1
|
Matuwana D, Hong E, Huang S, Xu X, Jang G, Xiao R, Rao S, Wang Q. Near-infrared activated liposomes for neuroprotection in glaucoma. J Mater Chem B 2024; 12:10902-10914. [PMID: 39355895 DOI: 10.1039/d4tb00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Neurodegenerative diseases have a profound impact on vision, leading to conditions such as glaucoma, optic neuropathy, and diabetic retinopathy, affecting millions worldwide. These diseases are characterized by the degeneration of retinal ganglion cells (RGCs), resulting in a progressive loss of visual acuity and field, with the threat of irreversible blindness. However, existing treatments, such as eye drops, direct injections, and laser surgeries face significant challenges due to limited efficacy and potential infection. The inefficiency of traditional corneal drug delivery methods is a major obstacle in treating vision neurodegenerative diseases. To address these challenges, we developed a remotely triggered on-demand liposomal delivery system to treat glaucomatous neurodegeneration in mice. We utilized the localized surface plasmon resonance (LSPR) effect of gold nanorods (AuNRs) under near-infrared (NIR) light (808 nm) to control the release of cyclodextrin-encapsulated melatonin from thermally responsive liposomal nanocarriers in the vitreous humor. Due to the transparency of the eye's cornea, NIR light can penetrate deep tissues, enabling on-demand drug delivery to the retina. By enhancing the drug's solubility and stability through cyclodextrin encapsulation, this remotely activated melatonin/HPβCD AuNRs liposomes delivery system can decrease intraocular pressure (IOP) elevation by (24 ± 7)%, enhance the survival rate of RGCs by (77 ± 6)%, and decrease glial fibrillary acidic protein (GFAP) activation by (75 ± 6)% at depth in an acute experimental glaucoma model. This NIR-triggered drug delivery system presents the potential of a promising minimally photo-triggered therapeutic option for glaucoma treatment.
Collapse
Affiliation(s)
- Dorcas Matuwana
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| | - Eunji Hong
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| | - Sizhe Huang
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| | - Xinxin Xu
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| | - Geunho Jang
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| | - Ruobai Xiao
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
- Integrative Neuroscience Program, Binghamton University, Binghamton, NY 13902, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
2
|
Liao YF, Lee YC, Lin HJ, Shao YC. Acupuncture as Adjuvant Therapy for Glaucoma: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e57888. [PMID: 39378079 PMCID: PMC11496923 DOI: 10.2196/57888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Glaucoma is a chronic progressive optic neuropathy that necessitates lifelong treatment to reduce the decline of the optic nerve. Due to the extended and continuous treatments required for patients, complementary therapies are often considered alongside conventional treatments to enhance the effectiveness of the treatment. Acupuncture has demonstrated the potential to lower intraocular pressure in previous clinical trials, making it a promising glaucoma intervention. OBJECTIVE The primary objective of this study is to conduct a single-center randomized control trial involving patients with glaucoma. Acupuncture will be evaluated as an adjunctive therapy. The trial aims to explore its effectiveness for glaucoma. METHODS In this single-center randomized controlled trial, participants (N=50) with primary open-angle glaucoma will be randomly assigned to the treatment group, receiving ophthalmic acupuncture with "De Qi" sensation, or the control group, receiving minimum acupuncture stimulation on nonophthalmic acupoints. The intervention will consist of weekly acupuncture treatments for a total of 6 sessions. Participants will be assessed at 8 time points, which are baseline, during the intervention (6 times), and at a 3-month follow-up. The primary outcome measure is a change in the intraocular pressure before and after each acupuncture treatment. Secondary outcomes will include measurements of heart rate and blood pressure before and after acupuncture, best-corrected visual acuity, visual field, optical coherence tomography, optical coherence tomography angiography, the Glaucoma Symptom Scale, and the Glaucoma Quality of Life-15 questionnaire. RESULTS Recruitment of participants for the trial commenced on June 28, 2023. A total of 10 participants have been enrolled to test the feasibility of the experiment. We anticipate that the preliminary data from this trial will be completed by December 2025. CONCLUSIONS This trial uses rigorous methodology and comprehensive outcome measurements to assess the clinical efficacy of acupuncture as an adjunctive therapy for glaucoma, providing valuable insights for future clinical treatment guidelines. TRIAL REGISTRATION ClinicalTrials.gov NCT05753137; https://clinicaltrials.gov/study/NCT05753137. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/57888.
Collapse
Affiliation(s)
- Yi-Fang Liao
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, Eye Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ching Shao
- Department of Ophthalmology, Eye Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Cheng Y, Chen X, Zhu G, Li N, Sun Y, Luo S, Liu Y, Lu X. Erigeron breviscapus: A Promising Medication for Protecting the Optic Nerve in Glaucoma. PLANTA MEDICA 2024; 90:992-1004. [PMID: 39303747 DOI: 10.1055/a-2409-2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glaucoma is a common eye condition characterized by the loss of retinal ganglion cells and their axons, optic nerve damage, and visual field defects, which seriously affect a patient's quality of life. The pathogenesis of glaucoma is still unclear at present. It presents as damage to retinal ganglion cells, and the main treatment is primarily to reduce intraocular pressure by surgery or taking medication. However, even with well-controlled intraocular pressure, retinal ganglion cells still undergo degeneration, progressive apoptosis, and axonal loss. Therefore, protecting the optic nerve and inhibiting the apoptosis of retinal ganglion cells are the current hot topic for prevention and treatment of glaucoma. Recently, Erigeron breviscapus, originating from Yunnan province in China, has been shown to be a promising herb with neuroprotective effects to treat glaucoma. Therefore, the traditional usage, botanical characteristics, and phytochemical composition of E. breviscapus were explored through a literature review. Furthermore, we have summarized the pharmacological mechanisms of E. breviscapus and its active components in inhibiting the apoptosis of retinal ganglion cells. These research findings can not only provide guidance and recommendations for the protection of retinal ganglion cells but also further explore the potential of E. breviscapus in the treatment of glaucoma.
Collapse
Affiliation(s)
- Yuxin Cheng
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Xuanyi Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangyu Zhu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Sun
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Shichun Luo
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Yujie Liu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Xuejing Lu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
5
|
Ahles S, Joris PJ, Plat J. Short-term Aronia melanocarpa extract supplementation improves cognitive performance: a randomized, double-blind, placebo-controlled cross-over study in healthy young adults. Eur J Nutr 2024; 63:1545-1553. [PMID: 38656355 PMCID: PMC11329521 DOI: 10.1007/s00394-024-03381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Evidence on the potential beneficial effects of anthocyanin-rich foods and supplements on cognitive performance is mainly based on acute or long-term studies in older adults. However, short-term studies focusing on a younger population are lacking. Therefore, short-term effects of Aronia melanocarpa extract (AME) supplementation on cognitive performance were investigated in healthy young adults. Potential underlying mechanisms were also addressed. METHODS A randomized, double-blind, placebo-controlled cross-over study was performed involving 35 apparently healthy young adults. Participants consumed AME (180 mg anthocyanins/day) or a placebo for 1 week, separated by at least 2 weeks of wash-out. Cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Furthermore, arterial stiffness (carotid-to-femoral pulse wave velocity), retinal microvascular calibers (fundus photography), and serum brain-derived neurotrophic factor (BDNF) concentrations were measured at baseline and after 1 week. RESULTS Participants had a mean age of 25 ± 4 years and an average BMI of 23.4 ± 2.7 kg/m2. Compliance was excellent and the study product was well-tolerated. As compared to placebo, movement time was significantly reduced by 4.8% within the five-choice reaction time test after 1 week of AME supplementation (intervention effect: - 12 ms; p < 0.05). Memory and executive function did however not change. Serum BDNF concentrations were significantly higher after AME supplementation as compared to placebo (+ 5.7%; intervention effect: 1.8 ng/mL; p < 0.05). However, arterial stiffness and retinal microvascular calibers were not affected. CONCLUSION Short-term AME supplementation beneficially affected cognitive performance as attention and psychomotor speed improved. Serum BDNF concentrations were increased, but vascular function markers were not affected. CLINICAL TRIAL REGISTRATION The study was registered on Clinical Trials under NCT03793777 on January 4th, 2019.
Collapse
Affiliation(s)
- Sanne Ahles
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- BioActor BV, Gaetano Martinolaan 50, 6229 GS, Maastricht, The Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Cheng S, Dong C, Ma Y, Xu X, Zhao Y. Skeletal Transformations of Terpenoid Forskolin Employing an Oxidative Rearrangement Strategy. J Org Chem 2024; 89:5741-5745. [PMID: 38568052 DOI: 10.1021/acs.joc.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The skeletal transformations of diterpenoid forskolin were achieved by employing an oxidative rearrangement strategy. A library of 36 forskolin analogues with structural diversity was effectively generated. Computational analysis shows that 12 CTD compounds with unique scaffolds and ring systems were produced during the course of this work.
Collapse
Affiliation(s)
- Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chenhu Dong
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yujie Ma
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xiaoyu Xu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Wu ZK, Li HY, Zhu YL, Xiong MQ, Zhong JX. Neuroprotective and anti-inflammatory effects of eicosane on glutamate and NMDA-induced retinal ganglion cell injury. Int J Ophthalmol 2024; 17:638-645. [PMID: 38638263 PMCID: PMC10988067 DOI: 10.18240/ijo.2024.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 04/20/2024] Open
Abstract
AIM To investigate the protective effects, antioxidant potential, and anti-inflammatory mechanisms of eicosane on glutamate-induced cell damage and on N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) injury in a mouse model of glaucoma. METHODS The protective effects of eicosane on the rat R28 retinal precursor cell line were assessed using cell counting kit-8 assays and Hoechst-propidium iodide staining. Intracellular reactive oxygen species (ROS) production was measured using the fluorescent probe 2'-7'-dichlorofluorescin diacetate and flow cytometry. The protective role of eicosane on NMDA-induced RGC injury in a mouse glaucoma model was determined by immunostaining of frozen sections of retina. The effects of eicosane on the metabolome of the retina in mice with NMDA-induced RGC damage were evaluated by liquid chromatography-mass spectroscopy (LC-MS) and untargeted metabolomics analyses. RESULTS Eicosane treatment significantly attenuated glutamate-induced damage to R28 cells in vitro. Eicosane also protected RGCs against NMDA-induced injury in a mouse glaucoma model. Untargeted metabolomics analyses showed that eicosane increased multiple metabolites, including L-arginine and L-carnitine, in the retina. CONCLUSION Eicosane has protective effects, antioxidant potential, and anti-inflammatory properties in an in vitro model of glutamate-induced cell damage and in an in vivo model of NMDA-induced RGC injury in mouse glaucoma through modulation of L-arginine and/or L-carnitine metabolism.
Collapse
Affiliation(s)
- Zhen-Kai Wu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Huan-Yu Li
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - You-Lin Zhu
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Meng-Qin Xiong
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
8
|
Cheng Y, Cai S, Wu H, Pan J, Su M, Wei X, Ye J, Ke L, Liu G, Chu C. Revolutionizing eye care: the game-changing applications of nano-antioxidants in ophthalmology. NANOSCALE 2024; 16:7307-7322. [PMID: 38533621 DOI: 10.1039/d4nr00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Since the theory of free radical-induced aging was proposed in 1956, it has been constantly proven that reactive oxygen species (ROS) produced by oxidative stress play a vital role in the occurrence and progression of eye diseases. However, the inherent limitations of traditional drug therapy hindered the development of ophthalmic disease treatment. In recent years, great achievements have been made in the research of nanomedicine, which promotes the rapid development of safe theranostics in ophthalmology. In this review, we focus on the applications of antioxidant nanomedicine in the treatment of ophthalmology. The eye diseases were mainly classified into two categories: ocular surface diseases and posterior eye diseases. In each part, we first introduced the pathology of specific diseases about oxidative stress, and then presented the representative application examples of nano-antioxidants in eye disease therapy. Meanwhile, the nanocarriers that were used, the mechanism of function, and the therapeutic effect were also presented. Finally, we summarized the latest research progress and limitations of antioxidant nanomedicine for eye disease treatment and put forward the prospects of future development.
Collapse
Affiliation(s)
- Yuhang Cheng
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shundong Cai
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Han Wu
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jintao Pan
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China.
| | - Xingyuan Wei
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jinfa Ye
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lang Ke
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Chengchao Chu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
10
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
11
|
Crupi L, Capra AP, Paterniti I, Lanza M, Calapai F, Cuzzocrea S, Ardizzone A, Esposito E. Evaluation of the nutraceutical Palmitoylethanolamide in reducing intraocular pressure (IOP) in patients with glaucoma or ocular hypertension: a systematic review and meta-analysis. Nat Prod Res 2024:1-20. [PMID: 38269580 DOI: 10.1080/14786419.2024.2306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Intraocular pressure (IOP) positively correlates with both normal and high-tension glaucoma. To date, IOP targeting remains the validated pharmacological approach in counteracting glaucoma progression as well as in halting vision loss. Among the different adjuvant compounds, evidence highlighted the potential effectiveness of Palmitoylethanolamide (PEA), an endogenous fatty acid amide. Thus, a systematic review of the literature was conducted, thoroughly evaluating PEA treatment regimen in decreasing IOP in patients with eye disorders. We checked for articles across the scientific databases Pubmed (MEDLINE), Embase (OVID), and Web of Science from the inception to 30 August 2023, and a total of 828 articles were recovered. Six of these studies (199 patients) were included in the systematic review after the study selection process, and three studies for meta-analysia. Overall, PEA showed significant efficacy in reducing IOP in patients, this encourages its clinical use in glaucoma as well as across different forms of eye disorders.
Collapse
Affiliation(s)
- Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Xie Z, Ying Q, Luo H, Qin M, Pang Y, Hu H, Zhong J, Song Y, Zhang Z, Zhang X. Resveratrol Alleviates Retinal Ischemia-Reperfusion Injury by Inhibiting the NLRP3/Gasdermin D/Caspase-1/Interleukin-1β Pyroptosis Pathway. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 38133508 PMCID: PMC10746937 DOI: 10.1167/iovs.64.15.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose The purpose of this study is to investigate the anti-pyroptotic effect of resveratrol in the context of ischemia-reperfusion (I/R)-induced retinal injury, with a particular focus on Müller glial cells (MGCs) and to elucidate the underlying molecular mechanisms. Methods The retinal I/R model was constructed in mice and pyroptotic markers were measured at six, 12, 24, 48, and 72 hours after I/R injury to determine the peak of pyroptotic activity. The effects of resveratrol on pyroptosis, inflammasomes, and the activation of MGCs after I/R injury were observed on the retina of mice. Moreover, induction of pyroptosis in rat Müller glial cells (r-MC) via lipopolysaccharide was used to explore the effects of resveratrol on pyroptosis of r-MC in vitro. Results After the induction of retinal I/R injury in mice, the intricate involvement of pyroptosis in the progressive degeneration of the retina was observed, reaching its zenith at the onset of 24 hours after I/R injury. Resveratrol treatment alleviated I/R injury on the retina, relieved retinal ganglion cells death. In addition, resveratrol inhibited Caspase-1 activation, gasdermin D (GSDMD-N) cleavage, the inflammasome assembly, and the release of inflammatory cytokines, simultaneously relieving the MGCs activation. Furthermore, resveratrol inhibited the pyroptosis-related NLRP3/GSDMD-N/TMS1/ASC/Caspase-1/IL-1β pathway in r-MC cells, and mitigated cells death in vitro. Conclusions Pyroptosis plays an important role in the pathogenesis of retinal I/R injury. Resveratrol can attenuate pyroptotic-driven damage in the retina and MGC by inhibiting the NLRP3/GSDMD-N/TMS1/ASC/Caspase-1/IL-1β pyroptosis pathway.
Collapse
Affiliation(s)
- Zhi Xie
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo, China
| | - Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Jing Zhong
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ziqiao Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
13
|
Salazar-Gómez A, Velo-Silvestre AA, Alonso-Castro AJ, Hernández-Zimbrón LF. Medicinal Plants Used for Eye Conditions in Mexico-A Review. Pharmaceuticals (Basel) 2023; 16:1432. [PMID: 37895904 PMCID: PMC10610470 DOI: 10.3390/ph16101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Medicinal plants have been historically significant for treating common human diseases in Mexico. Although some ethnobotanical research exists, limited ethnomedicinal data has documented medicinal plants employed for eye health. This review focuses on ethnomedicinal information and preclinical and clinical studies regarding medicinal plants used in Mexico for treating symptoms associated with eye conditions. An electronic database search was conducted by consulting scientific articles, books about Mexican herbal medicine, and academic theses. This work recorded 69 plant species belonging to 26 plant families, especially plants from the Crassulaceae family, which are used as remedies for irritation and infections in the eye. Eight of these medicinal plants have been the subject of preclinical studies using ocular models, and one medicinal plant has been tested in clinical trials. The evidence of pharmacological effects indicates the promising therapeutic potential of these medicinal plants for developing new treatments for eye conditions. However, toxicological studies are necessary to ensure safe application to the eye, particularly as traditional medicine continues to be relied upon worldwide. In addition, this review highlights the need to perform ethnobotanical and phytochemical studies in Mexico regarding the medicinal flora used as remedies for eye conditions.
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Laboratorio de Investigación Interdisciplinaria, Área de Optomtería, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
| | - Amabile A. Velo-Silvestre
- Clínica de Optometría, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico
| | - Luis Fernando Hernández-Zimbrón
- Laboratorio de Investigación Interdisciplinaria, Área de Optomtería, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
- Clínica de Optometría, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
| |
Collapse
|
14
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
15
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals (Basel) 2023; 16:1172. [PMID: 37631087 PMCID: PMC10458083 DOI: 10.3390/ph16081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Normal tension glaucoma (NTG) is defined as a subtype of primary open-angle glaucoma (POAG) in which the intraocular pressure (IOP) values are constantly within the statistically normal range without treatment and represents approximately the 30-40% of all glaucomatous cases. The pathophysiology of this condition is multifactorial and is still not completely well known. Several theories have been proposed to explain the onset and progression of this disease, which can be divided into IOP-dependent and IOP-independent factors, suggesting different therapeutic strategies. The current literature strongly supports the fundamental role of IOP in NTG. The gold standard treatment for NTG tends to be based on the lowering IOP even if "statistically normal". Numerous studies have shown, however, that the IOP reduction alone is not enough to slow down or stop the disease progression in all cases, suggesting that other IOP-independent risk factors may contribute to the NTG pathogenesis. In addition to IOP-lowering strategies, several different therapeutic approaches for NTG have been proposed, based on vaso-active, antioxidant, anti-inflammatory and/or neuroprotective substances. To date, unfortunately, there are no standardized or proven treatment alternatives for NTG when compared to traditional IOP reduction treatment regimes. The efficacy of the IOP-independent strategies in decreasing the risk or treating NTG still remains inconclusive. The aim of this review is to highlight strategies reported in the current literature to treat NTG. The paper also describes the challenges in finding appropriate and pertinent treatments for this potentially vision-threatening disease. Further comprehension of NTG pathophysiology can help clinicians determine when to use IOP-lowering treatments alone and when to consider additional or alternatively individualized therapies focused on particular risk factors, on a case-by-case basis.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
16
|
Lindner T, Schmidl D, Peschorn L, Pai V, Popa-Cherecheanu A, Chua J, Schmetterer L, Garhöfer G. Therapeutic Potential of Cannabinoids in Glaucoma. Pharmaceuticals (Basel) 2023; 16:1149. [PMID: 37631064 PMCID: PMC10460067 DOI: 10.3390/ph16081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.
Collapse
Affiliation(s)
- Theresa Lindner
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Laura Peschorn
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Viktoria Pai
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, 1090 Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| |
Collapse
|
17
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
18
|
Zhou LY, Chen D, Guo XR, Niu YQ, Xu YS, Feng DF, Li TC. Intravitreal injection of Huperzine A promotes retinal ganglion cells survival and axonal regeneration after optic nerve crush. Front Cell Neurosci 2023; 17:1145574. [PMID: 37293627 PMCID: PMC10244636 DOI: 10.3389/fncel.2023.1145574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Traumatic optic neuropathy (TON) is a condition that causes massive loss of retinal ganglion cells (RGCs) and their axonal fibers, leading to visual insufficiency. Several intrinsic and external factors can limit the regenerative ability of RGC after TON, subsequently resulting in RGC death. Hence, it is important to investigate a potential drug that can protect RGC after TON and enhance its regenerative capacity. Herein, we investigated whether Huperzine A (HupA), extracted from a Chinese herb, has neuroprotective effects and may enhance neuronal regeneration following the optic nerve crush (ONC) model. We compared the three modes of drug delivery and found that intravitreal injection of HupA could promote RGC survival and axonal regeneration after ONC. Mechanistically, HupA exerted its neuroprotective and axonal regenerative effects through the mTOR pathway; these effects could be blocked by rapamycin. To sum up, our findings suggest a promising application of HupA in the clinical treatment of traumatic optic nerve.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ran Guo
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Yu-Qian Niu
- Fengxian District Central Hospital Graduate Student Training Base, Jinzhou Medical University, Shanghai, China
| | - Yong-Sai Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Tie-Chen Li
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
19
|
Albarqi HA, Garg A, Ahmad MZ, Alqahtani AA, Walbi IA, Ahmad J. Recent Progress in Chitosan-Based Nanomedicine for Its Ocular Application in Glaucoma. Pharmaceutics 2023; 15:pharmaceutics15020681. [PMID: 36840002 PMCID: PMC9963436 DOI: 10.3390/pharmaceutics15020681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Glaucoma is a degenerative, chronic ocular disease that causes irreversible vision loss. The major symptom of glaucoma is high intraocular pressure, which happens when the flow of aqueous humor between the front and back of the eye is blocked. Glaucoma therapy is challenging because of the low bioavailability of drugs from conventional ocular drug delivery systems such as eye drops, ointments, and gels. The low bioavailability of antiglaucoma agents could be due to the precorneal and corneal barriers as well as the low biopharmaceutical attributes of the drugs. These limitations can be overcome by employing nanoparticulate drug delivery systems. Over the last decade, there has been a lot of interest in chitosan-based nanoparticulate systems to overcome the limitations (such as poor residence time, low corneal permeability, etc.) associated with conventional ocular pharmaceutical products. Therefore, the main aim of the present manuscript is to review the recent research work involving the chitosan-based nanoparticulate system to treat glaucoma. It discusses the significance of the chitosan-based nanoparticulate system, which provides mucoadhesion to improve the residence time of drugs and their ocular bioavailability. Furthermore, different types of chitosan-based nanoparticulate systems are also discussed, namely nanoparticles of chitosan core only, nanoparticles coated with chitosan, and hybrid nanoparticles of chitosan. The manuscript also provides a critical analysis of contemporary research related to the impact of this chitosan-based nanomedicine on the corneal permeability, ocular bioavailability, and therapeutic performance of loaded antiglaucoma agents.
Collapse
Affiliation(s)
- Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Ismail A. Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Correspondence: or
| |
Collapse
|
20
|
Miguel MDG. Chemical and Biological Properties of Three Poorly Studied Species of Lycium Genus-Short Review. Metabolites 2022; 12:1265. [PMID: 36557303 PMCID: PMC9788301 DOI: 10.3390/metabo12121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The genus Lycium belongs to the Solanaceae family and comprises more than 90 species distributed by diverse continents. Lycium barbarum is by far the most studied and has been advertised as a “superfood” with healthy properties. In contrast, there are some Lycium species which have been poorly studied, although used by native populations. L. europaeum, L. intricatum and L. schweinfurthii, found particularly in the Mediterranean region, are examples of scarcely investigated species. The chemical composition and the biological properties of these species were reviewed. The biological properties of L. barbarum fruits are mainly attributed to polysaccharides, particularly complex glycoproteins with different compositions. Studies regarding these metabolites are practically absent in L. europaeum, L. intricatum and L. schweinfurthii. The metabolites isolated and identified belong mainly to polyphenols, fatty acids, polysaccharides, carotenoids, sterols, terpenoids, tocopherols, and alkaloids (L. europaeum); phenolic acids, lignans, flavonoids, polyketides, glycosides, terpenoids, tyramine derivatives among other few compounds (L. schweinfurthii), and esters of phenolic acids, glycosides, fatty acids, terpenoids/phytosterols, among other few compounds (L. intricatum). The biological properties (antioxidant, anti-inflammatory and cytotoxic against some cancer cell lines) found for these species were attributed to some metabolites belonging to those compound groups. Results of the study concluded that investigations concerning L. europaeum, L. intricatum and L. schweinfurthii are scarce, in contrast to L. barbarum.
Collapse
Affiliation(s)
- Maria da Graça Miguel
- Departamento de Química e Farmácia, Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
21
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
22
|
Castro-Castaneda CR, Altamirano-Lamarque F, Ortega-Macías AG, Santa Cruz-Pavlovich FJ, Gonzalez-De la Rosa A, Armendariz-Borunda J, Santos A, Navarro-Partida J. Nutraceuticals: A Promising Therapeutic Approach in Ophthalmology. Nutrients 2022; 14:5014. [PMID: 36501043 PMCID: PMC9740859 DOI: 10.3390/nu14235014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress represents one of the main factors driving the pathophysiology of multiple ophthalmic conditions including presbyopia, cataracts, dry eye disease (DED), glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Currently, different studies have demonstrated the role of orally administered nutraceuticals in these diseases. For instance, they have demonstrated to improve lens accommodation in presbyopia, reduce protein aggregation in cataracts, ameliorate tear film stability, break up time, and tear production in dry eye, and participate in the avoidance of retinal neuronal damage and a decrease in intraocular pressure in glaucoma, contribute to the delayed progression of AMD, or in the prevention or treatment of neuronal death in diabetic retinopathy. In this review, we summarized the nutraceuticals which have presented a positive impact in ocular disorders, emphasizing the clinical assays. The characteristics of the different types of nutraceuticals are specified along with the nutraceutical concentration used to achieve a therapeutic outcome in ocular diseases.
Collapse
Affiliation(s)
| | | | - Alan Gabriel Ortega-Macías
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
| | | | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| |
Collapse
|
23
|
Clodoveo ML, Muraglia M, Crupi P, Hbaieb RH, De Santis S, Desantis A, Corbo F. The Tower of Babel of Pharma-Food Study on Extra Virgin Olive Oil Polyphenols. Foods 2022; 11:foods11131915. [PMID: 35804731 PMCID: PMC9265897 DOI: 10.3390/foods11131915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Much research has been conducted to reveal the functional properties of extra virgin olive oil polyphenols on human health once EVOO is consumed regularly as part of a balanced diet, as in the Mediterranean lifestyle. Despite the huge variety of research conducted, only one effect of EVOO polyphenols has been formally approved by EFSA as a health claim. This is probably because EFSA’s scientific opinion is entrusted to scientific expertise about food and medical sciences, which adopt very different investigative methods and experimental languages, generating a gap in the scientific communication that is essential for the enhancement of the potentially useful effects of EVOO polyphenols on health. Through the model of the Tower of Babel, we propose a challenge for science communication, capable of disrupting the barriers between different scientific areas and building bridges through transparent data analysis from the different investigative methodologies at each stage of health benefits assessment. The goal of this work is the strategic, distinctive, and cost-effective integration of interdisciplinary experiences and technologies into a highly harmonious workflow, organized to build a factual understanding that translates, because of trade, into health benefits for buyers, promoting EVOOs as having certified health benefits, not just as condiments.
Collapse
Affiliation(s)
- Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (M.L.C.); (P.C.)
| | - Marilena Muraglia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “A. Moro”, 70125 Bari, Italy; (S.D.S.); (F.C.)
- Correspondence:
| | - Pasquale Crupi
- Interdisciplinary Department of Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (M.L.C.); (P.C.)
| | - Rim Hachicha Hbaieb
- Biocatalysis and Industrial Enzymes Group, Laboratory of Microbial Ecology and Technology, Carthage University, National Institute of Applied Sciences and Technology (INSAT), BP 676, Tunis 1080, Tunisia;
| | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “A. Moro”, 70125 Bari, Italy; (S.D.S.); (F.C.)
| | - Addolorata Desantis
- Department of Soil, Plant and Food Sciences (DISPA), University of Bari “A. Moro”, 70126 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “A. Moro”, 70125 Bari, Italy; (S.D.S.); (F.C.)
| |
Collapse
|
24
|
Islam MS. Natural Products and Disease Prevention, Relief and Treatment. Nutrients 2022; 14:nu14122396. [PMID: 35745128 PMCID: PMC9228901 DOI: 10.3390/nu14122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Research Building, Room 624, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Młynarczyk M, Falkowska M, Micun Z, Obuchowska I, Kochanowicz J, Socha K, Konopińska J. Diet, Oxidative Stress, and Blood Serum Nutrients in Various Types of Glaucoma: A Systematic Review. Nutrients 2022; 14:nu14071421. [PMID: 35406033 PMCID: PMC9002851 DOI: 10.3390/nu14071421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is one of the most common causes of irreversible vision loss worldwide. It is an insidious disease with a multifactorial pathogenesis. Despite progress in treatment methods, prevention and lifestyle modifications may be useful in slowing the progression of this disease. This systematic review aimed to evaluate the influence of diet, oxidative stress, and disturbances in blood serum levels of nutrients on the incidence and severity of glaucoma based on scientific reports on the role of nutrition in the pathogenesis and course of glaucoma. This paper presents an analysis of the above issues; however, further research is required to develop this topic. Future clinical trials are needed to assess the influence of nutrition and to develop nutritional management strategies for patients with glaucoma.
Collapse
Affiliation(s)
- Maryla Młynarczyk
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
| | - Martyna Falkowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (M.F.); (K.S.)
| | - Zuzanna Micun
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
| | - Iwona Obuchowska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (M.F.); (K.S.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
- Correspondence: ; Tel.: +48-600471666
| |
Collapse
|
26
|
Liu P, Wang F, Song Y, Wang M, Zhang X. Current situation and progress of drugs for reducing intraocular pressure. Ther Adv Chronic Dis 2022; 13:20406223221140392. [PMID: 36479139 PMCID: PMC9720821 DOI: 10.1177/20406223221140392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, the most common cause of irreversible blindness worldwide, usually causes characteristic optic nerve damage. Pathological intraocular pressure (IOP) elevation is a major risk factor. Drug reduction of IOP is the preferred treatment for clinicians because it can delay the progression of disease. However, the traditional IOP-lowering drugs currently used by patients may be poorly tolerated. Therefore, in recent years, some new drugs have been put into clinical application or in clinical phase I–III studies. They have a better IOP-lowering effect and fewer adverse reactions. Because glaucoma is a chronic disease, drugs need to be administered continuously for a long time. For patients, good compliance and high drug bioavailability have a positive effect on the prognosis of the disease. Therefore, clinicians and scientists have developed drug delivery systems to solve this complex problem. In addition, natural compounds and dietary supplements have a good effect of reducing IOP, and they can also protect the optic nerve through antioxidant action. We summarize the current traditional drugs, new drugs, sustained-release drug delivery systems, and complementary drugs and outline the mechanism of action and clinical effects of these drugs on glaucoma and their recent advances.
Collapse
Affiliation(s)
- Peiyu Liu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuning Song
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Menghui Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang 330006, China
| |
Collapse
|