1
|
Li S, Li R, Jiang J, Liu L, Ma X, Wang T, Zhao L, Li W, Niu D. Curcumin protects porcine granulosa cells and mouse ovary against reproductive toxicity of aflatoxin B1 via PI3K/AKT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125210. [PMID: 39477004 DOI: 10.1016/j.envpol.2024.125210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Aflatoxin B1 (AFB1) is a widespread food contaminant with toxic effects on female reproductive system. This concerns the human public health and the development of the livestock industry. Effective and feasible measures against reproductive toxicity of AFB1 are also unknown. Curcumin has been shown to improve animal production performance and alleviate toxicity of AFB1 in other tissues. The study aimed to reveal the potential mechanism of curcumin in alleviating AFB1 exposure-triggered reproductive toxicity in porcine. Porcine GCs and matured oocytes in vitro and mouse ovary in vivo were cultured as model and then exposed to AFB1 and curcumin. The transcriptomics for porcine GCs was performed. The apoptosis, cell cycle, ROS content and mitochondrial membrane potential level analysis were determined using probe staining and flow cytometry. QRT-PCR and western blotting were analyzed for the genes expression. Oocytes maturation and parthenogenetic activation were performed to evaluate the quality of oocytes. The data showed that AFB1 exposure significantly inhibited porcine GCs viability and exhibited concentration-dependent relationship from 1 to 16 μM. Curcumin supplementation efficiently reversed the inhibition of cell viability. Further analysis indicated that curcumin application alleviated AFB1-exposed porcine GCs and mouse ovary mitochondria dysfunction, oxidative stress, cell cycle arrest, and apoptosis. We found that PI3K/Akt signaling pathway plays a vital role in AFB1-induced porcine GCs toxicity through bioinformatic analysis. The data not only confirmed the correlation of PI3K/Akt signaling pathway and oxidative stress, cell cycle arrest and apoptosis, but also consistent with the results that curcumin supplementation could markedly activate the PI3K/Akt signal inhibited by AFB1. Moreover, curcumin reversed AFB1-impaired cumulus-oocyte complex expansion, oocytes maturation rate, blastocyst rate and formation. Our study demonstrated that curcumin supplementation can protect porcine GCs and mouse ovary from toxicity of AFB1 by targeting the PI3K/AKT signaling pathway and provides a viable treatment approach for AFB1-induced female reproductive toxicity.
Collapse
Affiliation(s)
- Sihong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Jindkcom Animal Healthy Business Co., Ltd, JinHua, Zhejiang, 321016, China; College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Jun Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Lili Zhao
- Zhejiang Jindkcom Animal Healthy Business Co., Ltd, JinHua, Zhejiang, 321016, China.
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Feghhi F, Ghaznavi H, Sheervalilou R, Razavi M, Sepidarkish M. Effects of metformin and curcumin in women with polycystic ovary syndrome: A factorial clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156160. [PMID: 39461199 DOI: 10.1016/j.phymed.2024.156160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women, associated with dyslipidemia, insulin resistance, and hormonal imbalances. Metformin and curcumin have shown promise in improving these metabolic and hormonal parameters individually, but their combined effects in PCOS remain unclear. METHODS We conducted a randomized, double-blind, placebo-controlled, 12-week factorial trial involving 200 women with PCOS. Participants were randomly assigned in a 1:1:1:1 ratio to receive metformin (500-mg/8 h) + placebo, nanocurcumin soft gel capsule (80-mg/8 h) + placebo, metformin (500-mg/8 h) + nanocurcumin (80-mg/8 h), or double placebo. Lipid profiles, glucose metabolism markers, hormonal parameters, body weight, and body mass index (BMI) were assessed at baseline and week 12. RESULTS The combination of metformin and curcumin demonstrated significant improvements in lipid profiles, glucose metabolism, hormonal parameters, body weight, and BMI compared to individual agents or placebo. Greater reductions in low-density lipoproteins (LDL) cholesterol, total cholesterol (TC), and triglyceride (TG) levels were observed with the combination therapy, along with increased high-density lipoproteins (HDL) cholesterol. Additionally, the combination therapy significantly improved markers of glucose metabolism and showed synergistic effects in reducing body weight and BMI. Reductions in testosterone and improvements in Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH) levels were also observed with combination therapy. CONCLUSION The combination of metformin and curcumin demonstrates superior efficacy in improving lipid profiles, glucose metabolism, hormonal parameters, body weight, and BMI in women with PCOS compared to individual agents or placebo. This highlights the potential synergistic effects of combining these agents for the management of PCOS.
Collapse
Affiliation(s)
- Fatemeh Feghhi
- Department of Obstetrics and Gynaecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Maryam Razavi
- Department of Obstetrics and Gynaecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Sepidarkish
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Huyut Z, Uçar B, Yıldızhan K, Altındağ F, Huyut MT. Effect of abemaciclib and curcumin administration on sex hormones, reproductive functions, and oxidative DNA expression in rats. Biotech Histochem 2024:1-9. [PMID: 39167077 DOI: 10.1080/10520295.2024.2389524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
This study investigated whether abemaciclib (ABE) administration had any adverse effects on ovarian and sex hormones in female rats, and the protective effect of curcumin. Forty female rats were equally divided into the sham control, DMSO, curcumin (CMN), ABE, and ABE+CMN groups. Pharmaceuticals were administered by gavage daily for 28 days. Serum sex hormones were measured in an autoanalyzer operating with a microparticle immunoassay method. In addition, histopathological examination and 8-OHdG expression were performed on the ovarian tissue. Progesterone and testosterone levels were significantly decreased, while estradiol levels were significantly increased, in the ABE group compared to the sham and DMSO groups. In addition, there were significant differences in sex hormone levels in the CMN and/or CMN+ABE groups compared to the ABE group. There was decreased expression of 8-OHdG in the ABE+CMN group compared to the ABE or CMN only groups. This study exhibited that ABE administration can adversely affect functions and histology of the ovarian tissue, but CMN therapy may be protective against the adverse effects on ovarian in ABE-induced rats.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Bünyamin Uçar
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
4
|
Yi Y, Feng Y, Shi Y, Xiao J, Liu M, Wang K. Per- and Polyfluoroalkyl Substances (PFASs) and Their Potential Effects on Female Reproductive Diseases. TOXICS 2024; 12:539. [PMID: 39195641 PMCID: PMC11358978 DOI: 10.3390/toxics12080539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of anthropogenic organic compounds widely present in the natural and human living environments. These emerging persistent pollutants can enter the human body through multiple channels, posing risks to human health. In particular, exposure to PFASs in women may cause a series of reproductive health hazards and infertility. Based on a review of the existing literature, this study preliminarily summarizes the effects of PFAS exposure on the occurrence and development of female reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS), endometriosis, primary ovarian insufficiency (POI), and diminished ovarian reserve (DOR). Furthermore, we outline the relevant mechanisms through which PFASs interfere with the physiological function of the female ovary and finally highlight the role played by nutrients in reducing the reproductive health hazards caused by PFASs. It is worth noting that the physiological mechanisms of PFASs in the above diseases are still unclear. Therefore, it is necessary to further study the molecular mechanisms of PFASs in female reproductive diseases and the role of nutrients in this process.
Collapse
Affiliation(s)
- Yuqing Yi
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yang Feng
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yuechen Shi
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Jiaming Xiao
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ming Liu
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ke Wang
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
| |
Collapse
|
5
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
6
|
Babaei F, Khoshsokhan Muzaffar M, Jannatifar R. The association of sperm BAX and BCL-2 gene expression with reproductive outcome in Oligoasthenoteratozoospermia cases undergoing intracytoplasmic sperm injection: A case-control study. Int J Reprod Biomed 2024; 22:463-472. [PMID: 39205917 PMCID: PMC11347769 DOI: 10.18502/ijrm.v22i6.16797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background The B-cell lymphoma 2 (BCL-2) protein is one of the members of the BCL-2 associated X (BAX) protein family that acts as an inducer of apoptosis. Objective The present study aims to investigate the association between BAX and BCL-2 gene expression with reproductive outcome, in cases undergoing intracytoplasmic sperm injection. Materials and Methods In this case-control study, 50 men were divided into healthy fertile and oligoasthenoteratozoospermic infertile men (n = 25/each). They were subjected to history taking, clinical examination, and semen analysis. Expression of BAX and BCL-2 genes were measured using real-time polymerase chain reaction. The DNA fragmentation index was measured using the sperm chromatin dispersion assay technique. Using World Health Organization criteria, sperm parameters were evaluated. Results Evaluation of apoptosis-related genes showed that oligoasthenoteratozoospermic significantly increased mRNA expression of BAX, and significantly decreased mRNA expression of BCL-2, when compared with control. Moreover, the BAX/BCL-2 ratio was significantly higher in oligoasthenoteratozoospermic compared to the normozoospermic group (p = 0.01). Also, this study showed that the BAX and BCL-2 genes expression had a significant correlation with sperm quality, and DNA fragmentation in the oligoasthenoteratozoospermic group (p = 0.01). The oligoasthenoteratozoospermic men, had a considerably lower proportion of fertilization rate and good-quality embryos at the cleavage stage than the normozoospermic subjects (p = 0.01). A significant correlation was observed between the expression of BAX and BCL-2 genes, fertilization, and embryo quality (p = 0.01). Conclusion We concluded that the sperm BAX/BCL-2 ratio demonstrates a significant correlation with fertilization rate and embryo quality.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Biology Department, Islamic Azad University, Qom Branch, Qom, Iran
| | | | - Rahil Jannatifar
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| |
Collapse
|
7
|
Alaee S, Khodabandeh Z, Dara M, Hosseini E, Sharma M. Curcumin mitigates acrylamide-induced ovarian antioxidant disruption and apoptosis in female Balb/c mice: A comprehensive study on gene and protein expressions. Food Sci Nutr 2024; 12:4160-4172. [PMID: 38873462 PMCID: PMC11167175 DOI: 10.1002/fsn3.4076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 06/15/2024] Open
Abstract
Curcumin is known for its antioxidant properties. This study aimed to investigate the impact of curcumin on acrylamide (ACR)-induced alterations in the first-line antioxidant defense of ovarian tissue. Female Balb/c mice were divided into control, ACR (50 mg/kg), ACR/CUR100 (received Acr + curcumin100 mg/kg), and ACR/CUR200 (Acr + curcumin 200 mg/kg) groups, and received oral treatments for 35 days. Evaluation of antioxidant enzyme expression (Sod, Cat, Gpx genes), pro-apoptotic gene expressions (Bax, Caspase 3), and anti-apoptotic gene expression (Bcl2l1) at mRNA and protein levels was done. Percentage of apoptotic cells using Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed. The model group (ACR) showed decreased mRNA expression of Sod, Cat, and Gpx genes compared with the control group. Treatment with two different doses of curcumin (CUR100 and CUR200) significantly increased Sod, Cat, and Gpx gene expression, with CUR200 demonstrating significant recovery. SOD, CAT, and GPX protein levels were similar to mRNA expression trends, significantly increased with curcumin administration. Acrylamide exposure significantly increased Bax and Caspase 3 expression and decreased Bcl2l1 gene expression leading to a notable rise in apoptosis in ACR group as compared to the control group. Conversely, curcumin administration, significantly reduced Bax and Caspase 3 expressions, with an increase in Bcl2l1expression, though not statistically significant. TUNEL assay revealed a substantial decrease in apoptosis in curcumin-received groups. In our study, ACR exposure adversely affected ovarian antioxidant defense thereby leading to increased pro-apoptotic markers. Notably, curcumin treatment effectively mitigated these effects, restored antioxidant potential, and reduced acrylamide-induced toxicity in female mouse ovaries.
Collapse
Affiliation(s)
- Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Zahra Khodabandeh
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahintaj Dara
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of MedicineZanjan University of Medical SciencesZanjanIran
- Zanjan Metabolic Diseases Research CenterZanjan University of Medical SciencesZanjanIran
| | - Mona Sharma
- Department of Reproductive BiologyAIIMSNew DelhiIndia
| |
Collapse
|
8
|
Hu H, Zhang J, Xin X, Jin Y, Zhu Y, Zhang H, Fan R, Ye Y, Li D. Efficacy of natural products on premature ovarian failure: a systematic review and meta-analysis of preclinical studies. J Ovarian Res 2024; 17:46. [PMID: 38378652 PMCID: PMC10877904 DOI: 10.1186/s13048-024-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE This study aims to investigate the effects of natural products on animal models of premature ovarian failure (POF). METHODS We conducted comprehensive literature searches and identified relevant studies that examined the protective effects of natural products on experimental POF. We extracted quantitative data on various aspects such as follicular development, ovarian function, physical indicators, oxidative stress markers, inflammatory factors, and protein changes. The data was analyzed using random-effects meta-analyses, calculating pooled standardized mean differences and 95% confidence intervals. Heterogeneity was assessed using the I2 statistic, and bias was estimated using the SYRCLE tool. RESULTS Among the 879 reviewed records, 25 articles met our inclusion criteria. These findings demonstrate that treatment with different phytochemicals and marine natural products (flavonoids, phenols, peptides, and alkaloids, etc.) significantly improved various aspects of ovarian function compared to control groups. The treatment led to an increase in follicle count at different stages, elevated levels of key hormones, and a decrease in atretic follicles and hormone levels associated with POF. This therapy also reduced oxidative stress (specifically polyphenols, resveratrol) and apoptotic cell death (particularly flavonoids, chrysin) in ovarian granulosa cells, although it showed no significant impact on inflammatory responses. The certainty of evidence supporting these findings ranged from low to moderate. CONCLUSIONS Phytochemicals and marine natural product therapy (explicitly flavonoids, phenols, peptides, and alkaloids) has shown potential in enhancing folliculogenesis and improving ovarian function in animal models of POF. These findings provide promising strategies to protect ovarian reserve and reproductive health. Targeting oxidative stress and apoptosis pathways may be the underlying mechanism.
Collapse
Affiliation(s)
- Hangqi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ruiwen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
9
|
Patibandla S, Gallagher JJ, Patibandla L, Ansari AZ, Qazi S, Brown SF. Ayurvedic Herbal Medicines: A Literature Review of Their Applications in Female Reproductive Health. Cureus 2024; 16:e55240. [PMID: 38558676 PMCID: PMC10981444 DOI: 10.7759/cureus.55240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Ayurveda, an ancient holistic and personalized healing system originating from the Indian subcontinent, has been gaining increasing attention as a complementary and alternative medical practice for treating various health conditions, including those related to women's reproductive well-being. This comprehensive literature review examines a wide array of experimental and clinical studies exploring the diverse facets of Ayurvedic interventions in addressing issues such as menstrual irregularities, polycystic ovary syndrome (PCOS), infertility, and menopausal symptoms. The paper specifically focuses on discussing the available data regarding the efficacy of Tulsi (Ocimum tenuiflorum), ashwagandha (Withania somnifera), ginger (Zingiber officinale), cardamom (Elettaria cardamomum), turmeric (Curcuma longa), and Shatavari (Asparagus racemosus), which have traditionally been used in Ayurvedic medicine for centuries. The synthesis of literature not only highlights the potential benefits of these Ayurvedic interventions, but also critically assesses the methodological rigor of existing studies, identifying research gaps, and proposing directions for future investigations. While acknowledging the need for further rigorous research and clinical trials, the review emphasizes the benefits of collaborative and integrative healthcare. This review aims to serve as a valuable resource for healthcare practitioners, researchers, and individuals seeking holistic and natural alternatives for female reproductive health management.
Collapse
Affiliation(s)
- Srihita Patibandla
- Obstetrics and Gynecology, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | - Joshua J Gallagher
- Obstetrics and Gynecology, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | | | - Ali Z Ansari
- Obstetrics and Gynecology, William Carey University College of Osteopathic Medicine, Hattiesburg, USA
| | - Shayaan Qazi
- Obstetrics and Gynecology, University of South Florida, Tampa, USA
| | - Samuel F Brown
- Obstetrics and Gynecology, South Central Regional Medical Center, Laurel, USA
| |
Collapse
|
10
|
Zhang J, Wang J, Ma Z, Fu Z, Zhao Y, Zeng X, Lin G, Zhang S, Guan W, Chen F. Enhanced Antioxidative Capacity Transfer between Sow and Fetus via the Gut-Placenta Axis with Dietary Selenium Yeast and Glycerol Monolaurate Supplementation during Pregnancy. Antioxidants (Basel) 2024; 13:141. [PMID: 38397739 PMCID: PMC10886224 DOI: 10.3390/antiox13020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
This study aims to investigate the impact of dietary supplementation with selenium yeast (SeY) and glycerol monolaurate (GML) on the transfer of antioxidative capacity between the mother and fetus during pregnancy and its underlying mechanisms. A total of 160 sows with similar body weight and parity of 3-6 parity sows were randomly and uniformly allocated to four groups (n = 40) as follows: CON group, SeY group, GML group, and SG (SeY + GML) group. Animal feeding started from the 85th day of gestation and continued to the day of delivery. The supplementation of SeY and GML resulted in increased placental weight and reduced lipopolysaccharide (LPS) levels in sow plasma, placental tissues, and piglet plasma. Furthermore, the redox balance and inflammatory markers exhibited significant improvements in the plasma of sows fed with either SeY or GML, as well as in their offspring. Moreover, the addition of SeY and GML activated the Nrf2 signaling pathway, while downregulating the expression of pro-inflammatory genes and proteins associated with inflammatory pathways (MAPK and NF-κB). Vascular angiogenesis and nutrient transportation (amino acids, fatty acids, and glucose) were upregulated, whereas apoptosis signaling pathways within the placenta were downregulated with the supplementation of SeY and GML. The integrity of the intestinal and placental barriers significantly improved, as indicated by the increased expression of ZO-1, occludin, and claudin-1, along with reduced levels of DLA and DAO with dietary treatment. Moreover, supplementation of SeY and GML increased the abundance of Christensenellaceae_R-7_group, Clostridium_sensus_stricto_1, and Bacteroidota, while decreasing levels of gut microbiota metabolites LPS and trimethylamine N-oxide. Correlation analysis demonstrated a significant negative relationship between plasma LPS levels and placental weight, oxidative stress, and inflammation. In summary, dietary supplementation of SeY and GML enhanced the transfer of antioxidative capacity between maternal-fetal during pregnancy via gut-placenta axis through modulating sow microbiota composition.
Collapse
Affiliation(s)
- Jiawen Zhang
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
| | - Jun Wang
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
| | - Ziwei Ma
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
| | - Zhichao Fu
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
| | - Yueqi Zhao
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China;
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shihai Zhang
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Wutai Guan
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| | - Fang Chen
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (J.W.); (Z.M.); (Z.F.); (Y.Z.); (S.Z.); (W.G.)
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou 510642, China
| |
Collapse
|
11
|
Malik S, Saeed S, Saleem A, Khan MI, Khan A, Akhtar MF. Alternative treatment of polycystic ovary syndrome: pre-clinical and clinical basis for using plant-based drugs. Front Endocrinol (Lausanne) 2024; 14:1294406. [PMID: 38725974 PMCID: PMC11081130 DOI: 10.3389/fendo.2023.1294406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 05/12/2024] Open
Abstract
The most common cause of infertility and metabolic problems among women of reproductive age is polycystic ovary syndrome (PCOS), a multifaceted disorder. It is an endocrine disorder that occurs in approximately one in seven women. Among these PCOS patients, two thirds will not ovulate on a regular basis and seek treatment for ovulation induction. The symptoms vary in their severity, namely ovulation disorders, excessive androgen levels, or polycystic ovarian morphology. All these symptoms require a therapeutic approach. Many drugs are used to eradicate PCOS symptoms, like metformin, clomiphene citrate, spironolactone, and pioglitazone. Long-term treatment is required to achieve the desired outcome, which is often accompanied by significant adverse reactions. Some herbs and phytochemicals are equally effective for treating PCOS and produce minimal side effects. Recently, herbal products are gaining popularity due to their wide biological activities, safety, availability, and efficacy. The present review covers aetiology, current treatment, pathophysiology, and detailed pre-clinical and clinical studies on plants and phytochemicals that are proven to be useful for the treatment of symptoms associated with PCOS.
Collapse
Affiliation(s)
- Sidra Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Saira Saeed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
12
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
13
|
Rezk MNN, Ahmed SM, Gaber SS, Mohammed MM, Yousri NA, Welson NN. Curcumin protects against lamotrigine-induced chronic ovarian and uterine toxicity in rats by regulating PPAR-γ and ROS production. J Biochem Mol Toxicol 2024; 38:e23599. [PMID: 38050455 DOI: 10.1002/jbt.23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Lamotrigine (LTG) is an antiepileptic drug with possible adverse effects on the female reproductive system. Curcumin was declared to improve ovarian performance. Therefore, this study aimed to clarify ovulatory dysfunction (OD) associated with LTG and the role of curcumin in ameliorating this dysfunction. Adult female Wister albino rats were assigned into four groups: negative control (received saline), positive control (received curcumin only), LTG, and LTG with curcumin groups. Drugs were administered for 90 days. The hormonal profile, including testosterone, estrogen, progesterone, luteinizing hormone, and follicle-stimulating hormone, in addition to the lipid profile and glycemic analysis, were tested. Oxidative stress biomarkers analysis in the ovaries and uterus and peroxisome proliferator-activated receptor-γ (PPAR-γ) gene expression were also included. Histopathological examination of ovarian and uterine tissues and immunohistochemical studies were also performed. Curcumin could improve the OD related to chronic LTG intake. That was proved by the normalization of the hormonal profile, glycemic control, lipidemic status, oxidative stress markers, and PPAR-γ gene expression. The histopathological and immunohistochemical examination of ovarian and uterine tissues revealed an improvement after curcumin administration. The results describe an obvious deterioration in ovarian performance with LTG through the effect on lipidemic status, PPAR-γ gene, and creating an oxidative stress condition in the ovaries of chronic users, with a prominent improvement with curcumin addition to the treatment protocol.
Collapse
Affiliation(s)
- Meriam N N Rezk
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sabreen Mahmoud Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Delegated to Deraya University, New Minia City, Egypt
| | - Shereen S Gaber
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mostafa M Mohammed
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nada A Yousri
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Hu P, Li K, Peng XX, Kan Y, Yao TJ, Wang ZY, Li Z, Liu HY, Cai D. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis. Front Immunol 2023; 14:1233652. [PMID: 37497225 PMCID: PMC10368479 DOI: 10.3389/fimmu.2023.1233652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
It has been for thousands of years in China known medicinal homologous foods that can be employed both as foods and medicines to benefit human and animal health. These edible herbal materials perform divert roles in the regulation of metabolic disorders, cancers, and immune-related diseases. Curcumin, the primary component derived from medicinal homologous foods like curcuma longa rhizome, is reported to play vital actions in organic activities, such as the numerous pharmacological functions including anti-oxidative stress, anti-inflammation and anti/pro-apoptosis in treating various diseases. However, the potential mechanisms of curcumin-derived modulation still need to be developed and attract more attention worldwide. Given that these signal pathways are enrolled in important bioactive reactions, we collected curcumin's last achievements predominantly on the immune-regulation signals with the underlying targetable strategies in the last 10 years. This mini-review will be helpful to accelerate curcumin and other extracts from medicinal homologous foods use in future human clinical applications.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Akter T, Zahan MS, Nawal N, Rahman MH, Tanjum TN, Arafat KI, Moni A, Islam MN, Uddin MJ. Potentials of curcumin against polycystic ovary syndrome: Pharmacological insights and therapeutic promises. Heliyon 2023; 9:e16957. [PMID: 37346347 PMCID: PMC10279838 DOI: 10.1016/j.heliyon.2023.e16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/24/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common hormonal disorder among women (4%-20%) when the ovaries create abnormally high levels of androgens, the male sex hormones that are typically present in women in trace amounts. The primary characteristics of PCOS include oxidative stress, inflammation, hyperglycemia, hyperlipidemia, hyperandrogenism, and insulin resistance. Generally, metformin, spironolactone, eflornithine and oral contraceptives are used to treat PCOS, despite their several side effects. Therefore, finding a potential candidate for treating PCOS is necessary. Curcumin is a major active natural polyphenolic compound derived from turmeric (Curcuma longa). A substantial number of studies have shown that curcumin has anti-inflammatory, anti-oxidative stress, antibacterial, and anti-apoptotic activities. In addition, curcumin reduces hyperglycemia, hyperlipidemia, hyperandrogenism, and insulin resistance in various conditions, including PCOS. The review highlighted the therapeutic aspects of curcumin against the pathophysiology of PCOS. We also offer a hypothesis to improve the development of medicines based on curcumin against PCOS.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | | | - Nafisa Nawal
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | | | | | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | - Mohammad Nazrul Islam
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| |
Collapse
|
16
|
Jamil SNH, Ali AH, Feroz SR, Lam SD, Agustar HK, Mohd Abd Razak MR, Latip J. Curcumin and Its Derivatives as Potential Antimalarial and Anti-Inflammatory Agents: A Review on Structure-Activity Relationship and Mechanism of Action. Pharmaceuticals (Basel) 2023; 16:609. [PMID: 37111366 PMCID: PMC10146798 DOI: 10.3390/ph16040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Curcumin, one of the major ingredients of turmeric (Curcuma longa), has been widely reported for its diverse bioactivities, including against malaria and inflammatory-related diseases. However, curcumin's low bioavailability limits its potential as an antimalarial and anti-inflammatory agent. Therefore, research on the design and synthesis of novel curcumin derivatives is being actively pursued to improve the pharmacokinetic profile and efficacy of curcumin. This review discusses the antimalarial and anti-inflammatory activities and the structure-activity relationship (SAR), as well as the mechanisms of action of curcumin and its derivatives in malarial treatment. This review provides information on the identification of the methoxy phenyl group responsible for the antimalarial activity and the potential sites and functional groups of curcumin for structural modification to improve its antimalarial and anti-inflammatory actions, as well as potential molecular targets of curcumin derivatives in the context of malaria and inflammation.
Collapse
Affiliation(s)
- Siti Nur Hidayah Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health (NIH) Complex, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
17
|
Complementary therapy for endometriosis related pelvic pain. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2023. [DOI: 10.1177/22840265231159704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
In the setting of a global pandemic, it is vastly important now more than ever that patients have agency and control over pain management when living with a debilitating chronic pain disease such as endometriosis. We present a review of the available literature on the most popular and easily accessible complementary pain management therapies for endometriosis including Transcutaneous Electrical Nerve stimulator (TENS) units, diets, Cannabidiol (CBD), turmeric, meditation, yoga, and acupuncture. These are worthwhile recommendations; however, the data for each is limited and more research is needed to further support each of its use.
Collapse
|
18
|
He X, Zhang C, Amirsaadat S, Jalil AT, Kadhim MM, Abasi M, Pilehvar Y. Curcumin-Loaded Mesenchymal Stem Cell-Derived Exosomes Efficiently Attenuate Proliferation and Inflammatory Response in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Appl Biochem Biotechnol 2023; 195:51-67. [PMID: 35932371 DOI: 10.1007/s12010-022-04090-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to evaluate the potential of mesenchymal stem cell-derived exosomes loaded with curcumin (Curc-Exos) as an effective therapeutic strategy for rheumatoid arthritis through modulation of proliferation and inflammatory response in HIG-82 synovial cells. For this purpose, Exos were isolated and characterized with BCA protein assay, DLS, FE-SEM, and TEM. The Curc was embedded by mixing it with Exos in a 1:4 ratio. It was found that the Curc stability has improved after loading on Exos compared to the free Curc. Besides, the in vitro studies using LPS-stimulated HIG-82 synovial cells indicated the efficiency of Curc-Exos in enhancing cytotoxicity and apoptosis compared to the free Curc treatment. It was also revealed that Curc-Exos significantly could reduce the expression levels of anti-apoptotic proteins IAP1 and IAP2 and inflammatory mediators including IL-6, TNF-α, MMP1, and PGE2. This preliminary study confirmed the suitability of Curc-Exos in counteracting the proliferation and inflammatory response of rheumatoid arthritis synovial fibroblasts in vitro.
Collapse
Affiliation(s)
- Xinghong He
- Department of Rehabilitation Medicine, Hezhou Traditional Chinese Medicine Hospital, Hezhou, 542899, China
| | - Chong Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Beneficial effects of curcumin in the diabetic rat ovary: a stereological and biochemical study. Histochem Cell Biol 2022; 159:401-430. [PMID: 36534194 DOI: 10.1007/s00418-022-02171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effects of curcumin treatment on ovaries at different periods of the diabetes disease. Fifty-six female Wistar albino rats (250-300 g) aged 12 weeks were divided into seven groups. No treatment was applied to the control group. The sham group was given 5 mL/kg of corn oil, and the curcumin group 30 mg/kg curcumin. In the diabetes mellitus (DM) groups, diabetes was induced by a single intraperitoneal dose of 50 mg/kg streptozotocin (STZ). The DM-treated groups received 30 mg/kg curcumin after either 7 days (DC1 group) or 21 days (DC2 group), or simultaneously with STZ injection (DC3 group). Number of follicles in the ovaries was estimated using stereological method. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and superoxide dismutase (SOD) levels and catalase (CAT) activity were measured in serum specimens. We found that follicle number and volume of corpus luteum, blood vessel, and cortex, gonadosomatic index, and FSH and SOD levels all decreased significantly in diabetic ovaries, while relative weight loss, connective tissue volume, and CAT activity increased (p < 0.01). Curcumin treatment had a protective effect on the number of primordial follicles in the DC2 group and on antral follicle numbers in the DC3 group. Curcumin also exhibited positive effects on CAT activity and SOD levels, blood glucose levels, and corpus luteum, connective tissue, and blood vessel volumes in the DC2 and DC3 groups. Curcumin also ameliorated FSH levels in the DC1 and DC3 groups (p < 0.01). These findings suggest that curcumin exhibits protective effects on ovarian structures and folliculogenesis, especially when used concurrently with the development of diabetes or in later stages of the disease.
Collapse
|
20
|
Dehnad D, Emadzadeh B, Ghorani B, Rajabzadeh G, Kharazmi MS, Jafari SM. Nano-vesicular carriers for bioactive compounds and their applications in food formulations. Crit Rev Food Sci Nutr 2022; 64:5583-5602. [PMID: 36519525 DOI: 10.1080/10408398.2022.2156474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Piecuch M, Garbicz J, Waliczek M, Malinowska-Borowska J, Rozentryt P. I Am the 1 in 10-What Should I Eat? A Research Review of Nutrition in Endometriosis. Nutrients 2022; 14:nu14245283. [PMID: 36558442 PMCID: PMC9783589 DOI: 10.3390/nu14245283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a chronic, painful, estrogen-related inflammatory disease that affects approximately 10% of the female population. Endometriosis has a significant negative impact on quality of life. Nutrition may be involved in the development and severity of endometriosis. The purpose of this paper is to discuss in detail the nutritional recommendations for patients with endometriosis. This article discusses the importance of nutrients such as polyphenols, vitamins C, D and E, PUFAs, and iron in the development of endometriosis. Alternative diets, such as the Mediterranean, anti-inflammatory, vegetarian, low-nickel and low-FODMAP diets, have also been presented in the context of their potential beneficial effects on the course of endometriosis.
Collapse
|
22
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Wu M, Zhang J, Gu R, Dai F, Yang D, Zheng Y, Tan W, Jia Y, Li B, Cheng Y. The role of Sirtuin 1 in the pathophysiology of polycystic ovary syndrome. Eur J Med Res 2022; 27:158. [PMID: 36030228 PMCID: PMC9419382 DOI: 10.1186/s40001-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common multifactor heterogeneous endocrine and metabolic disease in women of childbearing age. PCOS is a group of clinical syndromes characterized by reproductive disorders, metabolic disorders, and mental health problems that seriously impact the physical and mental health of patients. At present, new studies suggest that human evolution leads to the body changes and the surrounding environment mismatch adaptation, but the understanding of the disease is still insufficient, the pathogenesis is still unclear. Sirtuin 1 (SIRT1), a member of the Sirtuin family, is expressed in various cells and plays a crucial role in cell energy conversion and physiological metabolism. Pathophysiological processes such as cell proliferation and apoptosis, autophagy, metabolism, inflammation, antioxidant stress and insulin resistance play a crucial role. Moreover, SIRT1 participates in the pathophysiological processes of oxidative stress, autophagy, ovulation disturbance and insulin resistance, which may be a vital link in the occurrence of PCOS. Hence, the study of the role of SIRT1 in the pathogenesis of PCOS and related complications will contribute to a more thorough understanding of the pathogenesis of PCOS and supply a basis for the treatment of patients.
Collapse
Affiliation(s)
- Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
24
|
Clower L, Fleshman T, Geldenhuys WJ, Santanam N. Targeting Oxidative Stress Involved in Endometriosis and Its Pain. Biomolecules 2022; 12:1055. [PMID: 36008949 PMCID: PMC9405905 DOI: 10.3390/biom12081055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Endometriosis is a common gynecological disorder seen in women and is characterized by chronic pelvic pain and infertility. This disorder is becoming more prevalent with increased morbidity. The etiology of endometriosis remains to be fully elucidated, which will lead to improved therapeutic options. In this review, we will evaluate the biochemical mechanisms leading to oxidative stress and their implication in the pathophysiology of endometriosis, as well as potential treatments that target these processes. A comprehensive exploration of previous research revealed that endometriosis is associated with elevated reactive oxygen species and oxidation products, decreased antioxidants and detoxification enzymes, and dysregulated iron metabolism. High levels of oxidative stress contributed to inflammation, extracellular matrix degradation, angiogenesis, and cell proliferation, which may explain its role in endometriosis. Endometriosis-associated pain was attributed to neurogenic inflammation and a feed-forward mechanism involving macrophages, pro-inflammatory cytokines, and pain-inducing prostaglandins. N-acetylcysteine, curcumin, melatonin, and combined vitamin C and E supplementation displayed promising results for the treatment of endometriosis, but further research is needed for their use in this population.
Collapse
Affiliation(s)
- Lauren Clower
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (L.C.); (T.F.)
| | - Taylor Fleshman
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (L.C.); (T.F.)
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA;
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (L.C.); (T.F.)
| |
Collapse
|
25
|
Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients 2022; 14:nu14030534. [PMID: 35276895 PMCID: PMC8840399 DOI: 10.3390/nu14030534] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness. It is generally caused by increased intraocular pressure, which results in damage of the optic nerve and retinal ganglion cells, ultimately leading to visual field dysfunction. However, even with the use of intraocular pressure-lowering eye drops, the disease still progresses in some patients. In addition to mechanical and vascular dysfunctions of the eye, oxidative stress, neuroinflammation and excitotoxicity have also been implicated in the pathogenesis of glaucoma. Hence, the use of natural products with antioxidant and anti-inflammatory properties may represent an alternative approach for glaucoma treatment. The present review highlights recent preclinical and clinical studies on various natural products shown to possess neuroprotective properties for retinal ganglion cells, which thereby may be effective in the treatment of glaucoma. Intraocular pressure can be reduced by baicalein, forskolin, marijuana, ginsenoside, resveratrol and hesperidin. Alternatively, Ginkgo biloba, Lycium barbarum, Diospyros kaki, Tripterygium wilfordii, saffron, curcumin, caffeine, anthocyanin, coenzyme Q10 and vitamins B3 and D have shown neuroprotective effects on retinal ganglion cells via various mechanisms, especially antioxidant, anti-inflammatory and anti-apoptosis mechanisms. Extensive studies are still required in the future to ensure natural products' efficacy and safety to serve as an alternative therapy for glaucoma.
Collapse
|