistent with this, the bacterial culture supernatant of F. plautii also inhibited colony formation in this cell line. Thus, as F. plautii and B. glycinifermentans generate metabolites possessing antiproliferative activity, we suggest that these strains have the potential to be developed into probiotics to improve human gut health.
Collapse
|
21
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
22
|
Diotallevi C, Fava F, Gobbetti M, Tuohy K. Healthy dietary patterns to reduce obesity-related metabolic disease: polyphenol-microbiome interactions unifying health effects across geography. Curr Opin Clin Nutr Metab Care 2020; 23:437-444. [PMID: 32941185 DOI: 10.1097/mco.0000000000000697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The spread of the Western lifestyle across the globe has led to a pandemic in obesity-related metabolic disease. The Mediterranean diet (MedDiet), Okinawa diet (OkD) and Nordic diet, derived from very different regions of the world and culinary traditions, have a large whole plant food component and are associated with reduced disease risk. This review focuses on polyphenol : microbiome interactions as one possible common mechanistic driver linking the protective effects whole plant foods against metabolic disease across healthy dietary patterns irrespective of geography. RECENT FINDINGS Although mechanistic evidence in humans is still scarce, animal studies suggest that polyphenol or polyphenol rich foods induce changes within the gut microbiota and its metabolic output of trimethylamine N-oxide, short-chain fatty acids, bile acids and small phenolic acids. These cross-kingdom signaling molecules regulate mammalian lipid and glucose homeostasis, inflammation and energy storage or thermogenesis, physiological processes determining obesity-related metabolic and cardiovascular disease risk. However, it appears that where in the intestine metabolites are produced, the microbiota communities involved, and interactions between the metabolites themselves, can all influence physiological responses, highlighting the need for a greater understanding of the kinetics and site of production of microbial metabolites within the gut. SUMMARY Interactions between polyphenols and metabolites produced by the gut microbiota are emerging as a possible unifying protective mechanism underpinning diverse healthy dietary patterns signaling across culinary traditions, across geography and across domains of life.
Collapse
Affiliation(s)
- Camilla Diotallevi
- Faculty of Science and Technology, Freie Universität Bozen-Libera Università di Bolzano, Bolzano
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Freie Universität Bozen-Libera Università di Bolzano, Bolzano
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|