1
|
Zheng X, Zhu J, Haedi AR, Zhou M. The effect of curcumin supplementation on glycemic indices in adults: A meta-analysis of meta-analyses. Prostaglandins Other Lipid Mediat 2024; 175:106908. [PMID: 39270815 DOI: 10.1016/j.prostaglandins.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Curcumin, an inherent polyphenolic compound, has the potential to influence glycemic indices. Nevertheless, the conclusions drawn from extant meta-analyses remain contentious. To determine the impact of curcumin supplementation on these indices, the current umbrella meta-analysis included existing systematic reviews and meta-analyses. A thorough systematic search was conducted using databases Embase, PubMed, WOS, Scopus, and the Cochrane Library to acquire peer-reviewed literature published before January 2024. The random-effects model was employed to conduct a meta-analysis. The present analysis incorporated a total of 22 meta-analytic studies. The findings of our study indicate that the administration of curcumin supplements leads to a significant decrease in fasting blood sugar levels (FBS) (ES: -1.63; 95 % CI: -2.36, -0.89, P<0.001; I2=88.4 %, P<0.001), homeostasis model assessment-estimated insulin resistance (HOMA-IR) (ES: -0.38; 95 % CI: -0.48, -0.28, P<0.001; I2=35.9 %, P=0.142), hemoglobin A1c (HbA1c) (ES: -0.44; 95 % CI: -0.67, -0.21, P<0.001; I2=65.0 %, P=0.014), and insulin (ES: -0.86; 95 % CI: -1.52, -0.21, P=0.010; I2=92.5 %, P<0.001). The results of this study suggest that the administration of curcumin supplements may be a beneficial intervention for enhancing glycemic indices.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Nursing Department, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jinhua Zhu
- Second Department of Surgery, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Amir Reza Haedi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miaomiao Zhou
- Third Department of Surgery, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
2
|
Kang ZP, Xiao QP, Huang JQ, Wang MX, Huang J, Wei SY, Cheng N, Wang HY, Liu DY, Zhong YB, Zhao HM. Curcumin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Mol Nutr Food Res 2024; 68:e2300598. [PMID: 39380356 DOI: 10.1002/mnfr.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/01/2024] [Indexed: 10/10/2024]
Abstract
SCOPE Curcumin (Cur), with diverse pharmacological properties, shows anti-obesity, immunomodulatory, and anti-inflammatory effects. Its role in ulcerative colitis complicated by obesity remains unclear. METHODS AND RESULTS Here, colitis is induced in obese mice using dextran sulfate sodium (DSS), followed by administration of Cur at a dosage of 100 mg kg-1 for 14 days. Cur effectively alleviates DSS-induced colitis in obese mice, accompanied by an increase in body weight and survival rate, reduction in disease activity index, elongation of the colon, decrease in colonic weight, and improvements in ulcer formation and inflammatory cell infiltration in colonic tissues. Additionally, Cur effectively improves lipid metabolism and the composition of the gut microbiota, and enhances mucosal integrity and boosts anti-oxidative stress capacity in obese mice with colitis. Importantly, Cur is effective in improving the homeostasis of memory T cells in obese mice with colitis. Furthermore, Cur regulates inflammatory cytokines expression and inhibits activation of the JAK2/STAT signaling pathway in colonic tissues of obese mice with colitis. CONCLUSIONS Cur alleviates colitis in obese mice through a comprehensive mechanism that improves lipid metabolism, modulates gut microbiota composition, enhances mucosal integrity and anti-oxidative stress, balances memory T cell populations, regulates inflammatory cytokines, and suppresses the JAK2/STAT signaling pathway.
Collapse
Affiliation(s)
- Zeng-Ping Kang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Qiu-Ping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Jia-Qi Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Meng-Xue Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Jie Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Si-Yi Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Nian Cheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Hai-Yan Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - You-Bao Zhong
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| |
Collapse
|
3
|
Rosidi A, Ayuningtyas RA, Jauharany FF, Ekasari SS, Izzatul Millah A, Fauziah SR, Fadhilah J, Dewi L. Pre-exercise supplementation with curcuma xanthorrhiza roxb has minimal impact on red blood cell parameters but reduces oxidative stress: a preliminary study in rats. Phys Act Nutr 2024; 28:52-57. [PMID: 39501694 PMCID: PMC11540990 DOI: 10.20463/pan.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/09/2024] Open
Abstract
PURPOSE This study examined the effects of longterm pre-exercise Curcuma xanthorriza Roxb supplementation on red blood cell indices along with circulating malondialdehyde (MDA) and superoxide dismutase (SOD) levels in response to endurance exercise to address previously inconsistent findings. METHODS Male Wistar rats (Rattus norvegicus; n = 20, aged 12-16 weeks) were divided equally into an exercise-only group (C) and three groups supplemented with Curcuma extract at dosages of 6.75 (T1), 13.50 (T2), and 20.25 mg (T3). Curcuma extract supplementation was administered for 28 d immediately prior to exercise. RESULTS Following 28 d of exhaustive swimming, the hematocrit and erythrocyte count increased by 15% (p = 0.06). Pre-exercise Curcuma supplementation did not significantly affect mean corpuscular volume or mean corpuscular hemoglobin concentration. Longterm exercise intervention resulted in elevated MDA levels by 41% (p <0.001), while Curcuma supplementation (13.50 mg) attenuated this increase by 16.6% (p = 0.09). Additionally, Curcuma supplementation resulted in a dose-dependent increase in SOD levels, with an 82.6% increase observed at 20.25 mg (p = 0.028). CONCLUSION Our preliminary findings indicated that pre-exercise supplementation with Curcuma extract had a negligible effect on changes in red blood cell markers, but it mitigated the increase in oxidative stress induced by exercise training. Our future research direction will involve applying the findings to humans.
Collapse
Affiliation(s)
- Ali Rosidi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | | | | | - Sella Septi Ekasari
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | | | - Syfa Rahma Fauziah
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Jihan Fadhilah
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Luthfia Dewi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
| |
Collapse
|
4
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
5
|
Unhapipatpong C, Polruang N, Shantavasinkul PC, Julanon N, Numthavaj P, Thakkinstian A. The effect of curcumin supplementation on weight loss and anthropometric indices: an umbrella review and updated meta-analyses of randomized controlled trials. Am J Clin Nutr 2023; 117:1005-1016. [PMID: 36898635 DOI: 10.1016/j.ajcnut.2023.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Curcumin supplementation may promote weight loss and ameliorate obesity-related complications through its antioxidative and anti-inflammatory properties. OBJECTIVE An umbrella review and updated meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the effect of curcumin supplementation on anthropometric indices. METHODS Systematic reviews and meta-analyses (SRMAs) of RCTs were identified from electronic databases (Medline, Scopus, Cochrane, and Google Scholar) up to 31 March, 2022, without language restriction. SRMAs were included if they assessed curcumin supplementation on any of the following: BMI, body weight (BW), or waist circumference (WC). Subgroup analyses were performed, stratifying by patient types, severity of obesity, and curcumin formula. The study protocol was a priori registered. RESULTS From an umbrella review, 14 SRMAs with 39 individual RCTs were included with a high degree of overlap. In addition, searching was updated from the last search of included SRMAs in April 2021 up to 31 March, 2022, and we found 11 additional RCTs, bringing the total up to 50 RCTs included in the updated meta-analyses. Of these, 21 RCTs were deemed of high risk of bias. Curcumin supplementation significantly reduced BMI, BW, and WC with mean differences (MDs) of -0.24 kg/m2 (95% CI: -0.32, -0.16 kg/m2), -0.59 kg (95% CI: -0.81, -0.36 kg), and -1.32 cm (95% CI: -1.95, -0.69 cm), respectively. The bioavailability-enhanced form reduced BMI, BWs, and WC more, with MDs of -0.26 kg/m2 (95% CI: -0.38, -0.13 kg/m2), -0.80 kg (95% CI: -1.38, -0.23 kg) and -1.41 cm (95% CI: -2.24, -0.58 cm), respectively. Significant effects were also seen in subgroups of patients, especially in adults with obesity and diabetes. CONCLUSIONS Curcumin supplementation significantly reduces anthropometric indices, and bioavailability-enhanced formulas are preferred. Augmenting curcumin supplement with lifestyle modification should be an option for weight reduction. This trial was registered at PROSPERO as CRD42022321112 (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022321112).
Collapse
Affiliation(s)
- Chanita Unhapipatpong
- Division of Clinical Nutrition, Department of Medicine, Khon Kaen Hospital, Khon Kaen, Thailand
| | - Nint Polruang
- Department of Pharmacy, Khon Kaen Hospital, Khon Kaen, Thailand
| | - Prapimporn Chattranukulchai Shantavasinkul
- Division of Nutrition and Biochemical Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhon Pathom, Thailand.
| | - Narachai Julanon
- Division of Dermatology, Department of Internal Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Pawin Numthavaj
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
7
|
Curcumin supplementation contributes to relieving anthropometric and glycemic indices, as an adjunct therapy: A meta-research review of meta-analyses. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
8
|
Pérez‐Salas JL, Medina‐Torres L, Rocha‐Guzmán NE, Calderas F, González‐Laredo RF, Bernad‐Bernad MJ, Moreno‐Jiménez MR, Gallegos‐Infante JA. A Water in Oil Gelled Emulsion as a Topical Release Vehicle for Curcumin. STARCH-STARKE 2022. [DOI: 10.1002/star.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Luis Pérez‐Salas
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - Luis Medina‐Torres
- Facultad de Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| | - Nuria Elizabeth Rocha‐Guzmán
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - F. Calderas
- Facultad de Estudios Superiores‐Zaragoza Batalla 5 de mayo s/n Colonia Ejército de Oriente Iztapalapa Universidad Nacional Autónoma de México Ciudad de México 09230 México
| | - Rubén Francisco González‐Laredo
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | | | - Martha Rocío Moreno‐Jiménez
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
9
|
Du S, Zhu X, Zhou N, Zheng W, Zhou W, Li X. Curcumin alleviates hepatic steatosis by improving mitochondrial function in postnatal overfed rats and fatty L02 cells through the SIRT3 pathway. Food Funct 2022; 13:2155-2171. [PMID: 35113098 DOI: 10.1039/d1fo03752h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Postnatal overfeeding could increase the risk of non-alcoholic fatty liver disease (NAFLD) in adulthood. This study investigated the effects of curcumin (CUR) on hepatic steatosis in postnatal overfed rats and elucidated potential mechanisms in mitochondrial functions. Male rats were adjusted to ten (normal litter, NL) or three (small litter, SL) at postnatal day 3. After weaning, NL rats were fed with normal diet (NL) or a high-fat diet (NH) for 10 weeks. SL rats were fed with normal diet (SL), a high-fat diet (SH), a normal diet supplemented with 2% CUR (SL-CUR) or a high-fat diet supplemented with 2% CUR (SH-CUR). At week 13, compared with NL rats, SL and NH rats showed increased body weight, glucose intolerance, dyslipidemia and hepatic lipid accumulation, and these changes were more obvious in SH rats. The opposite trends were observed in SL-CUR and SH-CUR rats. Moreover, CUR could preserve mitochondrial biogenesis and antioxidant response in postnatal overfed rats, and upregulated the mRNA and protein levels of SIRT3. In vitro, L02 cells were exposed to free fatty acids and/or CUR. CUR decreased the levels of cellular lipids and mitochondrial reactive oxygen species, and increased the mitochondrial DNA copy number and superoxide dismutase activity in fatty L02 cells. However, these effects were blocked after SIRT3 silencing. It was concluded that postnatal overfeeding damaged mitochondrial biogenesis and antioxidant response, and increased hepatic lipids and the severity of high-fat-induced NAFLD, while CUR alleviated hepatic steatosis, at least partially, by enhancing mitochondrial function through SIRT3.
Collapse
Affiliation(s)
- Susu Du
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaolei Zhu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Nan Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wen Zheng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China. .,Institute of Pediatric Research, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
10
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
11
|
Diet in the Management of Weight Loss. Nutrients 2021; 13:nu13041306. [PMID: 33920924 PMCID: PMC8071278 DOI: 10.3390/nu13041306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
|