1
|
Wen X, Zhou S, Li W, Li H, Song X, Mao Y, Li Z, Chen G, Peng X, Wu P. Optimizing surgical outcomes in papillary thyroid carcinoma with Hashimoto's Thyroiditis: a retrospective comparative study of unilateral and total thyroidectomy. Sci Rep 2024; 14:31288. [PMID: 39733010 DOI: 10.1038/s41598-024-82626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The management of papillary thyroid carcinoma (PTC) concurrent with Hashimoto's thyroiditis (HT) lacks standardized guidelines, especially concerning surgical strategies. This study aimed to compare unilateral thyroidectomy (UT) with total thyroidectomy (TT) in PTC-HT patients to optimize clinical management and improve postoperative outcomes. This retrospective study included PTC-HT patients undergoing thyroid surgery at a tertiary academic medical institution from January 2018 to August 2023. The patients were grouped according to the quartiles of preoperative thyroid peroxidase antibody (TPOAB) levels at the last follow-up. Additionally, patients were divided into UT and TT groups, with propensity score matching (PSM) to ensure comparability. Patients were also stratified by TPOAB levels (L: 100-400, M: 400-1000, H: >1000). Patient-reported outcomes (PROMs), including quality of life and fatigue, were compared between UT and TT groups within each TPOAB subgroup (ΔPROMs = UT-TT). 246 patients were included. Those with higher TPOAB levels at the last follow-up reported increased physical fatigue scores. After PSM, there were no significant demographic differences between UT and TT groups. During a median follow-up of 16 months for UT and 20 months for TT, no recurrence or metastasis occurred. Compared to the UT group, the TT group exhibited lower TPOAB levels at the last follow-up (65.7 ± 78 vs. 374.6 ± 331.9, p < 0.001), and lower physical fatigue scores (3.6 ± 2.5 vs. 4.5 ± 2.8, p = 0.039). However, TT was associated with a higher incidence of transient hypoparathyroidism (7.8% vs. 1.1%, p = 0.030). Stratified analysis by preoperative TPOAB levels revealed significant differences in ΔPROMs (Physical fatigue) between L and H groups (0.2 ± 3.5 vs. 4.6 ± 2, p = 0.004) and between M and H groups (0.6 ± 4.5 vs. 4.6 ± 2, p = 0.037). ΔPROMs (Mental fatigue) also significantly differed between L and H groups (0 ± 1.8 vs. 1.6 ± 0.9, p = 0.026). For PTC-HT patients, particularly those with high preoperative TPOAB levels, TT offers advantages in alleviating fatigue symptoms but carries a higher risk of complications. Therefore, clinical decision-making should consider patient-specific factors, particularly preoperative TPOAB levels, to determine the optimal surgical approach.Trial registration: Chinese Clinical Trial Registry. ID ChiCTR2300069240.
Collapse
Affiliation(s)
- Xiaoyong Wen
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
- Department of Thyroid Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiwei Zhou
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
| | - Wu Li
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
| | - Hui Li
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
| | - Xiaohua Song
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
| | - Yu Mao
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
- Department of Thyroid Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zeyu Li
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China
- Department of Thyroid Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Guangji Chen
- University hospital, Central South University, Changsha, 410083, Hunan, China
| | - Xiaowei Peng
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China.
| | - Peng Wu
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, P. R. China.
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 238Tongzipo Road, Changsha, 410013, Hunan Province, P. R. China.
| |
Collapse
|
2
|
Moriguchi Watanabe L, Sousa L, Couto FM, Noronha NY, de Souza Pinhel MA, da Silva Carvalho GF, da Silva Rodrigues G, Bueno Júnior CR, Kulikowski LD, Barbosa Júnior F, Nonino CB. Genome-Wide Admixture and Association Study of Serum Selenium Deficiency to Identify Genetic Variants Indirectly Linked to Selenium Regulation in Brazilian Adults. Nutrients 2024; 16:1627. [PMID: 38892560 PMCID: PMC11175099 DOI: 10.3390/nu16111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Blood selenium (Se) concentrations differ substantially by population and could be influenced by genetic variants, increasing Se deficiency-related diseases. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with serum Se deficiency in 382 adults with admixed ancestry. Genotyping arrays were combined to yield 90,937 SNPs. R packages were applied to quality control and imputation. We also performed the ancestral proportion analysis. The Search Tool for the Retrieval of Interacting Genes was used to interrogate known protein-protein interaction networks (PPIs). Our ancestral proportion analysis estimated 71% of the genome was from Caucasians, 22% was from Africans, and 8% was from East Asians. We identified the SNP rs1561573 in the TraB domain containing 2B (TRABD2B), rs425664 in MAF bZIP transcription factor (MAF), rs10444656 in spermatogenesis-associated 13 (SPATA13), and rs6592284 in heat shock protein nuclear import factor (HIKESHI) genes. The PPI analysis showed functional associations of Se deficiency, thyroid hormone metabolism, NRF2-ARE and the Wnt pathway, and heat stress. Our findings show evidence of a genetic association between Se deficiency and metabolic pathways indirectly linked to Se regulation, reinforcing the complex relationship between Se intake and the endogenous factors affecting the Se requirements for optimal health.
Collapse
Affiliation(s)
- Ligia Moriguchi Watanabe
- Division of Nutrition and Metabolism, Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, São Paulo 14049-900, Brazil;
- Departamento de Estatística e Investigação Operacional (DEIO) e Centro de Estatística e Aplicações (CEAUL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional (DEIO) e Centro de Estatística e Aplicações (CEAUL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Francisco M. Couto
- LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Natália Yumi Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, São Paulo 14049-900, Brazil; (N.Y.N.); (M.A.d.S.P.)
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, São Paulo 14049-900, Brazil; (N.Y.N.); (M.A.d.S.P.)
| | | | - Guilherme da Silva Rodrigues
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil; (G.d.S.R.); (C.R.B.J.)
| | - Carlos Roberto Bueno Júnior
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo 14040-900, Brazil; (G.d.S.R.); (C.R.B.J.)
| | - Leslie Domenici Kulikowski
- Department of Pathology, São Paulo Medical School, University of São Paulo—FMUSP, São Paulo 01246-903, Brazil; (G.F.d.S.C.); (L.D.K.)
| | - Fernando Barbosa Júnior
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—FCFRP/USP, São Paulo 14040-900, Brazil;
| | - Carla Barbosa Nonino
- Division of Nutrition and Metabolism, Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, São Paulo 14049-900, Brazil;
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, São Paulo 14049-900, Brazil; (N.Y.N.); (M.A.d.S.P.)
| |
Collapse
|
3
|
Duntas LH. Reassessing Selenium for the Management of Hashimoto's Thyroiditis: The Selini Shines Bright for Autoimmune Thyroiditis Patients. Thyroid 2024; 34:292-294. [PMID: 38368561 DOI: 10.1089/thy.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Affiliation(s)
- Leonidas H Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenideion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Ye H, Xu Y, Sun Y, Liu B, Chen B, Liu G, Cao Y, Miao J. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein. Food Res Int 2023; 165:112450. [PMID: 36869471 DOI: 10.1016/j.foodres.2022.112450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
In this study, hypolipidemic peptides were obtained from tea protein by enzymatic hydrolysis, ultrafiltration and high-performance liquid chromatography. Subsequently, the hypolipidemic peptides were identified by mass spectrometry and screened through molecular docking technology, and the hypolipidemic activities and mechanisms of the active peptides were explored. The results showed that the hydrolysate of hypolipidemic peptides obtained by pepsin hydrolysis for 3 h had good bile salt binding ability. After purification, identification and molecular docking screening, three novel hypolipidemic peptides FLF, IYF and QIF were obtained. FLF, IYF and QIF can interact with the receptor proteins 1LPB and 1F6W through hydrogen bonds, π-π bonds, hydrophobic interactions and van der Waals forces, thus exerting hypolipidemic activities. Activity studies showed that, compared with the positive controls, FLF, IYF and QIF had excellent sodium taurocholate binding abilities, pancreatic lipase inhibitory activities and cholesterol esterase inhibitory activities. Moreover, FLF, IYF and QIF can effectively inhibit lipogenic differentiation of 3T3-L1 preadipocytes, reduce intracellular lipid and low-density lipoprotein content and increase high-density lipoprotein content. These results indicated that the three novel hypolipidemic peptides screened in this study had excellent hypolipidemic activities and were expected to be used as natural-derived hypolipidemic active ingredients for the development and application in functional foods.
Collapse
Affiliation(s)
- Haoduo Ye
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Yunnan Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Benying Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Bingbing Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
5
|
Nie X, Xing Y, Li Q, Gao F, Wang S, Liu P, Li X, Tan Z, Wang P, Shi H. ARTP mutagenesis promotes selenium accumulation in Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Effects of Regular Brazil Nut ( Bertholletia excelsa H.B.K.) Consumption on Health: A Systematic Review of Clinical Trials. Foods 2022; 11:foods11182925. [PMID: 36141050 PMCID: PMC9498495 DOI: 10.3390/foods11182925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Brazil nut (BN) is a promising food due to its numerous health benefits, but it is still necessary to systematically review the scientific evidence on these benefits. Thus, we examined the effects of regular BN consumption on health markers in humans according to the health state (with specific diseases or not) of the subjects. PubMed, Embase®, and Scielo databases were used to search for clinical trials. The PRISMA guideline was used to report the review, and the risk of bias for all studies was assessed. Twenty-four studies were included in the present review, of which fifteen were non-randomized. BNs were consumed in the context of a habitual free-living diet in all studies. Improvement in antioxidant status through increased levels of selenium and/or glutathione peroxidase activity in plasma, serum, whole blood, and/or erythrocytes was observed in all studies that evaluated antioxidant status, regardless of the health state of the sample. In addition, healthy subjects improved lipid markers and fasting glucose. Subjects with obesity had improvement in markers of lipid metabolism. Subjects with type 2 diabetes mellitus or dyslipidemia improved oxidative stress or DNA damage. Subjects undergoing hemodialysis benefited greatly from BN consumption, as they improved lipid profile markers, oxidative stress, inflammation, and thyroid function. Older adults with mild cognitive impairment improved verbal fluency and constructional praxis, and controversial results regarding the change in a marker of lipid peroxidation were observed in subjects with coronary artery disease. In conclusion, the benefits of BN consumption were found in different pathways of action and study populations.
Collapse
|
7
|
Rios-Lugo MJ, Palos-Lucio AG, Victoria-Campos CI, Lugo-Trampe A, Trujillo-Murillo KDC, López-García MA, Espinoza-Ruiz M, Romero-Guzmán ET, Hernández-Mendoza H, Chang-Rueda C. Sex-Specific Association between Fasting Plasma Glucose and Serum Selenium Levels in Adults from Southern Mexico. Healthcare (Basel) 2022; 10:1665. [PMID: 36141277 PMCID: PMC9498661 DOI: 10.3390/healthcare10091665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element that by its antioxidant properties has been studied to elucidate its participation in the development of obesity and type 2 diabetes. We evaluated the association between cardiometabolic traits and serum Se levels in a sample of adults from southern Mexico. In 96 nondiabetic individuals, anthropometric data and clinical biochemistry measurements were analyzed. Serum total Se levels were measured with inductively coupled plasma mass spectrometry (ICP-MS). Serum Se level in the whole sample was 10.309 ± 3.031 μg mL-1 and no difference between the women and men was observed (p = 0.09). Additionally, fasting plasma glucose (FPG) was significantly associated with serum Se level (β = -0.07 ± 0.03, p = 0.02, analysis adjusted for age, sex and BMI). Furthermore, sex shows significant interaction with FPG on the serum Se levels (p = 0.01). A follow-up analysis revealed the particular association between FPG and Se levels in women (β = -0.10 ± 0.04, p = 0.01). In conclusion, our data evidenced a women-specific association between FPG and serum Se levels in a sample of adults from southern Mexico.
Collapse
Affiliation(s)
- María Judith Rios-Lugo
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, San Luis 78210, San Luis Potosí, Mexico
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Ana Gabriela Palos-Lucio
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Claudia Inés Victoria-Campos
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, San Luis 78210, San Luis Potosí, Mexico
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Angel Lugo-Trampe
- Facultad de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Karina Del Carmen Trujillo-Murillo
- Facultad de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Maximiliano Arahon López-García
- Facultad de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Marisol Espinoza-Ruiz
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| | - Elizabeth Teresita Romero-Guzmán
- Departamento de Química, Gerencia de Ciencias Básicas, Dirección de Investigación Científica, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, La Marquesa, Ocoyoacác 52750, State of Mexico, Mexico
| | - Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Altair 200, San Luis 78377, San Luis Potosí, Mexico
- Universidad del Centro de Mexico, Capitán Caldera 75, San Luis 78250, San Luis Potosí, Mexico
- Hospital General de Soledad de Graciano Sánchez, Secretaría de Salud, Valentín Amador 1112, Soledad de Graciano Sánchez 78435, San Luis Potosí, Mexico
| | - Consuelo Chang-Rueda
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, Tapachula 30580, Chiapas, Mexico
| |
Collapse
|
8
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/0003-2697(88)90167-4.handy 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/05/2024]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Selenium Supplementation during Puberty and Young Adulthood Mitigates Obesity-Induced Metabolic, Cellular and Epigenetic Alterations in Male Rat Physiology. Antioxidants (Basel) 2022; 11:antiox11050895. [PMID: 35624758 PMCID: PMC9138167 DOI: 10.3390/antiox11050895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Selenium (Se) role in obesity is not clear. In addition, information on Se’s role in male physiology, specifically in obesity, is scarce. We conducted this study to evaluate the efficacy of Se supplementation, specifically during puberty until young adulthood, against obesity-induced deregulation of metabolic, cellular, and epigenetic parameters in epididymal fat and/or sperm cells in a rat model. High-fat-diet consumption by male rats during puberty and young adulthood significantly increased body weight, adipocyte size, oxidative stress, deregulated expression of genes associated with inflammation (Adiponectin, IL-6, TNF-α), adipogenesis (CEBPα), estrogen biosynthesis (CYP19) and epigenetic processes in epididymal adipose tissue (Dnmt3a), as well as altered microRNA expression vital for spermatogenesis in sperm cells (miR-15b and miR-497). On the other hand, Se supplementation significantly decreased oxidative stress and mitigated these molecular/epigenetic alterations in epididymal adipose tissue or sperm cells. Our results indicate that selenium supplementation during puberty/young adulthood could improve male physiology in the context of obesity. In addition, it suggests that Se could potentially positively affect offspring health.
Collapse
|
12
|
Watanabe LM, Seale LA. Challenging Aspects to Precise Health Strategies in Native Hawaiian and Other Pacific Islanders Using Statins. Front Public Health 2022; 10:799731. [PMID: 35296045 PMCID: PMC8918550 DOI: 10.3389/fpubh.2022.799731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiometabolic disorders (CD), including cardiovascular disease (CVD), diabetes, and obesity, are the leading cause of health concern in the United States (U.S.), disproportionately affecting indigenous populations such a Native Hawaiian and Other Pacific Islanders (NHOPI). Dyslipidemia, a prevalent risk factor for the development and progression of CVD, is more prone to occur in NHOPI than other populations in the U.S. High-intensity statin therapy to reduce low-density lipoprotein cholesterol is associated with the prevention of CVD events. However, significant side-effects, such as muscle disorders, have been associated with its use. Different ethnic groups could experience variation in the prevalence of statin side effects due to sociodemographic, behavioral, and/or biological factors. Therefore, identifying the most impactful determinants that can be modified to prevent or reduce statin side effects for individuals from high-risk ethnic minority groups, such as NHOPI, can lead to more effective strategies to reduce health disparities. Thus, our Mini-Review explores the challenging aspects of public health precise strategies in NHOPI taking statins, including a culturally informed additional therapy that could positively impact the NHOPI population.
Collapse
Affiliation(s)
- Ligia M. Watanabe
- Division of Nutrition and Metabolism, Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucia A. Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, HI, United States
| |
Collapse
|