1
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
de Lima E Souza Mesquita GC, Da Cruz ER, Corrêa DS, de Barros Falcão Ferraz A, Miri JM, Farias IV, Reginatto FH, Boaretto FBM, Dos Santos DM, da Silva J, Grivicich I, Picada JN. Genotoxic and antiproliferative properties of Endopleura uchi bark aqueous extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:516-531. [PMID: 38619152 DOI: 10.1080/15287394.2024.2340069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.
Collapse
Affiliation(s)
| | - Elkejer Ribeiro Da Cruz
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alexandre de Barros Falcão Ferraz
- Pharmacognosy Laboratory, Department of Industrial Pharmaceutical, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jéssica Machado Miri
- Laboratory of Cancer Biology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ingrid Vicente Farias
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Duani Maria Dos Santos
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
- Laboratory of Genetics Toxicology, La Salle University, Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | |
Collapse
|
3
|
Agrawal S, Kumar A, Kumar Singh A, Singh H, Thareja S, Kumar P. A comprehensive review on pharmacognosy, phytochemistry and pharmacological activities of 8 potent species of southeast Asia. J TRADIT CHIN MED 2024; 44:620-628. [PMID: 38767647 PMCID: PMC11077151 DOI: 10.19852/j.cnki.jtcm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/22/2023] [Indexed: 05/22/2024]
Abstract
Genus Prunus comprising around 430 species is a vast important genus of family Rosaceae, subfamily amygdalaoidae. Among all 430 species, around 19 important species are commonly found in Indian sub-continent due to their broad nutritional and economic importance. Some most common species of genus Prunus are Prunus amygdalus, Prunus persica, Prunus armeniaca, Prunus avium, Prunus cerasus, Prunus cerasoides, Prunus domestica, Prunus mahaleb, etc. A newly introduced species of Prunus i.e Prunus sunhangii is recently discovered which is morphologically very similar to Prunus cerasoides. Plants of Prunus species are short to medium-sized deciduous trees mainly found in the northern hemisphere. In India and its subcontinent, it extends from the Himalayas to Sikkim, Meghalaya, Bhutan, Myanmar etc. Different Prunus species have been extensively studied for their morphological, microscopic, pharmacological and phytoconstituents characteristics. Total phenolic content of Prunus species explains the presence of phenols in high quantity and pharmacological activity due to phenols. Phytochemical screening of species of genus Prunus shows the presence of wide phytoconstituents which contributes in their pharmacological significance and reveals the therapeutic potential and traditional medicinal significance of this genus. Genus Prunus showed a potent antioxidant activity analyzed by 1,1-diphenyl-2-picryl-hydrazyl radical assay. Plant species belonging to the genus Prunus is widely used traditionally for the treatment of various disorders. Some specific Prunus species possess potent anticancer, anti-inflammatory, hypoglycemic etc. activity which makes the genus more interesting for further research and findings. This review is an attempt to summarize the comprehensive study of Prunus.
Collapse
Affiliation(s)
- Shikha Agrawal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
4
|
Elferjane MR, Milutinović V, Jovanović Krivokuća M, Taherzadeh MJ, Pietrzak W, Marinković A, Jovanović AA. Vaccinium myrtillus L. Leaf Waste as a Source of Biologically Potent Compounds: Optimization of Polyphenol Extractions, Chemical Profile, and Biological Properties of the Extracts. Pharmaceutics 2024; 16:740. [PMID: 38931863 PMCID: PMC11206553 DOI: 10.3390/pharmaceutics16060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The aims of the present research include (1) optimization of extraction from Vaccinium myrtillus leaf waste via investigation of plant material:medium ratio, extraction medium, and extraction period, employing extractions at room and high temperatures, or using ultrasound and microwaves (M, HAE, UAE, and MAE, respectively), (2) physicochemical characterization, and (3) investigation of extract biological potential. The statistical analysis revealed that optimal levels of parameters for the greatest polyphenolic yield were a proportion of 1:30 g/mL, ethyl alcohol 50% (v/v) during 2 min of microwave irradiation. By LC-MS analysis, 29 phenolic components were detected; HAE showed the highest richness of almost all determined polyphenols, while chlorogenic acid and quercetin 3-O-glucuronide were dominant. All extracts showed a high inhibition of Staphylococcus aureus growth. The effect of different parameters on extracts' antioxidant capacity depended on the used tests. The extracts also showed a stimulative influence on keratinocyte viability and anti-inflammatory activity (proven in cell-based ELISA and erythrocyte stabilization assays). The extraction procedure significantly affected the extraction yield (MAE ≥ maceration ≥ UAE ≥ HAE), whereas conductivity, density, surface tension, and viscosity varied in a narrow range. The presented research provides evidence on the optimal extraction conditions and technique, chemical composition, and antioxidant, antimicrobial, anti-inflammatory, and keratinocyte viability properties of bilberry extracts for potential applications in pharmacy and cosmetics.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya;
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| | - Mohammad J. Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 61, 503 37 Borås, Sweden;
| | - Witold Pietrzak
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| |
Collapse
|
5
|
Luo X, Gong Y, Jiang Q, Wang Q, Li S, Liu L. Isoquercitrin promotes ferroptosis and oxidative stress in nasopharyngeal carcinoma via the AMPK/NF-κB pathway. J Biochem Mol Toxicol 2024; 38:e23542. [PMID: 37712196 DOI: 10.1002/jbt.23542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Isoquercitrin has been discovered with various biological properties, including anticancer, anti-inflammation, antioxidation, and neuroprotection. The aim of this study is to explore the efficacy of isoquercitrin in nasopharyngeal carcinoma (NPC) and to disclose its potential regulating mechanisms. CNE1 and HNE1 cells were treated with various concentrations of isoquercitrin. Ferrostatin-1 (Fer-1, a ferroptosis inhibitor) and alpha-lipoic acid (ALA, an activator of the AMP-activated protein kinase [AMPK] pathway) treatments were conducted to verify the effects of isoquercitrin, respectively. Cell viability, proliferation, reactive oxygen species (ROS) generation, and lipid peroxidation were determined, respectively. GPX4 expression and ferroptosis- and pathway-related protein expression were measured. A xenograft tumor model was constructed by subcutaneously inoculating CNE1 cells into the middle groin of each mouse. We found that the IC50 values of CNE1 and HNE1 cells were 392.45 and 411.38 μM, respectively. CNE1 and HNE1 viability and proliferation were both markedly reduced with the increasing concentration of isoquercitrin. ROS generation and lipid peroxidation were both enhanced with declined ferroptosis-related markers under isoquercitrin treatment. The nuclear factor kappa B (NF-κB) pathway, the AMPK pathway, and the interleukin (IL)-1β expression were all markedly suppressed by isoquercitrin. Moreover, isoquercitrin restrained the tumor growth and enhanced lipid peroxidation and ferroptosis in vivo. Interestingly, both Fer-1 and ALA treatments distinctly offset isoquercitrin-induced effects in vitro and in vivo. These findings indicated that isoquercitrin might enhance oxidative stress and ferroptosis in NPC via AMPK/NF-κB p65 inhibition.
Collapse
Affiliation(s)
- Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qin Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Songtao Li
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
6
|
Boateng ST, Roy T, Agbo ME, Mahmud MA, Banang-Mbeumi S, Chamcheu RCN, Yadav RK, Bramwell M, Pham LK, Dang DD, Jackson KE, Nagalo BM, Hill RA, Efimova T, Fotie J, Chamcheu JC. Multifaceted approach toward mapping out the anticancer properties of small molecules via in vitro evaluation on melanoma and nonmelanoma skin cancer cells, and in silico target fishing. Chem Biol Drug Des 2024; 103:e14418. [PMID: 38230791 DOI: 10.1111/cbdd.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 01/18/2024]
Abstract
Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 μM, SCC-12: IC50 = 2.9 μM, SKMEL-28: IC50 = 4.9 μM, A375: IC50 = 6.7 μM) and 13 (A431: IC50 = 5.0 μM, SCC-12: IC50 = 3.3 μM, SKMEL-28: IC50 = 13.8 μM, A375: IC50 = 17.1 μM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.
Collapse
Affiliation(s)
- Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Mercy E Agbo
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Md Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Roxane-Cherille N Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Rajesh K Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Marion Bramwell
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Long K Pham
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Danny D Dang
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Keith E Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Science (UAMS), Little Rock, Arkansas, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
7
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
8
|
Inci H, Izol E, Yilmaz MA, Ilkaya M, Bingöl Z, Gülçin I. Comprehensive Phytochemical Content by LC/MS/MS and Anticholinergic, Antiglaucoma, Antiepilepsy, and Antioxidant Activity of Apilarnil (Drone Larvae). Chem Biodivers 2023; 20:e202300654. [PMID: 37610045 DOI: 10.1002/cbdv.202300654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Apilarnil is 3-7 days old drone larvae. It is an organic bee product known to be rich in protein. In this study, the biological activities of Apilarnil were determined by its antioxidant and enzyme inhibition effects. Antioxidant activities were determined by Fe3+ , Cu2+ , Fe3+ -TPTZ ((2,4,6-tris(2-pyridyl)-s-triazine), reducing ability and 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) scavenging assays. Also, its enzyme inhibition effects were tested against carbonic anhydrase I and II isoenzymes (hCA I, hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Antioxidant activity of Apilarnil was generally lower than the standard molecules in the applied methods. In DPPH⋅ radical scavenging assay, Apilarnil exhibited higher radical scavenging than some standards. Enzyme inhibition results towards hCA I (IC50 : 14.2 μg/mL), hCA II: (IC50 : 11.5 μg/mL), AChE (IC50 : 22.1 μg/mL), BChE (IC50 : 16.1 μg/mL) were calculated. In addition, the quantity of 53 different phytochemical compounds of Apilarnil was determined by a validated method by LC/MS/MS. Compounds with the highest concentrations (mg analyte/g dry extract) were determined as quinic acid (1091.045), fumaric acid (48.714), aconitic acid (47.218), kaempferol (39.946), and quercetin (27.508). As a result, it was determined that Apilarnil had effective antioxidant profile when compared to standard antioxidants.
Collapse
Affiliation(s)
- Hakan Inci
- Department of Animal Science, Faculty of Agriculture, Bingöl University, Bingöl, Türkiye
| | - Ebubekir Izol
- Bee and Natural Products R&D and P&D Application and Research Center, Bingöl University, Bingöl, Türkiye
| | - Mustafa Abdullah Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Türkiye
| | - Mehmet Ilkaya
- Department of Animal Science, Faculty of Agriculture, Bingöl University, Bingöl, Türkiye
| | - Zeynebe Bingöl
- Vocational School of Health Services, Gaziosmanpaşa University, Tokat, Türkiye
| | - Ilhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
9
|
Biharee A, Yadav A, Jangid K, Singh Y, Kulkarni S, Sawant DM, Kumar P, Thareja S, Jain AK. Flavonoids as promising anticancer agents: an in silico investigation of ADMET, binding affinity by molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:7835-7846. [PMID: 36165610 DOI: 10.1080/07391102.2022.2126397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Cancer is one of the most concerning diseases to humankind. Various treatment strategies are being employed for its treatment, out of which use of natural products is an essential one. Flavonoids have proven to be promising anticancer targets since decades. Also, tubulin is a significant biological target for the development of anticancer agents due to its crucial role in mitosis and abundance throughout the body. In the current study, in silico ADMET parameters of 104 flavonoids were examined, followed by molecular docking with the colchicine binding site of Tubulin protein (PDB; Id 4O2B). The best conformation from each flavonoid subcategory with the best docking score (MolDock score) was further subjected to 100 ns of molecular dynamics to investigate the protein-ligand complex's stability. Different parameters such as RMSD, RMSF, rGy and SASA were calculated for the six flavonoids using molecular dynamic studies. The top most compound from all the six subcategories of flavonoids elicited best behavior in the colchicine binding site of Tubulin protein. This in silico study employing molecular docking and molecular dynamics simulation provides strong evidence for flavonoids to be excellent anti-tubulin agents for the treatment of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Arpita Yadav
- R.K. College of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Kailash Jangid
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Devesh M Sawant
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Akhlesh Kumar Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
10
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
11
|
Kumar A, Kaur S, Sangwan PL, Tasduq SA. Therapeutic and cosmeceutical role of glycosylated natural products in dermatology. Phytother Res 2023; 37:1574-1589. [PMID: 36809543 DOI: 10.1002/ptr.7752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/03/2022] [Accepted: 10/09/2022] [Indexed: 02/23/2023]
Abstract
Natural products (NPs) remain the primary source of pharmacologically active candidates for drug discovery. Since time immemorial, NPs have attracted considerable attention because of their beneficial skin effects. Moreover, there has been a great interest in using such products for the cosmetics industry in the past few decades, bridging the gap between modern and traditional medicine. Terpenoids, Steroids, and Flavonoids having glycosidic attachment have proven biological effects with a positive impact on human health. NPs derived glycosides are mainly found in fruits, vegetables, and plants, and most of them have a special reverence in traditional and modern medicine for disease prevention and treatment. A literature review was performed using scientific journals, Google scholar, Scifinder, PubMED, and Google patents. These scientific articles, documents, and patents establish the significance of glycosidic NPs in the areas of dermatology. Considering the human inclination to the usage of NPs rather than synthetic or inorganic drugs (especially in the area of skin care), in the present review we have discussed the worth of NP glycosides in beauty care and skin-related therapeutics and the mechanistic pathways involved.
Collapse
Affiliation(s)
- Amit Kumar
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.,PK/PD divisions, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pyare L Sangwan
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sheikh A Tasduq
- PK/PD divisions, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,PK-PD and Toxicology Divisions, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Isoquercitrin Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Gastric Cancer Cells. Biochem Genet 2022; 61:1128-1142. [DOI: 10.1007/s10528-022-10309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
|
13
|
Altay A, Yeniceri E, Taslimi P, Taskin-Tok T, Yilmaz MA, Koksal E. A Biochemical Approach for Hedysarum candidissimum from Turkey: Screening Phytochemicals, Evaluation of Biological Activites, and Molecular Docking Study. Chem Biodivers 2022; 19:e202200348. [PMID: 36045318 DOI: 10.1002/cbdv.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
This study was designed to screen the phytochemical composition and investigate the biological activities of Hedysarum candidissimum extracts and also support the results with molecular docking studies. LC/MS/MS analysis revealed the presence of 22 phytochemical constituents (mainly phenolic acids, flavonoids, and flavonoid glycosides) in the plant structure. The methanol extract exhibited the strongest antioxidant activity among all the extracts with its strong DPPH radical scavenging and iron reducing capacity, as well as high phenolic and flavonoid contents. Additionally, it was found to be the most promising acetylcholinesterase (AChE: IC50 : 93.26 μg/mL) and α-glycosidase (AG: IC50 : 28.57 μg/mL) inhibitory activities, supported by the major phenolics of the species through in silico studies. Ethyl acetate extract had the strongest cytotoxic effect on HT-29 (IC50 : 63.03 μg/mL) and MDA-MB-453 (IC50 : 95.36 μg/mL) cancer cell lines. Both extracts exhibited considerable apoptotic and anti-migrative effects on HT-29 cells. The investigations provide phyto-analytical and bio-pharmacological results which can be extended by in vivo studies in the future.
Collapse
Affiliation(s)
- Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Esma Yeniceri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24030, Erzincan, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartın, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310, Gaziantep, Turkey
| | | | - Ekrem Koksal
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
14
|
Panax notoginseng saponins induce apoptosis in retinoblastoma Y79 cells via the PI3K/AKT signalling pathway. Exp Eye Res 2022; 216:108954. [DOI: 10.1016/j.exer.2022.108954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022]
|
15
|
Zhou M, Li J, Luo D, Zhang H, Yu Z, Chen Y, Li Q, Liang F, Chen R. Network Pharmacology and Molecular Docking-Based Investigation: Prunus mume Against Colorectal Cancer via Silencing RelA Expression. Front Pharmacol 2021; 12:761980. [PMID: 34867383 PMCID: PMC8640358 DOI: 10.3389/fphar.2021.761980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most pervasive cancers in the human disease spectrum worldwide, ranked the second most common cause of cancer death by the end of 2020. Prunus mume (PM) is an essential traditional Chinese medicine for the adjuvant treatment of solid tumors, including CRC. In the current study, we utilize means of network pharmacology, molecular docking, and multilayer experimental verification to research mechanism. The five bioactive compounds and a total of eight critical differentially expressed genes are screened out using the bioinformatics approaches of Cytoscape software, String database, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathways, and molecular docking. RelA has been proven to be highly expressed in CRC. Experiments in vitro have shown that kaempferol, the main active component of PM, dramatically inhibited the growth, migration, and invasion of CRC cells, and experiments in vivo have shown that PM effectively delays CRC formation and improves the survival cycle of mice. Further analysis shows that PM inhibits the CRC progression by down-regulating the expression level of RelA, Bax, caspase 3, caspase 9, and EGFR in CRC. PM and its extract are potentially effective therapeutics for the treatment of CRC via the RelA/nuclear factor κB signaling pathway.
Collapse
Affiliation(s)
- Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Luo
- Department of Respiratory Medicine, Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Youlin Chen
- School of Resources and Environment Science, Wuhan University, Wuhan, China
| | - Qiumeng Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengxia Liang
- College of Acupuncture & Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zerrouki S, Mezhoud S, Yilmaz MA, Sahin Yaglioglu A, Bakir D, Demirtas I, Mekkiou R. LC/MS-MS Analyses and in vitro anticancer activity of Tourneuxia variifolia extracts. Nat Prod Res 2021; 36:4506-4510. [PMID: 34623209 DOI: 10.1080/14786419.2021.1986818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several Saharan plants, despite their abundance of natural compounds, have received little attention. In this study, the chemical composition of polar extracts of Tourneuxia variifolia Coss. (Asteraceae), an endemic species to Algerian Sahara, was investigated and their anticancer activity was evaluated in vitro. The phytoconstituents of both ethyl acetate (EtOAc) and n-butanol (n-BuOH) extracts were screened using LC/MS-MS technique. The anticancer activity of the above extracts was measured against human cervical adenocarcinoma (HeLa) cell line. The LC/MS-MS analyses results revealed that twenty-seven phytochemicals in EtOAc extract and twenty-three in n-BuOH extract were identified and quantified from which isoquercetin and astragalin were the most present. Moreover; the EtOAc extract was found to have a strong anticancer activity (IC50: 46.797 ± 0.060 µg/mL). These findings identified T. variifolia as a potential plant exhibiting anticancer properties.
Collapse
Affiliation(s)
- Sara Zerrouki
- Unité de recherche: Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri Constantine 1, Constantine, Algérie
| | - Samia Mezhoud
- Unité de recherche: Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri Constantine 1, Constantine, Algérie
| | - Mustafa Abdullah Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Ayse Sahin Yaglioglu
- Technical Sciences Vocational School, Department of Chemistry and Chemical Process Technology, Amasya University, Amasya, Turkey
| | - Derya Bakir
- The Council of Forensic Medicine, Diyarbakir Group Chairman ship, Diyarbakir, Turkey
| | - Ibrahim Demirtas
- Biochemistry Department, Şehit Bulent Yurtseven Campus, Igdir University, Faculty of Science and Arts, Igdir, Turkey
| | - Ratiba Mekkiou
- Unité de recherche: Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri Constantine 1, Constantine, Algérie
| |
Collapse
|
17
|
Koklesova L, Liskova A, Samec M, Zhai K, AL-Ishaq RK, Bugos O, Šudomová M, Biringer K, Pec M, Adamkov M, Hassan STS, Saso L, Giordano FA, Büsselberg D, Kubatka P, Golubnitschaja O. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention. Int J Mol Sci 2021; 22:ijms22168649. [PMID: 34445360 PMCID: PMC8395457 DOI: 10.3390/ijms22168649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Multi-factorial mitochondrial damage exhibits a “vicious circle” that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | - Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | | | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (D.B.); (P.K.); (O.G.)
| |
Collapse
|
18
|
Chen B, Sun D, Qin X, Gao XH. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Invest New Drugs 2021; 39:928-948. [PMID: 33501609 DOI: 10.1007/s10637-021-01072-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Melanoma is a highly aggressive malignant skin tumor with a high rate of metastasis and mortality. In this study, a comprehensive bioinformatics analysis was used to clarify the hub genes and potential drugs. Download the GSE3189, GSE22301, and GSE35388 microarray datasets from the Gene Expression Omnibus (GEO), which contains a total of 33 normal samples and 67 melanoma samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) approach analyze DEGs based on the DAVID. Use STRING to construct protein-protein interaction network, and use MCODE and cytoHubba plug-ins in Cytoscape to perform module analysis and identified hub genes. Use Gene Expression Profile Interactive Analysis (GEPIA) to assess the prognosis of genes in tumors. Finally, use the Drug-Gene Interaction Database (DGIdb) to screen targeted drugs related to hub genes. A total of 140 overlapping DEGs were identified from the three microarray datasets, including 59 up-regulated DEGs and 81 down-regulated DEGs. GO enrichment analysis showed that these DEGs are mainly involved in the biological process such as positive regulation of gene expression, positive regulation of cell proliferation, positive regulation of MAP kinase activity, cell migration, and negative regulation of the apoptotic process. The cellular components are concentrated in the membrane, dendritic spine, the perinuclear region of cytoplasm, extracellular exosome, and membrane raft. Molecular functions include protein homodimerization activity, calmodulin-binding, transcription factor binding, protein binding, and cytoskeletal protein binding. KEGG pathway analysis shows that these DEGs are mainly related to protein digestion and absorption, PPAR signaling pathway, signaling pathways regulating stem cells' pluripotency, and Retinol metabolism. The 23 most closely related DEGs were identified from the PPI network and combined with the GEPIA prognostic analysis, CDH3, ESRP1, FGF2, GBP2, KCNN4, KIT, SEMA4D, and ZEB1 were selected as hub genes, which are considered to be associated with poor prognosis of melanoma closely related. Besides, ten related drugs that may have therapeutic effects on melanoma were also screened. These newly discovered genes and drugs provide new ideas for further research on melanoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Donghong Sun
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Xiuni Qin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|