1
|
Zhang Y, Gong Y, Hu J, Zhang L, Benito MJ, Usmanov D, Nishanbaev SZ, Song X, Zou L, Wu Y. Quercetin and kaempferol from saffron petals alleviated hydrogen peroxide-induced oxidative damage in B16 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39287449 DOI: 10.1002/jsfa.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Saffron petals are usually considered as waste after saffron harvest. However, saffron petals contain many important phytochemical components (e.g. quercetin and kaempferol), which may alleviate oxidative damage in human cells. RESULTS The contents of flavonoids and crocin in different parts of saffron were analyzed. The protective effects of flavonoids from saffron on oxidative damage of B16 cells were investigated. Saffron stigma contained high contents of crocin and picrocrocin, whereas flavonoid content (quercetin, 4.03 ± 0.33 mg g-1 DW; kaempferol, 47.80 ± 0.60 mg g-1 DW) was higher in saffron petals than in other parts. Incubation of B16 cells with quercetin (10-30 μmol L-1) and kaempferol (20-30 μmol L-1) obtained from saffron extracts could significantly increase the total antioxidant capacity (T-AOC) and the activity of NADPH:dehydrogenase quinone-1 (NQO1) to alleviate H2O2-induced oxidative damage. Quercetin was better than kaempferol in increasing NQO1 activity and T-AOC. Quercetin extracted from saffron petals could induce NQO1 expression through regulating kelch-like ECH-associated protein-1/nuclear factor erythroid 2-related factor-2 signaling pathway to protect B16 cells from oxidative damage. CONCLUSION The content of kaempferol-3-O-sophoroside and quercetin-3-O-sophoroside was higher in saffron petals than in other parts of saffron. The kaempferol and quercetin obtained from saffron petals could enhance the activity of antioxidant enzyme NQO1 and T-AOC in B16 cells. This indicated that saffron petals, as a potential functional food, may prevent diseases caused by oxidative stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Yucui Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Jiayun Hu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Le Zhang
- Hangzhou Academy of Agricultural Sciences, Zhejiang, China
| | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
| | - Durbek Usmanov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Sabir Z Nishanbaev
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Zhejiang, China
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| |
Collapse
|
2
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
3
|
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol 2023; 14:118. [PMID: 37582766 PMCID: PMC10426113 DOI: 10.1186/s40104-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China.
| |
Collapse
|
4
|
Meneguelli TS, Kolba N, Misra A, Dionísio AP, Pelissari Kravchychyn AC, Da Silva BP, Stampini Duarte Martino H, Hermsdorff HHM, Tako E. Intra-Amniotic Administration of Cashew Nut ( Anacardium occidentale L.) Soluble Extract Improved Gut Functionality and Morphology In Vivo ( Gallus gallus). Nutrients 2023; 15:nu15102378. [PMID: 37242261 DOI: 10.3390/nu15102378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Cashew nuts are rich in dietary fibers, monounsaturated fatty acids, carotenoids, tocopherols, flavonoids, catechins, amino acids, and minerals that offer benefits for health. However, the knowledge of its effect on gut health is lacking. In this way, cashew nut soluble extract (CNSE) was assessed in vivo via intra-amniotic administration in intestinal brush border membrane (BBM) morphology, functionality, and gut microbiota. Four groups were evaluated: (1) no injection (control); (2) H2O injection (control); (3) 10 mg/mL CNSE (1%); and (4) 50 mg/mL CNSE (5%). Results related to CNSE on duodenal morphological parameters showed higher Paneth cell numbers, goblet cell (GC) diameter in crypt and villi, depth crypt, mixed GC per villi, and villi surface area. Further, it decreased GC number and acid and neutral GC. In the gut microbiota, treatment with CNSE showed a lower abundance of Bifidobacterium, Lactobacillus, and E. coli. Further, in intestinal functionality, CNSE upregulated aminopeptidase (AP) gene expression at 5% compared to 1% CNSE. In conclusion, CNSE had beneficial effects on gut health by improving duodenal BBM functionality, as it upregulated AP gene expression, and by modifying morphological parameters ameliorating digestive and absorptive capacity. For intestinal microbiota, higher concentrations of CNSE or long-term intervention may be necessary.
Collapse
Affiliation(s)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Arundhati Misra
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | | | | - Bárbara Pereira Da Silva
- Department of Nutrition and Health, Universidade Federal de Vicosa, Viçosa 36570-900, MG, Brazil
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Mishima MDV, Martino HSD, Kolba N, Shah DD, Grancieri M, Dos Santos KMO, Lima JP, Da Silva BP, Gonzalez de Mejia E, Tako E. Effects of Intra-Amniotic Administration of the Hydrolyzed Protein of Chia ( Salvia hispanica L.) and Lacticaseibacillus paracasei on Intestinal Functionality, Morphology, and Bacterial Populations, In Vivo ( Gallus gallus). Nutrients 2023; 15:nu15081831. [PMID: 37111052 PMCID: PMC10144735 DOI: 10.3390/nu15081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
As a protein source, chia contains high concentrations of bioactive peptides. Probiotics support a healthy digestive tract and immune system. Our study evaluated the effects of the intra-amniotic administration of the hydrolyzed chia protein and the probiotic Lacticaseibacillus paracasei on intestinal bacterial populations, the intestinal barrier, the inflammatory response, and brush border membrane functionality in ovo (Gallus gallus). Fertile broiler (Gallus gallus) eggs (n = 9/group) were divided into 5 groups: (NI) non-injected; (H2O) 18 MΩ H2O; (CP) 10 mg/mL hydrolyzed chia protein; (CPP) 10 mg/mL hydrolyzed chia protein + 106 colony-forming unit (CFU) L. paracasei; (P) 106 CFU L. paracasei. The intra-amniotic administration was performed on day 17 of incubation. At hatching (day 21), the animals were euthanized, and the duodenum and cecum content were collected. The probiotic downregulated the gene expression of NF-κβ, increased Lactobacillus and E. coli, and reduced Clostridium populations. The hydrolyzed chia protein downregulated the gene expression of TNF-α, increased OCLN, MUC2, and aminopeptidase, reduced Bifidobacterium, and increased Lactobacillus. The three experimental groups improved in terms of intestinal morphology. The current results suggest that the intra-amniotic administration of the hydrolyzed chia protein or a probiotic promoted positive changes in terms of the intestinal inflammation, barrier, and morphology, improving intestinal health.
Collapse
Affiliation(s)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Nikolai Kolba
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | | | - Janine Passos Lima
- Embrapa Agroindústria de Alimentos, Av. das Américas 29.501, Rio de Janeiro 23020-470, RJ, Brazil
| | - Bárbara Pereira Da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elad Tako
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Jackson C, Shukla V, Kolba N, Agarwal N, Padilla-Zakour OI, Tako E. Empire Apple ( Malus domestica) Juice, Pomace, and Pulp Modulate Intestinal Functionality, Morphology, and Bacterial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14234955. [PMID: 36500984 PMCID: PMC9735615 DOI: 10.3390/nu14234955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Approximately $20 billion of apple sales are generated annually in the United States. With an estimated 5 million tons produced yearly in the U.S. within the last decade, apple consumption is considered ubiquitous. Apples are comprised of bioactive constituents such as phytochemicals and prebiotics that may potentiate intestinal health and the gut microbiome. This study aimed to evaluate the effects of Empire apple juice, pomace, and pulp soluble extracts on intestinal functionality, morphology, and the microbiome in vivo (Gallus gallus). There were five treatment groups: non-injected (NI); 18 MΩ H2O (H2O); 6% apple juice (AJ); 6% apple pomace (APo); 6% apple pulp (APu). The eggs were treated by intra-amniotic administration of the samples on day 17 of incubation. After hatching, the blood, tissue, and cecum samples were collected for further analyses—including duodenal histomorphology, hepatic and duodenal mRNA expression, and cecal bacterial populations. Crypt depth was significantly (p < 0.5) shortest in AJ when compared to APo and APu. APo and APu soluble extracts significantly improved villi surface area compared to NI and H2O control groups. The highest count of Paneth cells per crypt was observed in APo as compared to all groups. In addition, the expression of brush border membrane micronutrient metabolism and functional proteins varied between treatments. Lastly, Lactobacillus cecal microbial populations increased significantly in the AJ group, while AJ, APu, and APu increased the abundance of Clostridium (p < 0.5). Ultimately, these results indicate the potential of Empire apple pomace to improve host intestinal health and the gut microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
7
|
Dacrema M, Ali A, Ullah H, Khan A, Di Minno A, Xiao J, Martins AMC, Daglia M. Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers (Basel) 2022; 14:cancers14225682. [PMID: 36428774 PMCID: PMC9688386 DOI: 10.3390/cancers14225682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut's metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota.
Collapse
Affiliation(s)
- Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| |
Collapse
|
8
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
9
|
Agrizzi Verediano T, Agarwal N, Stampini Duarte Martino H, Kolba N, Grancieri M, Dias Paes MC, Tako E. Effect of Black Corn Anthocyanin-Rich Extract ( Zea mays L.) on Cecal Microbial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:4679. [PMID: 36364942 PMCID: PMC9655515 DOI: 10.3390/nu14214679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/17/2023] Open
Abstract
Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.
Collapse
Affiliation(s)
- Thaisa Agrizzi Verediano
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Nikita Agarwal
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | | | - Nikolai Kolba
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Mariana Grancieri
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Maria Cristina Dias Paes
- Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA), Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration ( Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022; 14:nu14193924. [PMID: 36235576 PMCID: PMC9572352 DOI: 10.3390/nu14193924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Collapse
|
11
|
Comparing the Effects of Concord Grape ( Vitis labrusca L.) Puree, Juice, and Pomace on Intestinal Morphology, Functionality, and Bacterial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14173539. [PMID: 36079797 PMCID: PMC9460804 DOI: 10.3390/nu14173539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022] Open
Abstract
This is a preliminary study evaluating the effect of different fractions of Concord grapes (Vitis labrusca L.) on the brush border membrane (BBM) morphology, duodenal gene expression, and specific gut bacterial populations. For this study, we utilized a unique intraamniotic approach, wherein, the test substances are administered into the amnion of the Gallus gallus egg (on day 17). The embryo orally consumes the amniotic fluid along with the injected test substance before the hatch. We randomly divided ~50 fertilized eggs into 5 groups including 6% grape (juice, puree, and pomace) along with controls (no injection and diluent—H2O). The grape juice was prepared by crushing the grapes; the grape residues were used as pomace. The grape puree included the grape skin, endocarp, mesocarp, and juice but not the seeds. On day 21, the hatch day, the blood, pectoral muscle, liver, duodenum, and large intestine were harvested. Our results showed no significant differences in blood glucose, pectoral glycogen level, or body weight. However, significant (p < 0.05) differences in duodenal and liver gene expression were observed between the treatment groups. The grape puree treatment resulted in higher Clostridium numbers and lower Bifidobacterium numbers when compared to all other groups. In summary, the dietary consumption of grape polyphenols has the potential to beneficially modulate aspects of intestinal health provided their concentration is limited.
Collapse
|
12
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Nicotinamide Riboside and Its Derivatives. Nutrients 2022; 14:nu14153130. [PMID: 35956307 PMCID: PMC9370700 DOI: 10.3390/nu14153130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide riboside (NR) acts as a nicotinamide adenine dinucleotide (NAD+) precursor where NR supplementation has previously been shown to be beneficial. Thus, we synthesized and characterized nicotinamide riboside tributyrate chloride (NRTBCl, water-soluble) and nicotinamide riboside trioleate chloride (NRTOCl, oil-soluble) as two new ester derivatives of nicotinamide riboside chloride (NRCl). NRCl and its derivatives were assessed in vivo, via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); and injection of (2) deionized H2O (control); (3) NRCl (30 mg/mL dose); (4) NRTBCl (30 mg/mL dose); and (5) NRTOCl (30 mg/mL dose). Post-intervention, the effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Although no significant changes were observed in average body weights, NRTBCl exposure increased average cecum weight. NR treatment significantly increased Clostridium and NRCl treatment resulted in increased populations of Bifidobacterium, Lactobacillus, and E. coli. Duodenal gene expression analysis revealed that NRCl, NRTBCl, and NRTOCl treatments upregulated the expression of ZnT1, MUC2, and IL6 compared to the controls, suggesting alterations in brush border membrane functionality. The administration of NRCl and its derivatives appears to trigger increased expression of brush border membrane digestive proteins, with added effects on the composition and function of cecal microbial populations. Additional research is now warranted to further elucidate the effects on inflammatory biomarkers and observe changes in the specific intestinal bacterial populations post introduction of NR and its derivatives.
Collapse
|
13
|
Black corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus). Food Res Int 2022; 157:111227. [DOI: 10.1016/j.foodres.2022.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
14
|
Application of Quality by Design Approach to the Pharmaceutical Development of Anticancer Crude Extracts of Crocus sativus Perianth. Sci Pharm 2022. [DOI: 10.3390/scipharm90010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The application of the Quality by Design (QbD) concept to extracts obtained from Crocus sativus perianth with potential anticancer activity will ensure the safety, efficiency, and quality control of the entire technological process, as well as determine the critical factors affecting the quality of extracts. Potentially critical points of the production of the plant extracts, including the cultivation and processing of the plant materials, the extraction process, and the choice of solvents, were identified using the Ishikawa diagram and FMEA risk assessment methods as well as the corrective actions proposed. The Herbal Chemical Marker Ranking System (HerbMars) approach was used to justify the Q-markers choice of Crocus, which takes into account bioavailability, pharmacological activity, and the presence of the selected standard. An experimental design (DoE) was used to assess the influence of potentially critical factors on the efficiency of the compound extraction from raw materials with water or ethanol. The presence of 16 compounds in Crocus perianth was determined by HPLC and their quantitative assessment was established. Selected compounds (ferulic acid, mangiferin, crocin, rutin, isoquercitrin) can be used for the quality control of Crocus perianth. In addition, the stigmas from the Volyn region met the requirements of ISO 3632 for saffron as a spice (category I). The cytotoxic activity against melanoma (IGR39) and triple-negative breast cancer (MDA-MB-231) cell lines of the hydroethanolic extract of C. sativus perianth was significantly more pronounced than the water extract, probably due to the chemical composition of the constituent components. The results show that the QbD approach is a powerful tool for process development for the production of quality herbal drugs.
Collapse
|
15
|
Agarwal N, Kolba N, Khen N, Even C, Turjeman S, Koren O, Tako E. Quinoa Soluble Fiber and Quercetin Alter the Composition of the Gut Microbiome and Improve Brush Border Membrane Morphology In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14030448. [PMID: 35276807 PMCID: PMC8838577 DOI: 10.3390/nu14030448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.), a gluten-free pseudo-cereal, has gained popularity over the last decade due to its high nutritional value. Quinoa is a rich source of proteins, carbohydrates, fibers, tocopherols (Vitamin E), unsaturated fatty acids and a wide range of polyphenols. The study used Gallus gallus intra-amniotic feeding, a clinically validated method, to assess the effects of quinoa soluble fiber (QSF) and quercetin 3-glucoside (Q3G) versus control. Quercetin is a pharmacologically active polyphenol found in quinoa. Six groups (no injection, 18 Ω H2O, 5% inulin, 1% Q3G, 5% QSF, 1% Q3G + 5% QSF) were assessed for their effect on the brush border membrane (BBM) functionality, intestinal morphology and cecal bacterial populations. Our results showed a significant (p < 0.05) improvement in BBM morphology, particularly goblet and Paneth cell numbers, in the group administered with quinoa and quercetin. However, there were no significant changes seen in the expression of the genes assessed both in the duodenum and liver between any of the treatment groups. Furthermore, fibrous quinoa increased the concentration of probiotic L. plantarum populations compared to the control (H2O). In conclusion, quercetin and quinoa fiber consumption has the potential to improve intestinal morphology and modulate the microbiome.
Collapse
Affiliation(s)
- Nikita Agarwal
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (N.A.); (N.K.); (N.K.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (N.A.); (N.K.); (N.K.)
| | - Noa Khen
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (N.A.); (N.K.); (N.K.)
| | - Carmel Even
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (C.E.); (S.T.); (O.K.)
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (C.E.); (S.T.); (O.K.)
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (C.E.); (S.T.); (O.K.)
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (N.A.); (N.K.); (N.K.)
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|