1
|
Ito M, Yoshimoto J, Ishii S, Maeda T, Wada Y, Yonei Y, Kishi M, Ono T. Yellow pea-based pasta's impacts on the salt intake, glycemic parameters and oxidative stress in healthy individuals: a randomized clinical trial. Sci Rep 2024; 14:23333. [PMID: 39375402 PMCID: PMC11458757 DOI: 10.1038/s41598-024-72290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Pea (Pisum sativum L.), a widely cultivated legumes globally, is attracting interest as a functional food owing to its antioxidant properties derived from nutritional components such as polyphenols. We previously reported that yellow pea-based pasta (YPP) aids in controlling blood glucose and enhances the sensitivity to saltiness. This study examined the antioxidant effect of YPP and its effects on the salt intake and postprandial blood glucose levels by simulating a real-life scenario. In this open, parallel-group, randomized controlled trial, 40 healthy adult men and women aged 20-65 years, whose salt intake exceeded the target salt equivalent level of the Japanese dietary intake standard, were allocated to the following groups (n = 20): the group consuming one serving of YPP per day and the group maintaining their regular daily dietary habits. The participants who were allocated to the YPP group showed significantly improved oxidative stress markers (BAP/d-ROMs ratio change: control = - 0.11, YPP = 0.27, p = 0.044; lipid peroxide change: control = 0.11, YPP = - 0.25, p < 0.001) than control participants. The effects on salt intake and blood glucose levels were limited. In conclusion, YPP may serve as a functional staple food that improves oxidative stress.
Collapse
Affiliation(s)
- Mamoru Ito
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa-shi, Aichi, Japan.
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa-shi, Aichi, Japan
| | - Sho Ishii
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa-shi, Aichi, Japan
| | - Tetsuya Maeda
- New Business Development, Mizkan Holdings Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Yu Wada
- New Business Development, Mizkan Holdings Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa-shi, Aichi, Japan
| | | |
Collapse
|
2
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Chang X, Liu H, Zhuang K, Chen L, Zhang Q, Chen X, Ding W. Study on the Quality Variation and Internal Mechanisms of Frozen Oatmeal Cooked Noodles during Freeze-Thaw Cycles. Foods 2024; 13:541. [PMID: 38397519 PMCID: PMC10887751 DOI: 10.3390/foods13040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Frozen staple food, attributed to its favorable taste and convenience, has a promising development potential in the future. Frequent freezing and thawing, however, will affect its quality. This study simulated several freeze-thaw cycles (FTC) that may occur during the cold chain process of frozen oatmeal cooked noodles (FOCN) production to consumption. The quality changes and their mechanisms were elucidated using methods such as differential scanning calorimetry (DSC), low-field nuclear magnetic resonance (LF-NMR), Fourier-transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), texture analysis, and sensory evaluation. The freezable water content of the FOCN decreased because of the FTC treatment, and the relative content of total water in FOCN also decreased accordingly. The increase in β-Turn after FTC induced disorder in the secondary structure of proteins, causing the protein microstructure to become loose and discontinuous, which in turn reduced the water-holding capacity of FOCN. Additionally, FTC reduced the chewiness and sensory score of FOCN. This research will contribute a theoretical foundation for optimizing the cold chain process.
Collapse
Affiliation(s)
- Xianhui Chang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hairong Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
| | - Kun Zhuang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xi Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Cui C, Wang Y, Ying J, Zhou W, Li D, Wang LJ. Low glycemic index noodle and pasta: Cereal type, ingredient, and processing. Food Chem 2024; 431:137188. [PMID: 37604009 DOI: 10.1016/j.foodchem.2023.137188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The consumption of noodles with a high glycemic index (GI) can affect health, prompting the need for dietary adjustments to manage abnormal blood glucose levels. This review delves into recent progress in low GI noodles and their potential effect for human well-being. Diverse approaches, encompassing the incorporation of soluble dietary fiber, modified starches, proteins, and plant polyphenols, have shown encouraging outcomes in diminishing the GI of noodles. Furthermore, variations in processing, storage, and cooking techniques can influence the GI of noodles, yielding both positive and negative impacts on their glycemic response. Soluble dietary fiber, protein cross-linkers, and plant polyphenols play a pivotal role in reducing the GI of noodles by hindering the interaction between digestive enzymes and starch, thereby curbing enzymatic activity. Future research spotlighting ingredients, processing methodologies, and the underlying mechanisms of low GI noodles will contribute substantively to the development of functional foods boosting enhanced nutritional profiles.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jian Ying
- Beijing Key Laboratory of Nutrition & Health and Food Safety, COFCO Nutrition & Health Research Institute, COFCO, Beijing 100020, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Yamada M, Yoshimoto J, Maeda T, Ishii S, Kishi M, Taguchi T, Morita H. Effect of short-term consumption of yellow peas as noodles on the intestinal environment: A single-armed pre-post comparative pilot study. Food Sci Nutr 2023; 11:4572-4582. [PMID: 37576055 PMCID: PMC10420782 DOI: 10.1002/fsn3.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 08/15/2023] Open
Abstract
Legumes contain dietary fiber and resistant starch, which are beneficial to the intestinal environment. Here, we investigated the effects of yellow pea noodle consumption on the gut microbiota and fecal metabolome of healthy individuals. This single-armed pre-post comparative pilot study evaluated eight healthy female participants who consumed yellow pea noodles for 4 weeks. The gut microbiota composition and fecal metabolomic profile of each participant were evaluated before (2 weeks), during (4 weeks), and after (4 weeks) daily yellow pea noodle consumption. 16S rRNA gene sequencing was performed on stool samples, followed by clustering of operational taxonomic units using the Cluster Database at High Identity with Tolerance and integrated QIIME pipeline to elucidate the gut microbiota composition. The fecal metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry and liquid chromatography time-of-flight mass spectrometry. Compared to day 0, the relative abundances of five bacterial genera (Bacteroides, Bilophila, Hungatella, Parabacteroides, and Streptococcus) in the intestinal microbiota significantly decreased, wherein those of Bifidobacterium longum and Ruminococcus bromii were increased on day 29 and decreased to the basal level (day 0) on day 57. Fecal metabolomic analysis identified 11 compounds showing significant fluctuations in participants on day 29 compared to day 0. Although the average levels of short-chain fatty acids in participants did not differ significantly on day 29 compared to those on day 0, the levels tended to increase in individual participants with >8% relative abundance of R. bromii in their gut microbiota. In conclusion, incorporating yellow peas as a daily staple may confer human health benefits by favorably altering the intestinal environment.
Collapse
Affiliation(s)
- Mei Yamada
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Tetsuya Maeda
- New Business Development, Mizkan Holdings Co., Ltd.TokyoJapan
| | - Sho Ishii
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | | | - Hidetoshi Morita
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
7
|
Tsitsou S, Athanasaki C, Dimitriadis G, Papakonstantinou E. Acute Effects of Dietary Fiber in Starchy Foods on Glycemic and Insulinemic Responses: A Systematic Review of Randomized Controlled Crossover Trials. Nutrients 2023; 15:nu15102383. [PMID: 37242267 DOI: 10.3390/nu15102383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) consumption has been associated with improved glycemic control in epidemiological and long-term interventional studies. However, its acute effects are not yet clear. This systematic review aims to elucidate the postprandial effects of DF in starchy products on glycemia and insulinemia. An electronic search of databases was conducted, and forty-one records met the inclusion criteria and underwent a risk-of-bias assessment. It was shown that soluble DF does not clearly affect glycemia in individuals with normal weight, while resistant starch may be more effective in flattening glycemic responses. Concerning insulinemia, both soluble DF and resistant starch have mixed results, with either favorable or no effects. Data on insoluble DF and glucose metabolism are scarce. The same mixed results for glycemia can be seen in healthy volunteers with overweight/obesity, while resistant starch seems to improve insulinemic responses. Finally, more studies need to examine the acute effects of DF in starchy foods on glucose metabolism and insulin secretion in individuals facing glucose abnormalities. Additionally, more studies are needed to prove whether ingesting high-fiber carbohydrate-containing products per se can result in blunted glycemic and insulinemic responses and which DF type and amount are more effective.
Collapse
Affiliation(s)
- Sofia Tsitsou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Christina Athanasaki
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
8
|
Ito M, Yoshimoto J, Maeda T, Ishii S, Wada Y, Kishi M, Koikeda T. Effects of high-fiber food product consumption and personal health record use on body mass index and bowel movement. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
9
|
Tsuchiya Y, Yoshimoto J, Kobayashi H, Ishii S, Kishi M. Yellow Pea Pasta Enhances the Saltiness and Suppression of Postprandial Blood Glucose Elevation. Nutrients 2023; 15:283. [PMID: 36678153 PMCID: PMC9863178 DOI: 10.3390/nu15020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Salt and carbohydrates, two causes of elevated blood glucose, are essential components for survival; however, excessive intake of either is a known health risk. In a previous study, we reported the usefulness of pasta prepared from yellow pea (YPP) as a functional staple food that is beneficial for blood sugar control. In this study, we investigated the usefulness of YPP in reducing health risks by examining its effects on saltiness, postprandial satisfaction, and second meal. The results showed that YPP tasted saltier than conventional pasta made from semolina wheat when prepared with a 0.75% salt concentration. In addition, we examined blood glucose levels, insulin secretion, and postprandial hunger over a longer period than in previous studies. We observed that when the same amount of YPP and wheat pasta were eaten, the elevation in blood glucose and insulin secretion was lower after YPP consumption while maintaining a similar level of satiety. Furthermore, YPP was also observed to be able to suppress elevated insulin levels at the second meal.
Collapse
Affiliation(s)
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa-Shi 475-8585, Japan
| | | | | | | |
Collapse
|
10
|
Guan C, Long X, Long Z, Lin Q, Liu C. Legumes flour: A review of the nutritional properties, physiological functions, and application in extruded rice products. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chunmin Guan
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Xinkang Long
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Zhao Long
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Qinlu Lin
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Chun Liu
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| |
Collapse
|
11
|
Yano H, Fu W. Effective Use of Plant Proteins for the Development of "New" Foods. Foods 2022; 11:foods11091185. [PMID: 35563905 PMCID: PMC9102783 DOI: 10.3390/foods11091185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins.
Collapse
|
12
|
Acute Effects of Split Pea-Enriched White Pan Bread on Postprandial Glycemic and Satiety Responses in Healthy Volunteers—A Randomized Crossover Trial. Foods 2022; 11:foods11071002. [PMID: 35407088 PMCID: PMC8997531 DOI: 10.3390/foods11071002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Pulse consumption has been associated with reduced postprandial glucose response (PPGR) and improved satiety. The objective of this study was (i) to investigate the effects of fortifying white pan bread with split yellow pea (Pisum sativum L.) flour on PPGR and appetite-related sensations, and (ii) to determine whether Revtech heat processing of pea flour alters the postprandial effects. A randomized controlled crossover trial was performed with 24 healthy adults. Participants consumed 50 g available carbohydrate from bread containing 20% pea flour that was untreated (USYP), Revtech processed at 140 °C with no steam (RT0%), Revtech processed at 140 °C with 10% steam (RT10%), or a control bread with 100% white wheat flour (100%W). Blood samples were analyzed for glucose and plasma insulin at 0, 15, 30, 45, 60, 90, and 120 min post-meal. Appetite sensations and product acceptability were measured using visual analogue and 9-point hedonic scales. Results showed no significant difference in the postprandial glucose and insulin responses of different bread treatments. However, pea-containing variants resulted in 18% higher fullness and 16–18% lower hunger, desire to eat, and prospective food consumption ratings compared to 100% W. No differences in the aroma, flavor, color, and overall acceptability of different bread products were observed. This trial supports using pea flour as a value-added ingredient to improve the short-term appetite-related sensations of white pan bread without affecting the overall acceptability.
Collapse
|
13
|
Sumali B, Yoshimoto J, Kobayashi H, Yamada M, Maeda T, Mitsukura Y. A Study on Legume-Based Noodles as Staple Food for Office Workers. Front Nutr 2022; 9:807350. [PMID: 35360683 PMCID: PMC8963342 DOI: 10.3389/fnut.2022.807350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to verify the effects of “legume-based noodles” as a staple food for lunch, specifically: blood glucose, cognitive function tests, Kansei value, work questionnaires, typing, and body weight. The experiment is divided into two groups: the intervention group (legumes-based noodle) and the control group (regular lunch). Both groups have similar menu except the staple food. The intervention group resulted in a statistically significant lower blood glucose area under the curve (AUC) and lower maximum blood glucose levels during the afternoon work hours on weekdays. In addition, the Kansei value “concentration” decreased at the end of the workday in the control group compared to before and after lunch but did not decrease in the intervention group. Furthermore, the number of typing accuracy was higher in the intervention group than in the control group, and the questionnaire responses for “work efficiency” and “motivation” were more positive. These results suggest that eating legume-based noodles may lead to improved performance of office workers.
Collapse
Affiliation(s)
- Brian Sumali
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa, Japan
| | - Hiroto Kobayashi
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa, Japan
| | - Mei Yamada
- Central Research Institute, Mizkan Holdings Co., Ltd., Handa, Japan
| | - Tetsuya Maeda
- New Business Development, Mizkan Holdings Co., Ltd., Tokyo, Japan
| | - Yasue Mitsukura
- Faculty of Science and Technology, Keio University, Yokohama, Japan
- *Correspondence: Yasue Mitsukura
| |
Collapse
|
14
|
Hafiz MS, Campbell MD, O'Mahoney LL, Holmes M, Orfila C, Boesch C. Pulse consumption improves indices of glycemic control in adults with and without type 2 diabetes: a systematic review and meta-analysis of acute and long-term randomized controlled trials. Eur J Nutr 2022; 61:809-824. [PMID: 34585281 PMCID: PMC8854292 DOI: 10.1007/s00394-021-02685-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Findings from randomized controlled trials (RCTs) evaluating the effect of pulse intake on glycemic control are inconsistent and conclusive evidence is lacking. The aim of this study was to systematically review the impact of pulse consumption on post-prandial and long-term glycemic control in adults with and without type 2 diabetes (T2D). METHODS Databases were searched for RCTs, reporting outcomes of post-prandial and long-term interventions with different pulse types on parameters of glycemic control in normoglycemic and T2D adults. Effect size (ES) was calculated using random effect model and meta-regression was conducted to assess the impact of various moderator variables such as pulse type, form, dose, and study duration on ES. RESULTS From 3334 RCTs identified, 65 studies were eligible for inclusion involving 2102 individuals. In acute RCTs, pulse intake significantly reduced peak post-prandial glucose concentration in participants with T2D (ES - 2.90; 95%CI - 4.60, - 1.21; p ≤ 0.001; I2 = 93%) and without T2D (ES - 1.38; 95%CI - 1.78, - 0.99; p ≤ 0.001; I2 = 86%). Incorporating pulse consumption into long-term eating patterns significantly attenuated fasting glucose in normoglycemic adults (ES - 0.06; 95%CI - 0.12, 0.00; p ≤ 0.05; I2 = 30%). Whereas, in T2D participants, pulse intake significantly lowered fasting glucose (ES - 0.54; 95%CI - 0.83, - 0.24; p ≤ 0.001; I2 = 78%), glycated hemoglobin A1c (HbA1c) (ES - 0.17; 95%CI - 0.33, 0.00; p ≤ 0.05; I2 = 78) and homeostatic model assessment of insulin resistance (HOMA-IR) (ES - 0.47; 95%CI - 1.25, - 0.31; p ≤ 0.05; I2 = 79%). CONCLUSION Pulse consumption significantly reduced acute post-prandial glucose concentration > 1 mmol/L in normoglycemic adults and > 2.5 mmol/L in those with T2D, and improved a range of long-term glycemic control parameters in adults with and without T2D. PROSPERO REGISTRY NUMBER: (CRD42019162322).
Collapse
Affiliation(s)
- Maryam S Hafiz
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Applied Medical Sciences, Department of Clinical Nutrition, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Matthew D Campbell
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
15
|
Yang Z, Zhou Y, Xing JJ, Guo XN, Zhu KX. Effect of superheated steam treatment and extrusion on lipid stability of black soybean noodles during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Autoclaved and Extruded Legumes as a Source of Bioactive Phytochemicals: A Review. Foods 2021; 10:foods10020379. [PMID: 33572460 PMCID: PMC7919342 DOI: 10.3390/foods10020379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Legumes have been consumed since ancient times all over the world due to their easy cultivation and availability as a low-cost food. Nowadays, it is well known that pulses are also a good source of bioactive phytochemicals that play an important role in the health and well-being of humans. Pulses are mainly consumed after processing to soften cotyledons and to improve their nutritive and sensorial characteristics. However, processing affects not only their nutritive constituents, but also their bioactive compounds. The final content of phytochemicals depends on the pulse type and variety, the processing method and their parameters (mainly temperature and time), the food matrix structure and the chemical nature of each phytochemical. This review focuses on the changes produced in the bioactive-compound content of pulses processed by a traditional processing method like cooking (with or without pressure) or by an industrial processing technique like extrusion, which is widely used in the food industry to develop new food products with pulse flours as ingredients. In particular, the effect of processing methods on inositol phosphates, galactosides, protease inhibitors and phenolic-compound content is highlighted in order to ascertain their content in processed pulses or pulse-based products as a source of healthy phytochemicals.
Collapse
|
17
|
Henry CJ, Quek RYC, Kaur B, Shyam S, Singh HKG. A glycaemic index compendium of non-western foods. Nutr Diabetes 2021; 11:2. [PMID: 33414403 PMCID: PMC7791047 DOI: 10.1038/s41387-020-00145-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Current international tables published on the glycaemic index (GI) of foods represent valuable resources for researchers and clinicians. However, the vast majority of published GI values are of Western origin, notably European, Australian and North American. Since these tables focus on Western foods with minimal inclusion of other foods from non-Western countries, their application is of limited global use. The objective of this review is to provide the GI values for a variety of foods that are consumed in non-Western countries. Our review extends and expands on the current GI tables in an attempt to widen its application in many other regions of the world.
Collapse
Affiliation(s)
- Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Clinical Nutrition Research Centre (CNRC), 14 Medical Drive, #07-02, Singapore, 117599, Singapore. .,Department of Biochemistry, National University of Singapore (NUS), 8 Medical Drive, Singapore, 117596, Singapore.
| | - Rina Yu Chin Quek
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Clinical Nutrition Research Centre (CNRC), 14 Medical Drive, #07-02, Singapore, 117599, Singapore
| | - Bhupinder Kaur
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Clinical Nutrition Research Centre (CNRC), 14 Medical Drive, #07-02, Singapore, 117599, Singapore
| | - Sangeetha Shyam
- Division of Nutrition and Dietetics, School of Health Sciences, International Medical University (IMU), No. 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.,Centre for Translational Research, Institute for Research, Development and Innovation (IRDI), International Medical University (IMU), No. 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Harvinder Kaur Gilcharan Singh
- Division of Nutrition and Dietetics, School of Health Sciences, International Medical University (IMU), No. 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.,Centre for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University (IMU), No. 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|