1
|
Galmés S, Palou A, Serra F. Dietary Sources, Sex, and rs5888 ( SCARB1) as Modulators of Vitamin A's Effect on Cardiometabolic Health. Int J Mol Sci 2023; 24:14152. [PMID: 37762456 PMCID: PMC10531832 DOI: 10.3390/ijms241814152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Although preclinical studies have attributed vitamin A (VA) cardiometabolic benefits, these effects are still controversial and not always supported in large human studies. Here, the outcomes associated with VA and its relationship with habitual dietary sources, sex, and genetic background have been studied. To do so, the data from an observational study (n = 455) (64% females, mean age of 36 years) showing that suboptimal VA intake (mainly from retinol rather than carotene) is associated with cardiometabolic risk (CMR) were considered. A higher odds ratio (OR) of suffering ≥ 2 simultaneous CMR factors was observed in men in the low consumption tercile of retinol (OR = 2.04; p = 0.019). In women, however, this relationship was not evident. Then, incubation of peripheral blood mononuclear cells (PBMCs) with VA-related compounds (ex vivo functional assay from 81 men and women) induced specific changes in the activity of genes involved in lipid homeostasis and inflammatory status, which were dependent on the type of compound tested and the sex of the person. In addition, the presence of the genetic variant rs5888 in SCARB1 was identified as having a high influence on VA-related metabolic response. The new evidence derived from this study could be relevant for personalized nutritional advice concerning VA and CMR.
Collapse
Affiliation(s)
- Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands (UIB), 07122 Palma, Spain; (S.G.); (F.S.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands (UIB), 07122 Palma, Spain; (S.G.); (F.S.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands (UIB), 07122 Palma, Spain; (S.G.); (F.S.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Cohen Y, Valdés-Mas R, Elinav E. The Role of Artificial Intelligence in Deciphering Diet-Disease Relationships: Case Studies. Annu Rev Nutr 2023; 43:225-250. [PMID: 37207358 DOI: 10.1146/annurev-nutr-061121-090535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Modernization of society from a rural, hunter-gatherer setting into an urban and industrial habitat, with the associated dietary changes, has led to an increased prevalence of cardiometabolic and additional noncommunicable diseases, such as cancer, inflammatory bowel disease, and neurodegenerative and autoimmune disorders. However, while dietary sciences have been rapidly evolving to meet these challenges, validation and translation of experimental results into clinical practice remain limited for multiple reasons, including inherent ethnic, gender, and cultural interindividual variability, among other methodological, dietary reporting-related, and analytical issues. Recently, large clinical cohorts with artificial intelligence analytics have introduced new precision and personalized nutrition concepts that enable one to successfully bridge these gaps in a real-life setting. In this review, we highlight selected examples of case studies at the intersection between diet-disease research and artificial intelligence. We discuss their potential and challenges and offer an outlook toward the transformation of dietary sciences into individualized clinical translation.
Collapse
Affiliation(s)
- Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
- Division of Microbiome & Cancer, National German Cancer Research Center (DKFZ), Heidelberg, Germany;
| |
Collapse
|
3
|
Xie Z, Zhang G, Liu R, Wang Y, Tsapieva AN, Zhang L, Han J. Heat-Killed Lacticaseibacillus paracasei Repairs Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage via MLCK/MLC Pathway Activation. Nutrients 2023; 15:nu15071758. [PMID: 37049598 PMCID: PMC10097264 DOI: 10.3390/nu15071758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Intestinal epithelial barrier function is closely associated with the development of many intestinal diseases. Heat-killed Lacticaseibacillus paracasei (HK-LP) has been shown to improve intestinal health and enhance immunity. However, the function of HK-LP in the intestinal barrier is still unclear. This study characterized the inflammatory effects of seven HK-LP (1 μg/mL) on the intestinal barrier using lipopolysaccharide (LPS) (100 μg/mL)-induced Caco-2 cells. In this study, HK-LP 6105, 6115, and 6235 were selected, and their effects on the modulation of inflammatory factors and tight junction protein expression (claudin-1, zona occludens-1, and occludin) were compared. The effect of different cultivation times (18 and 48 h) was investigated in response to LPS-induced intestinal epithelial barrier dysfunction. Our results showed that HK-LP 6105, 6115, and 6235 improved LPS-induced intestinal barrier permeability reduction and transepithelial resistance. Furthermore, HK-LP 6105, 6115, and 6235 inhibited the pro-inflammatory factors (TNF-α, IL-1β, IL-6) and increased the expression of the anti-inflammatory factors (IL-4, IL-10, and TGF-β). HK-LP 6105, 6115, and 6235 ameliorated the inflammatory response. It inhibited the nuclear factor kappa B (NF-κB) signaling pathway-mediated myosin light chain (MLC)/MLC kinase signaling pathway by downregulating the Toll-like receptor 4 (TLR4)/NF-κB pathway. Thus, the results suggest that HK-LP 6150, 6115, and 6235 may improve intestinal health by regulating inflammation and TJ proteins. Postbiotics produced by these strains exhibit anti-inflammatory properties that can protect the intestinal barrier.
Collapse
Affiliation(s)
- Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Gongsheng Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Anna N Tsapieva
- Department of Molecular Microbiology, FSBSI Institute of Experimental Medicine, Acad.,197376 St. Petersburg, Russia
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
4
|
Increased mRNA Levels of ADAM17, IFITM3, and IFNE in Peripheral Blood Cells Are Present in Patients with Obesity and May Predict Severe COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10082007. [PMID: 36009555 PMCID: PMC9406212 DOI: 10.3390/biomedicines10082007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Gene expression patterns in blood cells from SARS-CoV-2 infected individuals with different clinical phenotypes and body mass index (BMI) could help to identify possible early prognosis factors for COVID-19. We recruited patients with COVID-19 admitted in Hospital Universitari Son Espases (HUSE) between March 2020 and November 2021, and control subjects. Peripheral blood cells (PBCs) and plasma samples were obtained on hospital admission. Gene expression of candidate transcriptomic biomarkers in PBCs were compared based on the patients’ clinical status (mild, severe and critical) and BMI range (normal weight, overweight, and obesity). mRNA levels of ADAM17, IFITM3, IL6, CXCL10, CXCL11, IFNG and TYK2 were increased in PBCs of COVID-19 patients (n = 73) compared with controls (n = 47), independently of sex. Increased expression of IFNE was observed in the male patients only. PBC mRNA levels of ADAM17, IFITM3, CXCL11, and CCR2 were higher in those patients that experienced a more serious evolution during hospitalization. ADAM17, IFITM3, IL6 and IFNE were more highly expressed in PBCs of patients with obesity. Interestingly, the expression pattern of ADAM17, IFITM3 and IFNE in PBCs was related to both the severity of COVID-19 evolution and obesity status, especially in the male patients. In conclusion, gene expression in PBCs can be useful for the prognosis of COVID-19 evolution.
Collapse
|
5
|
Zalesak-Kravec S, Huang W, Jones JW, Yu J, Alloush J, Defnet AE, Moise AR, Kane MA. Role of cellular retinol-binding protein, type 1 and retinoid homeostasis in the adult mouse heart: A multi-omic approach. FASEB J 2022; 36:e22242. [PMID: 35253263 DOI: 10.1096/fj.202100901rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jenna Alloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amy E Defnet
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Vafaeie F, Kazemi T, Khosravi S, Miri Moghaddam E. Association Between Retinoid X Receptor Gene Variants and Dyslipidemia Risk in an Iranian Population. Cureus 2021; 13:e17730. [PMID: 34659944 PMCID: PMC8491560 DOI: 10.7759/cureus.17730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Dyslipidemia is a complex trait that is influenced by various genetic and environmental factors. While the exact cause of dyslipidemia is still unknown, some studies have shown that genetic factors such as single nucleotide polymorphisms (SNPs) have been primarily associated with dyslipidemia. Based on the available data, it appears that retinoid X receptor (RXR) genes are jointly or separately associated with lipid homeostasis and that SNPs may affect RXR gene functions in lipid metabolism. Methods To study the possible role of the RXR genes in genetic susceptibility of dyslipidemia, three selected polymorphisms, rs3132294 located in RXRA (RXR-alpha) gene and rs2651860 and rs1128977 located in RXRG (RXR-gamma) gene, were investigated in 391 individuals with the use of tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS PCR) method. Results For the rs3132294 SNP, the genotype frequencies in the case group were GG 58.5%, GA 33.2%, and AA 8.3%, and in the control group, they were GG 51.8%, GA 36.3%, and AA 11.9%. The genotype distribution of rs2651860 SNP in the case group were TT 43.2%, TG 52.1%, and GG 4.7%, and in the control group, they were TT 50.8%, TG 46.2%, and GG 3%. Genotype frequencies for the rs1128977 SNP in the case group were CC 34.7%, CT 47.6% and TT 17.7%, compared with CC 37.8%, CT 44.3%, and TT 17.9% in the control group. When the clinical characteristics of the case and control groups were stratified by allele carrier status for each SNP, the rs1128977 SNP was associated with increased levels of HDL-cholesterol, body mass index, waist circumference, and diastolic blood pressure (P< 0.05). In contrast, the alleles of the rs2651860 and rs3132294 SNP were not associated with an increased prevalence of dyslipidemia or clinical characteristics in the case group compared to the control group. Conclusion The present study suggests that rs1128977 SNP in the RXRG gene may affect the clinical characteristics in cases. However, further genetics association studies on large samples are required to validate our findings.
Collapse
Affiliation(s)
- Farzane Vafaeie
- Genetics, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, IRN
| | - Toba Kazemi
- Cardiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, IRN
| | - Saeede Khosravi
- Epidemiology and Public Health, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, IRN
| | - Ebrahim Miri Moghaddam
- Genetics, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, IRN
| |
Collapse
|
7
|
Genomics and Personalized Nutrition. Nutrients 2021; 13:nu13041128. [PMID: 33808074 PMCID: PMC8066564 DOI: 10.3390/nu13041128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
|