1
|
Das S, Ajith TA, Janardhanan KK, Harikumaran Thampi BS. Bioactive extract of Morchella esculenta ameliorates cyclophosphamide-induced mitochondrial dysfunction and cardiotoxicity by modulating KEAP1/NRF2 and pro-inflammatory genes expression. Food Chem Toxicol 2024; 191:114847. [PMID: 38964650 DOI: 10.1016/j.fct.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Prevention of anticancer drugs-induced cardiotoxicity remains an imperative area of oncology research as it continues to be a major challenge in cancer chemotherapy. This study was undertaken to investigate the protective effect of methanol extract of Morchella esculenta (ME) against cyclophosphamide (CP)-induced cardiotoxicity. Myocardial damage was assessed by biochemical and histopathological methods. Proinflammatory cytokines gene expression was determined by RT-PCR analysis. To assess the mitochondrial dysfunction, TCA cycle and electron transport chain complexes enzymes activities were determined. Chemical finger print of ME was accomplished by HPTLC. CP (200 mg/kg) treated animals showed elevation in cardiac injury markers which was attenuated by ME (p < 0.05). CP-induced decline of antioxidant status and expression of nuclear factor erythroid 2-related factor 2 were restored by ME. CP-induced expression of NF-ĸB, IL1-β, IL-6, TNF-α, COX-2 and iNOS (p < 0.05) was attenuated by ME (500 mg/kg). Bioactive compounds namely, 5-eicosapentaenoicacid (C20H30O2), 8-hydroxyoctadecadienoic acid (C18H32O3), 4,4-dipo-zetacarotene (C30H44), CynarosideA (C21H32O10) present in the extract might be responsible for cardioprotection. The findings reveal the protective effect of ME against CP-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sneha Das
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680 555, Kerala, India
| | | | | | | |
Collapse
|
2
|
Gao K, Chen Z, Zhang N, Jiang P. High throughput virtual screening and validation of Plant-Based EGFR L858R kinase inhibitors against Non-Small cell lung Cancer: An integrated approach Utilizing GC-MS, network Pharmacology, Docking, and molecular dynamics. Saudi Pharm J 2024; 32:102139. [PMID: 39139718 PMCID: PMC11318564 DOI: 10.1016/j.jsps.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Lung cancer ranks as the 2nd most common cancer globally. It's the most prevalent cancer in men and the 2nd most common in women. The prominent events in EGFR-mutated non-small-cell lung cancer (NSCLC) include the emergence of the L858R mutation within EGFR exon 21. Despite the promising efficacy of EGFR inhibitors in managing lung cancer, the development of acquired resistance poses a significant hurdle. In the current investigation, we focused on the screening of two phytochemicals, namely Dehydrocostus lactone and Mokkolactone, derived from the Saussurea lappa plant, as potential inhibitors targeting EGFR L858R mutant lung cancer. The chloroform and ethanol extract of the plant demonstrated anti-proliferative activity through the Resazurin chemosensitivity assay, exhibiting an IC50 value of 37.90 ± 0.29 µg/ml with selectivity index 2.4. Through a GC-MS study, we identified 11 phytochemicals for further insilico analysis. These compounds underwent ADMET assessment followed by drug likeliness analysis before being subjected to molecular docking against EGFR L858R, identified through protein-protein interaction network analysis. All phytochemicals exhibited binding energy scores ranging from -6.9 to -8.1 kcal/mol. Dehydrocostus lactone and Mokkolactone were specifically identified for their binding profile. Findings from 100 ns molecular dynamics simulations demonstrated their enhanced stability compared to the reference ligand DJK. This was evident in the root mean square deviation (RMSD) values, ranging from 0.23 ± 0.01 nm to 0.30 ± 0.05 nm, the radius of gyration values, from 1.71 ± 0.01 nm to 1.72 ± 0.01 nm, and the solvent accessible surface area values, from 155.39 ± 2.40 nm2 to 159.32 ± 2.14 nm2. Additionally, favourable characteristics were observed in terms of hydrogen bonding, principal component analysis, and free energy landscape analysis. Examination of their electronic structure via density functional theory revealed efficient properties, with the highest occupied molecular orbital-least unoccupied molecular orbital energy gap values ranging from -3.984 eV to -6.547 eV. Further, in vivo analysis is required to gain a more comprehensive understanding and efficacy of these identified phytochemicals against lung cancer.
Collapse
Affiliation(s)
- Kun Gao
- Thoracic Surgery Department, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang City, Hebei Province 050000, China
| | - Zujian Chen
- Thoracic Surgery Department, Linxi County People’s Hospital, Xingtai City Linxi County People’s Hospital New Campus 054900, China
| | - Na Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, No. 1,2 Jiankang Road, Shijiazhuang City, Hebei Province, Shijiazhuang 050000, China
| | - Pu Jiang
- Thoracic Surgery Department, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang City, Hebei Province 050000, China
| |
Collapse
|
3
|
Khairnar SI, Kulkarni YA, Singh K. Cardioprotective effect of chelidonic acid against doxorubicin-induced cardiac toxicity in rats. Rev Port Cardiol 2024:S0870-2551(24)00264-6. [PMID: 39216530 DOI: 10.1016/j.repc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES The current study evaluates the effect of chelidonic acid on doxorubicin-induced cardiac toxicity. Chelidonic acid (CA) is a natural pyran-skeleton heterocyclic compound found in rhizomes of the perennial plant, celandine (Chelidonium majus). METHODS Wistar rats were given an intraperitoneal injection of doxorubicin (1.25 mg/kg, cumulative dose of 20 mg/kg) four times per week for a duration of four weeks to induce cardiotoxicity. CA treatment (10, 20, and 40 mg/kg orally for four weeks) was started together with doxorubicin. RESULTS CA treatment reduced myocardial damage and improved cardiac dysfunction in doxorubicin-treated rats. It improved blood pressure, restored ST wave height and normalized the QTc interval compared to the rats treated only with doxorubicin. Administration of CA for four weeks reduced left ventricular end-diastolic pressure. Moreover, CA treatment decreased the level of cardiac markers such as creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and cardiac troponin-T. Masson's trichrome, hematoxylin, and eosin staining of heart tissue revealed that CA attenuated the deleterious effects of doxorubicin and prevented further damage and fibrosis in rats. CONCLUSION The study findings confirm that CA treatment can protect the myocardium against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India.
| |
Collapse
|
4
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
5
|
Al-Kenany SA, Al-Shawi NN. Protective effect of cafestol against doxorubicin-induced cardiotoxicity in rats by activating the Nrf2 pathway. Front Pharmacol 2023; 14:1206782. [PMID: 37377932 PMCID: PMC10291064 DOI: 10.3389/fphar.2023.1206782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX) is an efficient antineoplastic agent with a broad antitumor spectrum; however, doxorubicin-associated cardiotoxic adverse effect through oxidative damage and apoptosis limits its clinical application. Cafestol (Caf) is a naturally occurring diterpene in unfiltered coffee with unique antioxidant, antimutagenic, and anti-inflammatory activities by activating the Nrf2 pathway. The present study aimed to investigate the potential chemoprotective effect of cafestol on DOX-induced cardiotoxicity in rats. Wistar albino rats of both sexes were administered cafestol (5 mg/kg/day) for 14 consecutive days by oral gavage alone or with doxorubicin which was injected as a single dose (15 mg/kg intraperitoneally at day 14) to induce toxicity. The result showed that Caf significantly improved cardiac injury induced by doxorubicin, decreased serum levels of CK-MB, LDH, ALP, and ALT, and improved histopathological changes. In addition, cafestol significantly inhibited DOX-induced cardiac oxidative stress as seen in the reduced level of MDA and increased GSH, SOD, CAT, and Gpx-1 cardiac tissue levels; cafestol significantly enhanced Nrf2 gene and protein expression and promoted the expression of downstream antioxidant genes HO-1 and NQO-1 and downregulated Keap1 and NF-κB genes' expression; in addition, Caf significantly reduced inflammatory mediators, TNF-α, and IL-1β levels and inhibited cardiac apoptosis by modulating Bax and Casp 3 tissue levels and reduced TUNEL-positive cardiomyocytes. In conclusion, the present study confirmed that cafestol improved the cardiotoxic effects induced by doxorubicin through the regulation of apoptosis and oxidative stress response through the Nrf2 pathway; this study suggests that cafestol may serve as a potential adjuvant in chemotherapy to alleviate DOX-induced toxicities.
Collapse
|
6
|
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal 2023; 21:61. [PMID: 36918950 PMCID: PMC10012797 DOI: 10.1186/s12964-023-01077-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
Collapse
Affiliation(s)
- Saixian Shi
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ye Chen
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijian Luo
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Chengdu, 610000, Sichuan Province, China
| | - Yan Dai
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
7
|
Tubeimoside I Ameliorates Doxorubicin-Induced Cardiotoxicity by Upregulating SIRT3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9966355. [PMID: 36691640 PMCID: PMC9867588 DOI: 10.1155/2023/9966355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Cardiotoxicity linked to doxorubicin (DOX) is primarily caused by inflammation, oxidative stress, and apoptosis. The role of tubeimoside I (TBM) in DOX-induced cardiotoxicity remains ambiguous, despite growing evidence that it could reduce inflammation, oxidative stress, and apoptosis in various diseases. This study was designed to investigate the role of TBM in DOX-induced cardiotoxicity and uncover the underlying mechanisms. H9c2 cell line and C57BL/6 mice were used to construct an in vitro and in vivo model of DOX-induced myocardial injury, respectively. We observed that DOX treatment provoked inflammation, oxidative stress, and cardiomyocyte apoptosis, which were significantly alleviated by TBM administration. Mechanistically, TBM attenuated DOX-induced downregulation of sirtuin 3 (SIRT3), and SIRT3 inhibition abrogated the beneficial effects of TBM both in vitro and in vivo. In conclusion, TBM eased inflammation, oxidative stress, and apoptosis in DOX-induced cardiotoxicity by increasing the expression of SIRT3, suggesting that it holds great promise for treating DOX-induced cardiac injury.
Collapse
|
8
|
Yin Y, Niu Q, Hou H, Que H, Mi S, Yang J, Li Z, Wang H, Yu Y, Zhu M, Zhan H, Wang Q, Li P. PAE ameliorates doxorubicin-induced cardiotoxicity via suppressing NHE1 phosphorylation and stimulating PI3K/AKT phosphorylation. Int Immunopharmacol 2022; 113:109274. [DOI: 10.1016/j.intimp.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
9
|
Khairnar SI, Kulkarni YA, Singh K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch Pharm Res 2022; 45:704-730. [DOI: 10.1007/s12272-022-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
|
10
|
2-Methoxyestradiol TPGS Micelles Attenuate Cyclosporine A-Induced Nephrotoxicity in Rats through Inhibition of TGF-β1 and p-ERK1/2 Axis. Antioxidants (Basel) 2022; 11:antiox11081499. [PMID: 36009218 PMCID: PMC9405159 DOI: 10.3390/antiox11081499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The immunosuppressant cyclosporine A (CSA) has been linked to serious renal toxic effects. Although 2-methoxyestradiol (2ME) possesses a wide range of pharmacological abilities, it suffers poor bioavailability after oral administration. The purpose of this study was to evaluate the potential of 2ME loaded D-ɑ-tocopheryl polyethylene glycol succinate (TPGS) micelles to prevent CSA-induced nephrotoxicity in rats. A 2ME-TPGS was prepared and showed particle size of 44.3 ± 3.5 nm with good entrapment efficiency and spherical structures. Male Wistar rats were divided into 5 groups, namely: Control, Vehicle, CSA, CSA + 2ME-Raw, and CSA + 2ME-Nano. CSA was injected daily at a SC dose of 20 mg/kg. Both 2ME-Raw and 2ME-Nano were given daily at oral doses of 5 mg/kg. Treatments continued for three successive weeks. 2ME-TPGS exerted significant protective effects against CSA nephrotoxicity. This was evidenced in ameliorating deterioration of renal functions, attenuation of pathological changes in kidney tissues, exerting significant anti-fibrotic, antioxidant, and anti-inflammatory effects together with significant anti-apoptotic effects. Western blot analyses showed both 2ME-Raw and 2ME-Nano significantly inhibited protein expression of TGF-β1 and phospho-ERK (p-ERK). It was observed that 2ME-TPGS, in almost all experiments, exerted superior protective effects as compared with 2ME-Raw. In conclusion, 2ME loaded in a TPGS nanocarrier possesses significant protective activities against CSA-induced kidney injury in rats. This is attributable to 2ME anti-fibrotic, antioxidant, anti-inflammatory, and anti-apoptotic activities which are mediated at least partly by inhibition of TGF-β1/p-ERK axis.
Collapse
|
11
|
Islam MS. Natural Products and Disease Prevention, Relief and Treatment. Nutrients 2022; 14:nu14122396. [PMID: 35745128 PMCID: PMC9228901 DOI: 10.3390/nu14122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Research Building, Room 624, Baltimore, MD 21205, USA
| |
Collapse
|