1
|
Ullah A, Mostafa NM, Halim SA, Elhawary EA, Ali A, Bhatti R, Shareef U, Al Naeem W, Khalid A, Kashtoh H, Khan A, Al-Harrasi A. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytother Res 2024; 38:4467-4501. [PMID: 39023299 DOI: 10.1002/ptr.8292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi, UAE
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ain Ali
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rohail Bhatti
- Department of Pharmacology and Psychology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Usman Shareef
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Waiel Al Naeem
- Clinical Pharmacy Department, Sheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
2
|
Inouye K, Yeganyan S, Kay K, Thankam FG. Programmed spontaneously beating cardiomyocytes in regenerative cardiology. Cytotherapy 2024; 26:790-796. [PMID: 38520412 DOI: 10.1016/j.jcyt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Stem cells have gained attention as a promising therapeutic approach for damaged myocardium, and there have been efforts to develop a protocol for regenerating cardiomyocytes (CMs). Certain cells have showed a greater aptitude for yielding beating CMs, such as induced pluripotent stem cells, embryonic stem cells, adipose-derived stromal vascular fraction cells and extended pluripotent stem cells. The approach for generating CMs from stem cells differs across studies, although there is evidence that Wnt signaling, chemical additives, electrical stimulation, co-culture, biomaterials and transcription factors triggers CM differentiation. Upregulation of Gata4, Mef2c and Tbx5 transcription factors has been correlated with successfully induced CMs, although Mef2c may potentially play a more prominent role in the generation of the beating phenotype, specifically. Regenerative research provides a possible candidate for cardiac repair; however, it is important to identify factors that influence their differentiation. Altogether, the spontaneously beating CMs would be monumental for regenerative research for cardiac repair.
Collapse
Affiliation(s)
- Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Stephanie Yeganyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Kaelen Kay
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
3
|
Cai YQ, Gong DX, Tang LY, Cai Y, Li HJ, Jing TC, Gong M, Hu W, Zhang ZW, Zhang X, Zhang GW. Pitfalls in Developing Machine Learning Models for Predicting Cardiovascular Diseases: Challenge and Solutions. J Med Internet Res 2024; 26:e47645. [PMID: 38869157 PMCID: PMC11316160 DOI: 10.2196/47645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/30/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
In recent years, there has been explosive development in artificial intelligence (AI), which has been widely applied in the health care field. As a typical AI technology, machine learning models have emerged with great potential in predicting cardiovascular diseases by leveraging large amounts of medical data for training and optimization, which are expected to play a crucial role in reducing the incidence and mortality rates of cardiovascular diseases. Although the field has become a research hot spot, there are still many pitfalls that researchers need to pay close attention to. These pitfalls may affect the predictive performance, credibility, reliability, and reproducibility of the studied models, ultimately reducing the value of the research and affecting the prospects for clinical application. Therefore, identifying and avoiding these pitfalls is a crucial task before implementing the research. However, there is currently a lack of a comprehensive summary on this topic. This viewpoint aims to analyze the existing problems in terms of data quality, data set characteristics, model design, and statistical methods, as well as clinical implications, and provide possible solutions to these problems, such as gathering objective data, improving training, repeating measurements, increasing sample size, preventing overfitting using statistical methods, using specific AI algorithms to address targeted issues, standardizing outcomes and evaluation criteria, and enhancing fairness and replicability, with the goal of offering reference and assistance to researchers, algorithm developers, policy makers, and clinical practitioners.
Collapse
Affiliation(s)
- Yu-Qing Cai
- The First Hospital of China Medical University, Shenyang, China
| | - Da-Xin Gong
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, China
| | - Li-Ying Tang
- The First Hospital of China Medical University, Shenyang, China
| | - Yue Cai
- The First Hospital of China Medical University, Shenyang, China
| | - Hui-Jun Li
- Shenyang Medical & Film Science and Technology Co, Ltd, Shenyang, China
| | - Tian-Ci Jing
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, China
| | | | - Wei Hu
- Bayi Orthopedic Hospital, Chengdu, China
| | - Zhen-Wei Zhang
- China Rongtong Medical & Healthcare Co, Ltd, Chengdu, China
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Guang-Wei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Luo ZR, Meng WT, Li H, Wang Y, Wang YC, Zhao Y, Lu PP, Yuan Y, Huang W, Guo HD. Transplantation of induced pluripotent stem cells-derived cardiomyocytes combined with modified Taohong Siwu decoction improved heart repair after myocardial infarction. Heliyon 2024; 10:e26700. [PMID: 38434034 PMCID: PMC10906439 DOI: 10.1016/j.heliyon.2024.e26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Objective This study aimed to study whether modified Taohong Siwu decoction (MTHSWD) combined with human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs) transplantation can promote cardiac function in myocardial infarction (MI) nude mouse model and explore its possible mechanism. Methods The MI mouse model was established by the ligation of left anterior descending coronary artery. After 4 weeks of gavage of MTHSWD combined with iPS-CMs transplantation, the changes in heart function of mice were examined by echocardiography. The histological changes were observed by Masson's trichrome staining. The survival and differentiation of transplanted cells were detected by double immunofluorescence staining of human nuclear antigen (HNA) and cardiac troponin T (cTnT). The number of c-kit-positive cells in the infarct area were evaluated by immunofluorescent staining. The levels of stromal cell-derived factor 1 (SDF-1), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in infarcted myocardium tissues were detected by ELISA. Results MTHSWD combined with iPS-CMs transplantation can improve the heart function of MI mice, reduce the infarct size and collagen deposition in infarct area. By immunofluorescence double-label detection of HNA and cTnT, it was found that MTHSWD combined with iPS-CMs transplantation can improve the survival and maturation of iPS-CMs. In addition, MTHSWD combined with iPS-CMs transplantation can activate more endogenous c-kit positive cardiac mesenchymal cells, and significantly increase the content of SDF-1, SCF and VEGF in myocardial tissues. Conclusions The combination of MTHSWD with iPS-CMs transplantation promoted cardiac function of nude mice with MI by improving the survival and maturation of iPS-CMs in the infarct area, activating the endogenous c-kit positive cardiac mesenchymal cells, and increasing paracrine.
Collapse
Affiliation(s)
- Zhi-rong Luo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wan-ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping-ping Lu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Huang
- Department of Chinese Internal Medicine, Dahua Hospital, Xuhui District, Shanghai, China
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Cai Y, Cai YQ, Tang LY, Wang YH, Gong M, Jing TC, Li HJ, Li-Ling J, Hu W, Yin Z, Gong DX, Zhang GW. Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Med 2024; 22:56. [PMID: 38317226 PMCID: PMC10845808 DOI: 10.1186/s12916-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new independent validation score (IVS) for AI-Ms replicability evaluation. METHODS PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evaluated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicability evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. CRD42021271789). RESULTS In 20,887 screened references, 79 articles (82.5% in 2017-2021) were included, which contained 114 datasets (67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development (n = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different predictors (range 5-52,000, median 21) and large-span sample size (range 80-3,660,000, median 4466) were observed. All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS analysis confirmed only 10 models as "recommended"; however, 281 and 187 were "not recommended" and "warning," respectively. CONCLUSION AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of development as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to independent external validation and the development of this field.
Collapse
Affiliation(s)
- Yue Cai
- China Medical University, Shenyang, 110122, China
| | - Yu-Qing Cai
- China Medical University, Shenyang, 110122, China
| | - Li-Ying Tang
- China Medical University, Shenyang, 110122, China
| | - Yi-Han Wang
- China Medical University, Shenyang, 110122, China
| | - Mengchun Gong
- Digital Health China Co. Ltd, Beijing, 100089, China
| | - Tian-Ci Jing
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Hui-Jun Li
- Shenyang Medical & Film Science and Technology Co. Ltd., Shenyang, 110001, China
- Enduring Medicine Smart Innovation Research Institute, Shenyang, 110001, China
| | - Jesse Li-Ling
- Institute of Genetic Medicine, School of Life Science, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610065, China
| | - Wei Hu
- Bayi Orthopedic Hospital, Chengdu, 610017, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Da-Xin Gong
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- The Internet Hospital Branch of the Chinese Research Hospital Association, Beijing, 100006, China.
| | - Guang-Wei Zhang
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- The Internet Hospital Branch of the Chinese Research Hospital Association, Beijing, 100006, China.
| |
Collapse
|
6
|
Carresi C, Cardamone A, Coppoletta AR, Caminiti R, Macrì R, Lorenzo F, Scarano F, Mollace R, Guarnieri L, Ruga S, Nucera S, Musolino V, Gliozzi M, Palma E, Muscoli C, Volterrani M, Mollace V. The protective effect of Bergamot Polyphenolic Fraction on reno-cardiac damage induced by DOCA-salt and unilateral renal artery ligation in rats. Biomed Pharmacother 2024; 171:116082. [PMID: 38242036 DOI: 10.1016/j.biopha.2023.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.
Collapse
Affiliation(s)
- Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Lorenzo
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Lorenza Guarnieri
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Maiuolo J, Bosco F, Guarnieri L, Nucera S, Ruga S, Oppedisano F, Tucci L, Muscoli C, Palma E, Giuffrè AM, Mollace V. Protective Role of an Extract Waste Product from Citrus bergamia in an In Vitro Model of Neurodegeneration. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112126. [PMID: 37299105 DOI: 10.3390/plants12112126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
A balanced diet, rich in fruits and vegetables and ensuring the intake of natural products, has been shown to reduce or prevent the occurrence of many chronic diseases. However, the choice to consume large quantities of fruits and vegetables leads to an increase in the amount of waste, which can cause an alteration in environmental sustainability. To date, the concept of a "byproduct" has evolved, now being understood as a waste product from which it is still possible obtain useful compounds. Byproducts in the agricultural sector are a rich source of bioactive compounds, capable of possessing a second life, decreasing the amount of waste products, the disposal costs, and environmental pollution. A promising and well-known citrus of the Mediterranean diet is the bergamot (Citrus bergamia, Risso et Poiteau). The composition of bergamot is known, and the rich presence of phenolic compounds and essential oils has justified the countless beneficial properties found, including anti-inflammatory, antioxidant, anti-cholesterolemic, and protective activity for the immune system, heart failure, and coronary heart diseases. The industrial processing of bergamot fruits leads to the formation of bergamot juice and bergamot oil. The solid residues, referred to as "pastazzo", are normally used as feed for livestock or pectin production. The fiber of bergamot (BF) can be obtained from pastazzo and could exert an interesting effect thanks to its content of polyphenols. The aims of this work were twofold: (a) to have more information (composition, polyphenol and flavonoid content, antioxidant activity, etc.) on BF powder and (b) to verify the effects of BF on an in vitro model of neurotoxicity induced by treatment with amyloid beta protein (Aβ). In particular, a study of cell lines was carried out on both neurons and oligodendrocytes, to measure the involvement of the glia and compare it with that of the neurons. The results obtained showed that BF powder contains polyphenols and flavonoids and that it is able to exercise an antioxidant property. Moreover, BF exerts a protective action on the damage induced by treatment with Aβ, and this defense is found in experiments on the cell viability, on the accumulation of reactive oxygen species, on the involvement of the expression of caspase-3, and on necrotic or apoptotic death. In all these results, oligodendrocytes were always more sensitive and fragile than neurons. Further experiments are needed, and if this trend is confirmed, BF could be used in AD; at the same time, it could help to avoid the accumulation of waste products.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angelo Maria Giuffrè
- Department of Agraria, University of Studies "Mediterranea" of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
- Faculty of Pharmacy, San Raffaele University, 00042, Rome, Italy
| |
Collapse
|
8
|
Julian K, Garg N, Hibino N, Jain R. Stem Cells and Congenital Heart Disease: The Future Potential Clinical Therapy Beyond Current Treatment. Curr Cardiol Rev 2023; 19:e310522205424. [PMID: 35642109 PMCID: PMC10201894 DOI: 10.2174/1573403x18666220531093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly in newborns. Current treatment for cyanotic CHD largely relies on the surgical intervention; however, significant morbidity and mortality for patients with CHD remain. Recent research to explore new avenues of treating CHD includes the utility of stem cells within the field. Stem cells have since been used to both model and potentially treat CHD. Most clinical applications to date have focused on hypoplastic left heart syndrome. Here, we examine the current role of stem cells in CHD and discuss future applications within the field.
Collapse
Affiliation(s)
| | - Nikita Garg
- Department of Pediatrics, Southern Illinois University, Carbondale, Illinois, USA
| | - Narutoshi Hibino
- Department of Cardiothoracic Surgery, University of Chicago, Hershey, Pennsylvania, USA
| | - Rohit Jain
- Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Ciccone L, Nencetti S, Marino M, Battocchio C, Iucci G, Venditti I, Marsotto M, Montalesi E, Socci S, Bargagna B, Orlandini E. Pterostilbene fluorescent probes as potential tools for targeting neurodegeneration in biological applications. J Enzyme Inhib Med Chem 2022; 37:1812-1820. [PMID: 35758192 PMCID: PMC9246042 DOI: 10.1080/14756366.2022.2091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several epidemiological studies suggest that a diet rich in fruit and vegetables reduces the incidence of neurodegenerative diseases. Resveratrol (Res) and its dimethylated metabolite, pterostibene (Ptb), have been largely studied for their neuroprotective action. The clinical use of Res is limited because of its rapid metabolism and its poor bioavailability. Ptb with two methoxy groups and one hydroxyl group has a good membrane permeability, metabolic stability and higher in vivo bioavailability in comparison with Res. The metabolism and pharmacokinetics of Ptb are still sparse, probably due to the lack of tools that allow following the Ptb destiny both in living cells and in vivo. In this contest, we propose two Ptb fluorescent derivatives where Ptb has been functionalised by benzofurazan and rhodamine-B-isothiocyanate, compounds 1 and 2, respectively. Here, we report the synthesis, the optical and structural characterisation of 1 and 2, and, their putative cytotoxicity in two different cell lines.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing, University of Pisa, Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing, University of Pisa, Pisa, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Iole Venditti
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Simone Socci
- Department of Earth Science, University of Pisa, Pisa, Italy
| | | | - Elisabetta Orlandini
- Department of Earth Science, University of Pisa, Pisa, Italy.,Research Centre E. Piaggio, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Gliozzi M, Macrì R, Coppoletta AR, Musolino V, Carresi C, Scicchitano M, Bosco F, Guarnieri L, Cardamone A, Ruga S, Scarano F, Nucera S, Mollace R, Bava I, Caminiti R, Serra M, Maiuolo J, Palma E, Mollace V. From Diabetes Care to Heart Failure Management: A Potential Therapeutic Approach Combining SGLT2 Inhibitors and Plant Extracts. Nutrients 2022; 14:nu14183737. [PMID: 36145112 PMCID: PMC9504067 DOI: 10.3390/nu14183737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is a complex chronic disease, and among the affected patients, cardiovascular disease (CVD)is the most common cause of death. Consequently, the evidence for the cardiovascular benefit of glycaemic control may reduce long-term CVD rates. Over the years, multiple pharmacological approaches aimed at controlling blood glucose levels were unable to significantly reduce diabetes-related cardiovascular events. In this view, a therapeutic strategy combining SGLT2 inhibitors and plant extracts might represent a promising solution. Indeed, countering the main cardiometabolic risk factor using plant extracts could potentiate the cardioprotective action of SGLT2 inhibitors. This review highlights the main molecular mechanisms underlying these beneficial effects that could contribute to the better management of diabetic patients.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.M.); (C.C.); Tel./Fax: +39-0961-3694301 (V.M. & C.C.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.M.); (C.C.); Tel./Fax: +39-0961-3694301 (V.M. & C.C.)
| | - Miriam Scicchitano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
11
|
Maiuolo J, Carresi C, Gliozzi M, Musolino V, Scarano F, Coppoletta AR, Guarnieri L, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Cardamone A, Serra M, Mollace R, Tavernese A, Mollace V. Effects of Bergamot Polyphenols on Mitochondrial Dysfunction and Sarcoplasmic Reticulum Stress in Diabetic Cardiomyopathy. Nutrients 2021; 13:nu13072476. [PMID: 34371986 PMCID: PMC8308586 DOI: 10.3390/nu13072476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability in the Western world. In order to safeguard the structure and the functionality of the myocardium, it is extremely important to adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological concentration of the calcium ion, and triggers processes to protect the structural and functional integrity of the proteins. The alterations of these organelles can damage myocardial functioning. A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to a significant improvement in the symptoms and consequences of heart disease. In particular, the Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8006
| |
Collapse
|
12
|
The Effects of Bergamot Polyphenolic Fraction, Cynara cardunculus, and Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity. Nutrients 2021; 13:nu13072158. [PMID: 34201904 PMCID: PMC8308299 DOI: 10.3390/nu13072158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Treatment with anthracyclines causes heart failure in 15–17% of patients, resulting in mitochondrial dysfunction, the accumulation of reactive oxygen species, intracellular calcium dysregulation, the deterioration of the cardiomyocyte structure, and apoptotic cell death. Polyphenols have a wide range of beneficial properties, and particular importance is given to Bergamot Polyphenolic Fraction; Oleuropein, one of the main polyphenolic compounds of olive oil; and Cynara cardunculus extract. These natural compounds have particular beneficial characteristics, owing to their high polyphenol contents. Among these, their antioxidant and antoproliferative properties are the most important. The aim of this paper was to investigate the effects of these three plant derivatives using an in vitro model of cardiotoxicity induced by the treatment of rat embryonic cardiomyoblasts (H9c2) with doxorubicin. The biological mechanisms involved and the crosstalk existing between the mitochondria and the endoplasmic reticulum were examined. Bergamot Polyphenolic Fraction, Oleuropein, and Cynara cardunculus extract were able to decrease the damage induced by exposure to doxorubicin. In particular, these natural compounds were found to reduce cell mortality and oxidative damage, increase the lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin.
Collapse
|