1
|
Mou S, Zhao Z, Liu C, Li J, He Q, Liu W, Zhang B, Zheng Z, Sun W, Shi X, Zhang Q, Wang R, Zhang Y, Ge P, Zhang D. Serum Creatine Levels as a Predictive Factor for Postoperative Cerebrovascular Events in Patients With Moyamoya Disease. Brain Behav 2025; 15:e70331. [PMID: 39935209 DOI: 10.1002/brb3.70331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Creatine is essential for energy storage and transfer within and outside cells. However, its relationship with cerebrovascular disease has not been fully explored. This study examined the association between serum creatine levels and postoperative cerebrovascular events, including transient ischemic attack (TIA), ischemic stroke, and hemorrhagic stroke, in patients with moyamoya disease (MMD). METHODS Serum creatine and disodium creatine phosphate levels were quantified in 352 patients with MMD using liquid chromatography-tandem mass spectrometry. Kaplan-Meier (KM) curves were used to analyze the impact of serum creatine levels on cerebrovascular event risk, whereas univariate and multivariate Cox regression analyses were used to identify predictors of postoperative outcomes. A prognostic nomogram was developed to predict stroke-free survival at 12, 24, and 36 months postoperatively. RESULTS In patients with MMD, serum creatine showed a negative correlation with creatinine (r = -0.22; p < 0.001) and homocysteine (r = -0.10; p < 0.05) but not with disodium creatine phosphate (r = -0.08; p = 0.15). When patients were divided into high and low groups based on the median serum creatine concentration, KM curve analysis revealed that patients in the high concentration group had a lower relative risk of cerebrovascular events than those in the low concentration group (hazard ratio: 0.55; 95% confidence interval, 0.33-0.94; p = 0.026). Furthermore, when patients were categorized into three levels based on creatine concentration, the overall KM curve analysis showed a significant difference (p = 0.038), such that the highest creatine concentration group (third tertile) showed a significantly reduced risk compared with the lowest concentration group (first tertile; p = 0.04). CONCLUSION Lower preoperative serum creatine levels were associated with a higher risk of postoperative cerebrovascular events in patients with MMD. Therefore, creatine supplementation may be an effective means of preventing adverse outcomes in patients with MMD.
Collapse
Affiliation(s)
- Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiangjun Shi
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhu Z, Zhang H, Li Q, Han X, Wang T, Zhang W, Chen F, Gu L, Yao Q, Chen L, Zhao Y. Long-Term Creatine Supplementation Improves Cognitive and Hippocampal Structural Plasticity Impairments in a D-Gal-Induced Aging Model via Increasing CK-BB Activity in the Brain. Food Sci Nutr 2025; 13:e4767. [PMID: 39816485 PMCID: PMC11733680 DOI: 10.1002/fsn3.4767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism. The objective of this research is to ascertain the impact of Cr supplementation on learning and memory skills as well as on structural synaptic plasticity, by modulating CK-BB. First, we utilized various concentrations of D-galactose (D-gal) to create an aging mouse model. Our findings indicated that D-gal injections at 100 and 1000 mg/kg could lead to cognitive decline, oxidative stress, and damage to structural synaptic plasticity. CK-BB expression and its activity were reduced at least by approximately 20% in mice injected with 100 and 1000 mg/kg D-gal compared with control group. Next, an adeno-associated virus directed against CKB was employed to reduce CK-BB levels by 34% in the brain. The reduction of CK-BB in the brain resulted in deficits in learning and memory, oxidative stress, and morphological harm to the hippocampal spines of mice. Finally, the diet of the D-gal-induced aging model was enriched with 3% Cr. Mice that received 3% Cr supplementation exhibited a 36% increase in CK-BB activity and a 14.3% increase in CK-BB expression following prolonged D-gal administration. In addition, Cr supplementation mitigated the cognitive impairment, oxidative stress, and hippocampal structural plasticity damage caused by chronic D-gal injections. Overall, our study revealed that CK-BB has a critical role in mediating structural plasticity in D-gal-induced cognitive impairment. Moreover, it showed that supplementary Cr could serve as a potent neuroprotective substance, preventing or delaying the course of age-related cognitive deficits.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Pathology and Pathophysiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Hantao Zhang
- Department of Physiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Qianlin Li
- Department of Physiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xu Han
- Department of Pathology and Pathophysiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Tiantian Wang
- Department of Pathology and Pathophysiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Wenjing Zhang
- Department of Physiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Integrated Chinese and Western Medicine CollegeNanjing University of Chinese MedicineNanjingChina
| | - Ling Gu
- Research and Innovation Center, College of Traditional Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Integrated Chinese and Western Medicine CollegeNanjing University of Chinese MedicineNanjingChina
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lin Chen
- Department of Physiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
3
|
Adlimoghaddam A, Fontaine KM, Albensi BC. Age- and sex-associated alterations in hypothalamic mitochondrial bioenergetics and inflammatory-associated signaling in the 3xTg mouse model of Alzheimer's disease. Biol Sex Differ 2024; 15:95. [PMID: 39587693 PMCID: PMC11587679 DOI: 10.1186/s13293-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Mitochondrial dysfunction and associated inflammatory signaling are pivotal in both aging and in Alzheimer's disease (AD). Studies have also shown that hypothalamic function is affected in AD. The hypothalamus may be a target for AD drugs given that mitochondrial alterations are observed in the hypothalamus. This study investigated how age and sex affect mitochondrial bioenergetics and inflammatory signaling in the hypothalamic mitochondria of 3xTg and control mice at 2, 6, and 13 months, aiming to enhance our understanding of these processes in aging and AD. Parameters included oxygen consumption rates, expression levels of subunits comprising mitochondrial complexes I-V, the enzymatic activity of cytochrome c oxidase (COX), transcription factors associated with inflammation such as NF-κB, pIκB-α, Nrf2, and other inflammatory biomarkers. Hypothalamic mitochondrial dysfunction was observed in 3xTg females as early as 2 months, but no changes were detected in 3xTg males until 6 months of age. In 3xTg mice, subunit expression levels for mitochondrial complexes I-II were significantly reduced in both sexes. Significant sex-based differences in COX activity were also observed at 13 months of age, with levels being lower in females compared to males. In addition, significant sex differences were indicated in NF-κB, pIκB-α, Nrf2, and other inflammatory biomarkers at different age groups during normal aging and AD progression. These findings highlight important sex differences in hypothalamic bioenergetics and inflammation, offering insights into potential new targets for preventing and/or treating AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Kyle M Fontaine
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Benedict C Albensi
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Duggan MR, Steinberg Z, Peterson T, Francois TJ, Parikh V. Cognitive trajectories in longitudinally trained 3xTg-AD mice. Physiol Behav 2024; 275:114435. [PMID: 38103626 PMCID: PMC10872326 DOI: 10.1016/j.physbeh.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Preclinical studies in Alzheimer's disease (AD) often rely on cognitively naïve animal models in cross-sectional designs that can fail to reflect the cognitive exposures across the lifespan and heterogeneous neurobehavioral features observed in humans. To determine whether longitudinal cognitive training may affect cognitive capacities in a well-characterized AD mouse model, 3xTg and wild-type mice (n = 20) were exposed daily to a training variant of the Go-No-Go (GNG) operant task from 3 to 9 months old. At 3, 6, and 9 months, performance on a testing variant of the GNG task and anxiety-like behaviors were measured, while long-term recognition memory was also assessed at 9 months. In general, GNG training improved performance with increasing age across genotypes. At 3 months old, 3xTg mice showed slight deficits in inhibitory control that were accompanied by minor improvements in signal detection and decreased anxiety-like behavior, but these differences did not persist at 6 and 9 months old. At 9 months old, 3xTg mice displayed minor deficits in signal detection, and long-term recognition memory capacity was comparable with wild-type subjects. Our findings indicate that longitudinal cognitive training can render 3xTg mice with cognitive capacities that are on par with their wild-type counterparts, potentially reflecting functional compensation in subjects harboring AD genetic mutations.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Zoe Steinberg
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Tara Peterson
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Tara-Jade Francois
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
5
|
Taylor MK, Burns JM, Choi IY, Herda TJ, Lee P, Smith AN, Sullivan DK, Swerdlow RH, Wilkins HM. Protocol for a single-arm, pilot trial of creatine monohydrate supplementation in patients with Alzheimer's disease. Pilot Feasibility Stud 2024; 10:42. [PMID: 38414003 PMCID: PMC10898014 DOI: 10.1186/s40814-024-01469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Impaired brain bioenergetics is a pathological hallmark of Alzheimer's disease (AD) and is a compelling target for AD treatment. Patients with AD exhibit dysfunction in the brain creatine (Cr) system, which is integral in maintaining bioenergetic flux. Recent studies in AD mouse models suggest Cr supplementation improves brain mitochondrial function and may be protective of AD peptide pathology and cognition. AIMS The Creatine to Augment Bioenergetics in Alzheimer's disease (CABA) study is designed to primarily assess the feasibility of supplementation with 20 g/day of creatine monohydrate (CrM) in patients with cognitive impairment due to AD. Secondary aims are designed to generate preliminary data investigating changes in brain Cr levels, cognition, peripheral and brain mitochondrial function, and muscle strength and size. METHODS CABA is an 8-week, single-arm pilot study that will recruit 20 patients with cognitive impairment due to AD. Participants attend five in-person study visits: two visits at baseline to conduct screening and baseline assessments, a 4-week visit, and two 8-week visits. Outcomes assessment includes recruitment, retention, and compliance, cognitive testing, magnetic resonance spectroscopy of brain metabolites, platelet and lymphocyte mitochondrial function, and muscle strength and morphology at baseline and 8 weeks. DISCUSSION CABA is the first study to investigate CrM as a potential treatment in patients with AD. The pilot data generated by this study are pertinent to inform the design of future large-scale efficacy trials. TRIAL REGISTRATION ClinicalTrials.gov, NCT05383833 , registered on 20 May 2022.
Collapse
Affiliation(s)
- Matthew K Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Alzheimer's Disease Research Center, University of Kansas, Fairway, KS, 66205, USA.
| | - Jeffrey M Burns
- Alzheimer's Disease Research Center, University of Kansas, Fairway, KS, 66205, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - In-Young Choi
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Trent J Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Phil Lee
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Aaron N Smith
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Alzheimer's Disease Research Center, University of Kansas, Fairway, KS, 66205, USA
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas, Fairway, KS, 66205, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Heather M Wilkins
- Alzheimer's Disease Research Center, University of Kansas, Fairway, KS, 66205, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
6
|
Chang H, Leem YH. The potential role of creatine supplementation in neurodegenerative diseases. Phys Act Nutr 2023; 27:48-54. [PMID: 38297476 PMCID: PMC10844727 DOI: 10.20463/pan.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The maintenance of energy balance in the body, especially in energy-demanding tissues like the muscles and the central nervous system, depends on creatine (Cr). In addition to improving muscle function, Cr is necessary for the bioenergetics of the central nervous system because it replenishes adenosine triphosphate without needing oxygen. Furthermore, Cr possesses anti-oxidant, anti-apoptotic, and anti-excitotoxic properties. Clinical research on neurodegenerative illnesses has shown that Cr supplementation results in less effective outcomes. With a brief update on the possible role of Cr in human, animal, and in vitro experiments, this review seeks to offer insights into the ideal dosage regimen. METHODS Using specified search phrases, such as "creatine and neurological disorder," "creatine supplementation and neurodegenerative disorders," and "creatine and brain," we searched articles in the PubMed database and Google Scholar. We investigated the association between creatine supplementation and neurodegenerative illnesses by examining references. RESULTS The neuroprotective effects of Cr were observed in in vitro and animal models of certain neurodegenerative diseases, while clinical trials failed to reproduce favorable outcomes. CONCLUSION Determining the optimal creatinine regime for increasing brain creatinine levels is essential for maintaining brain health and treating neurodegeneration.
Collapse
Affiliation(s)
- Hyukki Chang
- Department of Sport and Exercise Science, Seoul Women’s University, Seoul, Republic of Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
8
|
Oliveira EF, Forbes SC, Borges EQ, Machado LF, Candow DG, Machado M. Association between dietary creatine and visuospatial short-term memory in older adults. Nutr Health 2023; 29:731-736. [PMID: 35603861 DOI: 10.1177/02601060221102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aims: The purpose was to examine the relationship between habitual dietary creatine intake obtained in food and visuospatial short-term memory (VSSM). Methods: Forty-two participants (32 females, 10 males; > 60 yrs of age) completed a 5-day dietary recall to estimate creatine intake and performed a cognitive assessment which included a visuospatial short-term memory test (forward and reverse corsi block test) and a mini-mental state examination (MMSE). Pearson correlation coefficients were determined. Further, cohorts were derived based on the median creatine intake. Results: There was a significant correlation between the forward Corsi (r = 0.703, P < 0.001), reverse Corsi (r = 0.715, P < 0.001), and the memory sub-component of the MMSE (r = 0.406, P = 0.004). A median creatine intake of 0.382 g/day was found. Participants consuming greater than the median had a significantly higher Corsi (P = 0.005) and reverse Corsi (P < 0.001) scores compared to participants ingesting less than the median. Conclusions: Dietary creatine intake is positively associated with measures of memory in older adults. Clinical Implications: Older adults should consider food sources containing creatine (i.e. red meat, seafood) due to the positive association with visuospatial short-term memory.
Collapse
Affiliation(s)
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | | | | | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Marco Machado
- Universidade Iguaçu Campus V, Itaperuna, RJ, Brazil
- Itaperuna Universitary Foundation (FUNITA), Itaperuna, RJ, Brazil
| |
Collapse
|
9
|
Smith AN, Morris JK, Carbuhn AF, Herda TJ, Keller JE, Sullivan DK, Taylor MK. Creatine as a Therapeutic Target in Alzheimer's Disease. Curr Dev Nutr 2023; 7:102011. [PMID: 37881206 PMCID: PMC10594571 DOI: 10.1016/j.cdnut.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting approximately 6.5 million older adults in the United States. Development of AD treatment has primarily centered on developing pharmaceuticals that target amyloid-β (Aβ) plaques in the brain, a hallmark pathological biomarker that precedes symptomatic AD. Though recent clinical trials of novel drugs that target Aβ have demonstrated promising preliminary data, these pharmaceuticals have a poor history of developing into AD treatments, leading to hypotheses that other therapeutic targets may be more suitable for AD prevention and treatment. Impaired brain energy metabolism is another pathological hallmark that precedes the onset of AD that may provide a target for intervention. The brain creatine (Cr) system plays a crucial role in maintaining bioenergetic flux and is disrupted in AD. Recent studies using AD mouse models have shown that supplementing with Cr improves brain bioenergetics, as well as AD biomarkers and cognition. Despite these promising findings, no human trials have investigated the potential benefits of Cr supplementation in AD. This narrative review discusses the link between Cr and AD and the potential for Cr supplementation as a treatment for AD.
Collapse
Affiliation(s)
- Aaron N. Smith
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K. Morris
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron F. Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Trent J. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| | - Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| |
Collapse
|
10
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
11
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Zhou HH, Luo L, Zhai XD, Chen L, Wang G, Qin LQ, Yu Z, Xin LL, Wan Z. Sex-Specific Neurotoxicity of Dietary Advanced Glycation End Products in APP/PS1 Mice and Protective Roles of Trehalose by Inhibiting Tau Phosphorylation via GSK-3β-TFEB. Mol Nutr Food Res 2021; 65:e2100464. [PMID: 34669246 DOI: 10.1002/mnfr.202100464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/04/2021] [Indexed: 11/11/2022]
Abstract
SCOPE It remains unclear whether dietary advanced glycation end products (dAGEs)-induced cognitive impairment is sex-dependent. Trehalose may antagonize dAGEs-induced neurotoxicity via glycogen synthase kinase-3 beta (GSK3β)-transcription factor EB (TFEB) signaling. METHODS AND RESULTS The sex-specific neurotoxicity of dAGEs and the protective role of trehalose are investigated both in vivo and in vitro. Both sexes of APP/PS1 mice are divided into three groups: that is, control, dAGEs, and dAGEs supplemented with trehalose. SHSY-5Y cells incubated with AGE-BSA and trehalose are also utilized. Dietary AGEs impair cognitive function only in female mice, which is restored by trehalose. Trehalose upregulates phosphorylated-GSK3β serine9 (p-GSK3β ser9), TFEB and transient receptor potential mucolipin 1, ADAM10, oligosaccharyl transferase-48, estrogen receptor α and induces TFEB nuclear translocation in hippocampus, elevates IDE and ERβ in cortex, while reduces p-tau ser396&404, CDK5, cathepsin B, and glial fibrillary acidic protein in hippocampus. Trehalose elevates p-GSK3β ser9, induces TFEB nuclear translocation, consequently reverses AGE-BSA-induced tau phosphorylation in vitro. CONCLUSIONS Female mice are more susceptible to the deleterious effects of dAGEs on cognitive function, which may be owing to its regulation on ERβ. Trehalose can strongly reverse dAGEs-induced tau phosphorylation by potentiating TFEB nuclear translocation via inhibiting GSK-3β.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xue-Di Zhai
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guiping Wang
- School of Physical Education, Soochow University, No. 50, Donghuan Road, Suzhou, 215006, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Li-Li Xin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
13
|
Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin SN. Mitochondrial Disorders in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:667-679. [PMID: 34225590 DOI: 10.1134/s0006297921060055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders. In addition, in recent years, the concept of Alzheimer's disease as a stress-induced disease has begun to form more and more actively. The stress-induced damage to the neuronal system can trigger a vicious circle of pathological processes, among which mitochondrial dysfunctions have a significant place, since mitochondria represent a substantial component in the anti-stress activity of the cell. The study of mitochondrial disorders in Alzheimer's disease is relevant for at least two reasons: first, as important pathogenetic component in this disease; second, due to vital role of mitochondria in formation of the body resistance to various conditions, including stressful ones, throughout the life. This literature review analyzes the results of a number of recent studies assessing potential significance of the mitochondrial disorders in Alzheimer's disease. The probable mechanisms of mitochondrial disorders associated with the development of this disease are considered: bioenergetic dysfunctions, changes in mitochondrial DNA (including assessment of the significance of its haplogroup features), disorders in the dynamics of these organelles, oxidative damage to calcium channels, damage to MAM complexes (membranes associated with mitochondria; mitochondria-associated membranes), disruptions of the mitochondrial quality control system, mitochondrial permeability, etc. The issues of the "primary" or "secondary" mitochondrial damage in Alzheimer's disease are discussed. Potentials for the development of new methods for diagnosis and therapy of mitochondrial disorders in Alzheimer's disease are considered.
Collapse
Affiliation(s)
| | | | | | - Tatiana I Baranich
- Research Center of Neurology, Moscow, 125367, Russia.,Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | - Valeria V Glinkina
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | | |
Collapse
|