1
|
Antonio J, Brown AF, Candow DG, Chilibeck PD, Ellery SJ, Forbes SC, Gualano B, Jagim AR, Kerksick C, Kreider RB, Ostojic SM, Rawson ES, Roberts MD, Roschel H, Smith-Ryan AE, Stout JR, Tarnopolsky MA, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Part II. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2025; 22:2441760. [PMID: 39720835 DOI: 10.1080/15502783.2024.2441760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/07/2024] [Indexed: 12/26/2024] Open
Abstract
Creatine monohydrate supplementation (CrM) is a safe and effective intervention for improving certain aspects of sport, exercise performance, and health across the lifespan. Despite its evidence-based pedigree, several questions and misconceptions about CrM remain. To initially address some of these concerns, our group published a narrative review in 2021 discussing the scientific evidence as to whether CrM leads to water retention and fat accumulation, is a steroid, causes hair loss, dehydration or muscle cramping, adversely affects renal and liver function, and if CrM is safe and/or effective for children, adolescents, biological females, and older adults. As a follow-up, the purpose of this paper is to evaluate additional questions and misconceptions about CrM. These include but are not limited to: 1. Can CrM provide muscle benefits without exercise? 2. Does the timing of CrM really matter? 3. Does the addition of other compounds with CrM enhance its effectiveness? 4. Does CrM and caffeine oppose each other? 5. Does CrM increase the rates of muscle protein synthesis or breakdown? 6. Is CrM an anti-inflammatory intervention? 7. Can CrM increase recovery following injury, surgery, and/or immobilization? 8. Does CrM cause cancer? 9. Will CrM increase urine production? 10. Does CrM influence blood pressure? 11. Is CrM safe to consume during pregnancy? 12. Does CrM enhance performance in adolescents? 13. Does CrM adversely affect male fertility? 14. Does the brain require a higher dose of CrM than skeletal muscle? 15. Can CrM attenuate symptoms of sleep deprivation? 16. Will CrM reduce the severity of and/or improve recovery from traumatic brain injury? Similar to our 2021 paper, an international team of creatine research experts was formed to perform a narrative review of the literature regarding CrM to formulate evidence-based responses to the aforementioned misconceptions involving CrM.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Ann F Brown
- University of Idaho, College of Education, Health and Human Sciences, Moscow, ID, USA
| | - Darren G Candow
- University of Regina, Department of Health and Human Performance, Regina, Canada
| | | | - Stacey J Ellery
- Monash University, The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Victoria, Australia
| | - Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, Canada
| | - Bruno Gualano
- Universidade de Sao Paulo, Applied Physiology and Nutrition Research Group -School of Physical Education and Sport and Faculdade de Medicina FMUSP, Sao Paulo, Brazil
- Mayo Clinic Health System, Sports Medicine Department, La Crosse, WI, USA
| | - Andrew R Jagim
- Lindenwood University, College of Science, Technology, and Health, St. Louis, MO, USA
| | - Chad Kerksick
- Texas A&M University, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Richard B Kreider
- University of Agder, Department of Nutrition and Public Health, Kristiansand, Norway
| | - Sergej M Ostojic
- Messiah University, Department of Health, Nutrition, and Exercise Science, Mechanicsburg, PA, USA
| | - Eric S Rawson
- Auburn University, School of Kinesiology, Auburn, AL, USA
| | - Michael D Roberts
- Universidade de Sao Paulo, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, São Paulo, Brazil
| | - Hamilton Roschel
- Universidade de Sao Paulo, Applied Physiology and Nutrition Research Group -School of Physical Education and Sport and Faculdade de Medicina FMUSP, Sao Paulo, Brazil
- Mayo Clinic Health System, Sports Medicine Department, La Crosse, WI, USA
| | - Abbie E Smith-Ryan
- University of North Carolina, Department of Exercise and Sport Science, Chapel Hill, NC, USA
| | - Jeffrey R Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Mark A Tarnopolsky
- McMasterChildren's Hospital, Department of Pediatrics, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
2
|
Yu H, Nie Y, Ran X, Li S, Rong K, Zhang X. Multi-omics analysis and longitudinal study of reprogramming by dietary creatine to endogenous metabolism in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:19. [PMID: 39638990 DOI: 10.1007/s10695-024-01417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Creatine is a feed additive with physiological pleiotropic properties and also an energy homeostasis protector in vertebrates and is successfully used in terrestrial livestock and aquaculture. Here, two feeding trials were performed to investigate dietary creatine on endogenous creatine metabolism and physiological reprogramming in largemouth bass. The results showed that the endogenous creatine metabolism genes AGAT, GAMT, and SLC6A8 of largemouth bass are highly conserved with the amino acid sequences of other teleosts and are clustered separately from mammals. Among the 16 major tissues in largemouth bass, both creatine synthesis genes (agat, gamt) and transporter gene slc6a8 are most highly expressed in muscle. Muscle has a high threshold but sensitive creatine negative feedback to regulate endogenous creatine metabolism. Dietary creatine intake significantly inhibits endogenous creatine synthesis and transport in muscle in a dose-dependent manner, and this inhibitory effect recovers with a decrease in dietary creatine content. In addition, physiological creatine saturation required prolonged exogenous creatine intake, and it would be shortened by high doses of creatine, which provides guidance for maximizing economic benefits in aquaculture. Metabolome and transcriptome showed that dietary creatine significantly affected the metabolism of the creatine precursor substance-arginine. Exogenous creatine intake spared arginine that would otherwise be used for creatine synthesis, increased arginine levels, and caused reprogramming of arginine metabolism. Overall, these results demonstrate that the addition of creatine to largemouth bass diets is safe and recoverable, and the benefits of creatine intake in largemouth bass are not limited to enhancing the function of creatine itself but also include a reduction in the metabolic burden of essential amino acids to better growth performance.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinping Ran
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoyun Li
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Keming Rong
- Hubei Tianchen Biotechnology Institute, Wuhan, 430207, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Hubei Tianchen Biotechnology Institute, Wuhan, 430207, China.
| |
Collapse
|
3
|
Sherpa NN, De Giorgi R, Ostinelli EG, Choudhury A, Dolma T, Dorjee S. Efficacy and safety profile of oral creatine monohydrate in add-on to cognitive-behavioural therapy in depression: An 8-week pilot, double-blind, randomised, placebo-controlled feasibility and exploratory trial in an under-resourced area. Eur Neuropsychopharmacol 2025; 90:28-35. [PMID: 39488067 DOI: 10.1016/j.euroneuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Pre-clinical and clinical evidence proposes that creatine monohydrate, an affordable nutraceutical, could be a useful adjunct to conventional antidepressant treatments. In this pilot feasibility and exploratory study, we investigate the 8-week effects of creatine in addition to cognitive-behavioural therapy (CBT) versus placebo plus CBT in depression. For the primary efficacy outcome of change in Patient Health Questionnaire-9 depression score at study endpoint, we used mixed-model repeated measures analysis of covariance. Logistic regressions were employed to assess acceptability (any-cause dropouts), tolerability (dropouts for adverse events), and safety (patients experiencing one or more adverse events). We calculated effect sizes adjusted for age, sex, and baseline depression score. One-hundred participants (50 females, mean age= 30.4 ± 7.4 years) with depression (mean PHQ-9 = 17.6 ± 6.3) were randomised to either creatine+CBT (N = 50) or placebo+CBT (N = 50). At 8 weeks, PHQ-9 scores were lower in both study arms, but significantly more so in participants taking creatine (mean difference= -5.12). Treatment discontinuations due to any cause and to adverse events, and proportion of participants with at least one adverse event were comparable between study arms. This hypothesis-generating trial suggests that creatine could be a useful and safe supplement to CBT for depression. Longer and larger clinical trials are warranted.
Collapse
Affiliation(s)
- Nima Norbu Sherpa
- Department of Radiography and Podiatry, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, United Kingdom; Division of Mental Health, Universal Human Rights and Social Development Association, Non-Government Organisation, Uttarakhand, 248001, India
| | - Riccardo De Giorgi
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom.
| | - Edoardo Giuseppe Ostinelli
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom; Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, United Kingdom
| | - Amrita Choudhury
- Department of Psychology, St Xavier's University, Kolkata, Action Area III-B, New Town, West Bengal, 700160, India
| | - Tenzin Dolma
- Division of Mental Health, Universal Human Rights and Social Development Association, Non-Government Organisation, Uttarakhand, 248001, India
| | - Sangila Dorjee
- Department of Psychiatry, New S.T.N.M Multi Speciality Government Hospital, Sikkim, 737101, India
| |
Collapse
|
4
|
Vishweswaraiah S, Yilmaz A, Gordevicius J, Milčiūtė M, Krinickis K, Kerseviciute I, McGuinness B, Passmore P, Kehoe PG, Green BD, Radhakrishna U, Graham SF. Epigenetic and Metabolic Landscape of Dementia with Lewy Bodies. Mov Disord 2024. [PMID: 39736077 DOI: 10.1002/mds.30095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Lewy body diseases, including dementia with Lewy bodies (DLB), are characterized by α-synuclein accumulation, leading to dementia. Previous studies suggest distinct epigenetic and metabolomic profiles in DLB. OBJECTIVE This study aims to identify diagnostic biomarkers by analyzing the methylome and metabolome in the Brodmann area 7 of postmortem brain tissues from DLB patients and control subjects using multiomics approaches. METHODS Methylation analysis was performed using the Illumina EPIC array, and metabolomics profiling was conducted via 1H nuclear magnetic resonance (NMR) and direct injection/liquid chromatography coupled with mass spectrometry. Differential methylation and metabolite analysis were conducted, followed by pathway enrichment to explore biological relevance. RESULTS We identified 3478 significantly differentially methylated cytosines, mostly hypermethylated, enriched in CpG islands near transcription start sites. Pathway enrichment analysis showed significant pathways, primarily linked to olfactory and synaptic functions. Metabolomics profiling identified 15 significantly altered metabolites, with Phosphatidylethanolamine (PE) Biosynthesis being the most affected pathway. Key correlations between differentially methylated cytosines and metabolites, particularly in the PE Biosynthesis pathway involving PTDSS1 and PCYT2 genes, were observed. CONCLUSIONS Notably, sex-specific differences were found, with females exhibiting more epigenetic and metabolomic changes than males. Increased hypermethylation, linked to transcriptional silencing, and disruptions in PE biosynthesis suggest a role in synaptic dysfunction and olfactory deficits. In addition, α-aminoadipic acid was strongly associated with vascular functions, hinting at a possible overlap between vascular health and DLB. This study provides new insights into DLB mechanisms and potential therapeutic targets. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sangeetha Vishweswaraiah
- Department of Metabolomics, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Ali Yilmaz
- Department of Metabolomics, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, Michigan, USA
| | | | | | | | | | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Peter Passmore
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Patrick G Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburg, Pittsburgh, Pennsylvania, USA
| | - Stewart F Graham
- Department of Metabolomics, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, Michigan, USA
| |
Collapse
|
5
|
Pratt J, McStravick J, Kennerley AJ, Sale C. Intra- and inter-session reliability and repeatability of 1H magnetic resonance spectroscopy for determining total creatine concentrations in multiple brain regions. Exp Physiol 2024. [PMID: 39707690 DOI: 10.1113/ep092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Using proton magnetic resonance spectroscopy (1H MRS) to determine total creatine (tCr) concentrations will become increasingly prevalent, as the role of creatine (Cr) in supporting brain health gains interest. Methodological limitations and margins of error in repeated 1H MRS, which often surpass reported effects of supplementation, permeate existing literature. We examined the intra- and inter-session reliability and repeatability of 1H MRS for determining tCr concentrations across multiple brain regions (midbrain, visual cortex and frontal cortex). Eighteen healthy adults aged 20-32 years were recruited (50% female; n = 14 intra-session; n = 15 inter-session). 1H Magnetic resonance imaging and spectroscopy were completed at 3 T. Intra-session analyses involved repeated 1H MRS of the midbrain, visual cortex and frontal cortex without participant or voxel repositioning, whereas inter-session analyses involved measurements of the same regions, but with participant and voxel repositioning between repeated measurements. The 1H MRS data (174 spectra) were analysed using TARQUIN and OSPREY, and voxel fractions (grey/white matter and CSF) were determined using segmentation. Our findings show that tCr concentrations can be determined reliably and repeatably using 1H MRS, within an error of <2%, and that large inter-regional differences in tCr concentration are present in the human brain. We provide new minimum detectable change data for tCr concentrations, a detailed discussion of the inherent error sources in repeated 1H MRS, including the substantial effect of the analysis package on tCr quantification, and suggestions for how these should be managed to improve the interpretability and clinical value of future research. More studies are needed to determine whether our findings can be replicated in other centres and different populations.
Collapse
Affiliation(s)
- Jedd Pratt
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - James McStravick
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
- Department of Allied Health Professions and Sport and Exercise Science, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Aneurin J Kennerley
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
6
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Juneja K, Bhuchakra HP, Sadhukhan S, Mehta I, Niharika A, Thareja S, Nimmakayala T, Sahu S. Creatine Supplementation in Depression: A Review of Mechanisms, Efficacy, Clinical Outcomes, and Future Directions. Cureus 2024; 16:e71638. [PMID: 39553021 PMCID: PMC11567172 DOI: 10.7759/cureus.71638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Depression, affecting millions of people worldwide, is a leading cause of disability globally. It affects not only daily functioning but also interpersonal relationships and overall health by increasing the risks of chronic physical and mental illnesses. Creatine, traditionally recognized for boosting physical performance through its role in producing adenosine triphosphate, has recently shown potential as an adjunctive therapy for treating depression. Creatine's ability to enhance brain energy metabolisms and provide neuroprotection suggests that it can alleviate mood disorders by improving mitochondrial function, increasing cellular resilience, and modulating neurotransmitter systems that regulate mood. This narrative review aims to critically evaluate the research on creatine supplementation for depression, focusing on its efficacy, mechanism of action, risks, and benefits as a treatment for mood disorders. It analyzes preclinical and clinical studies to understand creatine's potential as an adjunctive or alternative therapy for major depressive disorder and bipolar depression and underscores any gaps in current research. Both animal models and human trials indicate creatine's efficacy for the treatment of depression. Creatine supplementation reduces depressive symptoms, particularly when combined with selective serotonin reuptake inhibitors, and may improve brain energy metabolism and neuroplasticity. It is generally well tolerated, though caution is warranted due to potential side effects such as manic episodes in bipolar disorder and renal function impairment in patients with kidney dysfunction. Overall, creatine presents a promising addition to current depression treatments, though further research is needed to establish optimal dosing, long-term efficacy, and safety across diverse patient populations.
Collapse
Affiliation(s)
- Keshav Juneja
- Psychiatry, Byramjee Jeejeebhoy (BJ) Medical College, Ahmedabad, IND
| | - Hamsa Priya Bhuchakra
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Hyderabad, IND
| | | | - Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hissar, IND
| | - Alla Niharika
- Medical School, Sri Venkateswara Institute of Medical Sciences, Sri Padmavathi Medical College for Women, Tirupati, IND
| | - Swati Thareja
- Medicine and Surgery, The Hans Foundation, New Delhi, IND
| | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Sweta Sahu
- Internal Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| |
Collapse
|
8
|
Godlewska BR, Sylvester AL, Emir UE, Sharpley AL, Clarke WT, Martens MAG, Cowen PJ. Six-Week Supplementation with Creatine in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Magnetic Resonance Spectroscopy Feasibility Study at 3 Tesla. Nutrients 2024; 16:3308. [PMID: 39408275 PMCID: PMC11478479 DOI: 10.3390/nu16193308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic medical condition with no specific pharmacological treatment. Creatine, a nutrient essential for maintaining energy homeostasis in the cells, is a candidate for interventions in ME/CFS. METHODS Fourteen participants with ME/CFS received supplementation with 16 g creatine monohydrate for 6 weeks. Before starting creatine and on the last day of treatment, participants underwent brain magnetic resonance spectroscopy (MRS) scanning of the pregenual anterior cingulate cortex (pgACC) and dorsolateral prefrontal cortex (DLPFC), followed by symptom, cognition, and hand-grip strength assessments. RESULTS Eleven participants completed the study. Creatine treatment increased creatine concentration in both the pgACC and DLPFC (p = 0.004 and 0.012, respectively), decreased fatigue and reaction time (RT) on congruent and incongruent trials of the Stroop test (p = 0.036 and 0.014, respectively), and increased hand-grip strength (p = 0.0004). There was a positive correlation between increases in pgACC creatine and changes in RT on Stroop congruent and incongruent trials (p = 0.048 and p = 0.022, respectively). Creatine was well tolerated, and none of the participants stopped treatment. CONCLUSION Creatine supplementation over six weeks in ME/CFS patients increased brain creatine and improved fatigue and some aspects of cognition. Despite its methodological limitations, this study encourages placebo-controlled investigations of creatine treatment in ME/CFS.
Collapse
Affiliation(s)
- Beata R. Godlewska
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; (A.L.S.); (A.L.S.); (M.A.G.M.); (P.J.C.)
- Oxford Health NHS Foundation Trust, Oxford OX4 4XN, UK
| | - Amy L. Sylvester
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; (A.L.S.); (A.L.S.); (M.A.G.M.); (P.J.C.)
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Uzay E. Emir
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK; (U.E.E.); (W.T.C.)
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ann L. Sharpley
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; (A.L.S.); (A.L.S.); (M.A.G.M.); (P.J.C.)
| | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK; (U.E.E.); (W.T.C.)
| | - Marieke A. G. Martens
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; (A.L.S.); (A.L.S.); (M.A.G.M.); (P.J.C.)
- Oxford Health NHS Foundation Trust, Oxford OX4 4XN, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK; (U.E.E.); (W.T.C.)
| | - Philip J. Cowen
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; (A.L.S.); (A.L.S.); (M.A.G.M.); (P.J.C.)
- Oxford Health NHS Foundation Trust, Oxford OX4 4XN, UK
| |
Collapse
|
9
|
Gonzalez DE, Forbes SC, Zapp A, Jagim A, Luedke J, Dickerson BL, Root A, Gil A, Johnson SE, Coles M, Brager A, Sowinski RJ, Candow DG, Kreider RB. Fueling the Firefighter and Tactical Athlete with Creatine: A Narrative Review of a Key Nutrient for Public Safety. Nutrients 2024; 16:3285. [PMID: 39408252 PMCID: PMC11478539 DOI: 10.3390/nu16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Firefighters, tactical police officers, and warriors often engage in periodic, intermittent, high-intensity physical work in austere environmental conditions and have a heightened risk of premature mortality. In addition, tough decision-making challenges, routine sleep deprivation, and trauma exacerbate this risk. Therefore, identifying strategies to bolster these personnel's health and occupational performance is critical. Creatine monohydrate (CrM) supplementation may offer several benefits to firefighters and tactical athletes (e.g., police, security, and soldiers) due to its efficacy regarding physical performance, muscle, cardiovascular health, mental health, and cognitive performance. Methods: We conducted a narrative review of the literature with a focus on the benefits and application of creatine monohydrate among firefighters. Results: Recent evidence demonstrates that CrM can improve anaerobic exercise capacity and muscular fitness performance outcomes and aid in thermoregulation, decision-making, sleep, recovery from traumatic brain injuries (TBIs), and mental health. Emerging evidence also suggests that CrM may confer an antioxidant/anti-inflammatory effect, which may be particularly important for firefighters and those performing tactical occupations exposed to oxidative and physiological stress, which can elicit systemic inflammation and increase the risk of chronic diseases. Conclusions: This narrative review highlights the potential applications of CrM for related tactical occupations, with a particular focus on firefighters, and calls for further research into these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Andrew Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Joel Luedke
- Olmsted Medical Center-Sports Medicine, La Crosse, WI 54601, USA;
| | - Broderick L. Dickerson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | | | - Adriana Gil
- College of Medicine, University of Houston, Houston, TX 77021, USA;
| | - Sarah E. Johnson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Macilynn Coles
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Allison Brager
- U.S. Army John F. Kennedy Special Warfare Center and School, Fort Liberty, NC 48397, USA;
| | - Ryan J. Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| |
Collapse
|
10
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zhou Y, Chen Z, Su F, Tao Y, Wang P, Gu J. NMR-based metabolomics approach to study the effect and related molecular mechanisms of Saffron essential oil against depression. J Pharm Biomed Anal 2024; 247:116244. [PMID: 38810330 DOI: 10.1016/j.jpba.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Depression currently ranks as the fourth leading cause of disability globally, affecting approximately 20% of the world's population. we established a chronic restraint stress (CRS) induced depression model in mice and employed fluoxetine as a reference drug. We assessed the therapeutic potential of saffron essential oil (SEO) and elucidated its underlying mechanisms through behavioral indices and NMR-based metabolomic analysis. The findings indicate that SEO ameliorates behavioral symptoms of depression, such as the number of entries into the central area, fecal count, latency to immobility, and duration of immobility in both the Tail Suspension Test (TST) and the Forced Swim Test (FST), along with correcting the dysregulation of 5-serotonin. Metabolomic investigations identified sixteen potential biomarkers across the liver, spleen, and kidneys. SEO notably modulated nine of these biomarkers: dimethylglycine, glycerol, adenosine, β-glucose, α-glucose, uridine, mannose, sarcosine, and aspartate, with glycerol emerging as a common biomarker in both the liver and spleen. Pathway analysis suggests that these biomarkers participate in glycolysis, glycine serine threonine metabolism, and energy metabolism, potentially implicating a role in neural regulation. In summary, SEO effectively mitigates depressive-like behaviors in CRS mice, predominantly via modulation of glycolysis, amino acid metabolism, and energy metabolism, and potentially exerts antidepressant effects through neural regulation. Our study offers insights into small molecule metabolite alterations in CRS mice through a metabolomics lens, providing evidence for the antidepressant potential of plant essential oils and contributing to our understanding of the mechanisms of traditional Chinese medicine in treating depression.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Feng Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
12
|
Ostojic SM, Grasaas E, Baltic S, Cvejic J. Dietary creatine is associated with lower serum neurofilament light chain levels. Appl Physiol Nutr Metab 2024; 49:1121-1123. [PMID: 38780027 DOI: 10.1139/apnm-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Low creatine availability may be linked to an elevated risk of neuronal damage, yet this association remains inadequately explored at the population level. Utilizing 2013-2014 National Health and Nutrition Examination Survey data, the current study found a negative correlation between dietary creatine intake and serum levels of neurofilament light chain (NfL; a biomarker for neuronal damage) in a cohort of 1912 individuals (52.2% females) aged 20-75 years. This inverse association persisted even after adjusting for other nutritional variables known to influence neuronal viability. The observed pattern, where increased dietary creatine intake was associated with reduced circulating NfL levels, suggests potential protective effects of creatine against neuronal injury.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Erik Grasaas
- Teacher Education Unit, University of Agder, Kristiansand, Norway
| | - Sonja Baltic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Cvejic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
13
|
Gülersoy E, Balıkçı C, Şahan A, Günal İ, Atlı MO. NMR-based metabolomic investigation of dogs with acute flaccid paralysis due to tick paralysis. Vet Med Sci 2024; 10:e1528. [PMID: 38952268 PMCID: PMC11217601 DOI: 10.1002/vms3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Acute flaccid paralysis (AFP) is a complex clinical syndrome with various aetiologies. If untreated, AFP may lead to death due to failure of respiratory muscles. Tick paralysis, which is a noninfectious neurologic syndrome of AFP, occurs following tick attachment, engorgement, and injection of tick saliva toxins. There is no specific diagnostic test for tick paralysis, and mortality increases as definitive diagnosis is delayed. Although metabolomic investigation of tick saliva was conducted, there is a lack of research on metabolomic evaluation of hosts affected by tick paralysis. OBJECTIVES Thus, the aim of this study is to investigate metabolomic changes in serum samples of dogs with tick paralysis due to Rhipicephalus sanguineus using NMR-based metabolomics and to identify potential diagnostic/prognostic markers. MATERIALS AND METHODS Forty dogs infested with R. sanguineus, with clinical findings compatible with AFP and with a confirmed tick paralysis diagnosis ex juvantibus, constituted the Paralysis Group. Ten healthy dogs, which were admitted either for vaccination and/or check-up purposes, constituted the Control Group. After the confirmation tick paralysis, medical history, vaccination and nutritional status, body surface area and estimated tick numbers of all the dogs were noted. Physical examination included body temperature, heart and respiratory rate, capillary refill time evaluation and Modified Glasgow Coma Scale calculation. Serum samples were extracted from venous blood samples of all the dogs and were prepared for NMR analysis, and NMR-based metabolomics identification and quantification were performed. RESULTS NMR-based serum metabolomics of the present study revealed distinct up/down-regulated expressions, presenting a promising avenue. Moreover, it was observed that energy metabolism and especially liver functions were impaired in dogs with tick paralysis, and not only the respiratory system but also the kidneys were affected. CONCLUSION It was concluded that the present approach may help to better understand the pathological mechanisms developing in cases of AFP due to tick paralysis.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Canberk Balıkçı
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Adem Şahan
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - İsmail Günal
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Mehmet Osman Atlı
- Veterinary FacultyDepartment of Reproduction and Artificial InseminationHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
14
|
Wu W, Guo X, Qu T, Huang Y, Tao J, He J, Wang X, Luo J, An P, Zhu Y, Sun Y, Luo Y. The Combination of Lactoferrin and Creatine Ameliorates Muscle Decay in a Sarcopenia Murine Model. Nutrients 2024; 16:1958. [PMID: 38931310 PMCID: PMC11207062 DOI: 10.3390/nu16121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related condition characterized by progressive loss of muscle mass, strength, and function. The occurrence of sarcopenia has a huge impact on physical, psychological, and social health. Therefore, the prevention and treatment of sarcopenia is becoming an important public health issue. METHOD 35 six-week-old male C57BL/6 mice were randomly divided into five groups, one of which served as a control group, while the rest of the groups were constructed as a model of sarcopenia by intraperitoneal injection of D-galactose. The intervention with lactoferrin, creatine, and their mixtures, respectively, was carried out through gavage for 8 weeks. Muscle function was assessed based on their endurance, hanging time, and grip strength. The muscle tissues were weighed to assess the changes in mass, and the muscle RNA was extracted for myogenic factor expression and transcriptome sequencing to speculate on the potential mechanism of action by GO and KEGG enrichment analysis. RESULT The muscle mass (lean mass, GAS index), and muscle function (endurance, hanging time, and grip strength) decreased, and the size and structure of myofiber was smaller in the model group compared to the control group. The intervention with lactoferrin and creatine, either alone or combination, improved muscle mass and function, restored muscle tissue, and increased the expression of myogenic regulators. The combined group demonstrated the most significant improvement in these indexes. The RNA-seq results revealed enrichment in the longevity-regulated pathway, MAPK pathway, focal adhesion, and ECM-receptor interaction pathway in the intervention group. The intervention group may influence muscle function by affecting the proliferation, differentiation, senescence of skeletal muscle cell, and contraction of muscle fiber. The combined group also enriched the mTOR-S6K/4E-BPs signaling pathway, PI3K-Akt signaling pathway, and energy metabolism-related pathways, including Apelin signaling, insulin resistance pathway, and adipocytokine signaling pathway, which affect energy metabolism in muscle. CONCLUSIONS Lactoferrin and creatine, either alone or in combination, were found to inhibit the progression of sarcopenia by influencing the number and cross-sectional area of muscle fibers and muscle protein synthesis. The combined intervention appears to exert a more significant effect on energy metabolism.
Collapse
Affiliation(s)
- Wenbin Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Xinlu Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Taiqi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yuejia Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Jin Tao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Xiaoping Wang
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China;
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yinhua Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (X.G.); (T.Q.); (Y.H.); (J.T.); (J.L.); (P.A.)
| |
Collapse
|
15
|
Sawant H, Selvaraj R, Manogaran P, Borthakur A. Intestinal Epithelial Creatine Transporter SLC6A8 Dysregulation in Inflammation and in Response to Adherent Invasive E. coli Infection. Int J Mol Sci 2024; 25:6537. [PMID: 38928243 PMCID: PMC11204174 DOI: 10.3390/ijms25126537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Creatine transporter (CrT1) mediates cellular uptake of creatine (Cr), a nutrient pivotal in maintaining energy homeostasis in various tissues including intestinal epithelial cells (IECs). The impact of CrT1 deficiency on the pathogenesis of various psychiatric and neurological disorders has been extensively investigated. However, there are no studies on its regulation in IECs in health and disease. Current studies have determined differential expression of CrT1 along the length of the mammalian intestine and its dysregulation in inflammatory bowel disease (IBD)-associated inflammation and Adherent Invasive E. coli (AIEC) infection. CrT1 mRNA and protein levels in normal intestines and their alterations in inflammation and following AIEC infection were determined in vitro in model IECs (Caco-2/IEC-6) and in vivo in SAMP1/YitFc mice, a model of spontaneous ileitis resembling human IBD. CrT1 is differentially expressed in different regions of mammalian intestines with its highest expression in jejunum. In vitro, CrT1 function (Na+-dependent 14C-Cr uptake), expression and promoter activity significantly decreased following TNFα/IL1β treatments and AIEC infection. SAMP1 mice and ileal organoids generated from SAMP1 mice also showed decreased CrT1 mRNA and protein compared to AKR controls. Our studies suggest that Cr deficiency in IECs secondary to CrT1 dysregulation could be a key factor contributing to IBD pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Alip Borthakur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.S.); (R.S.); (P.M.)
| |
Collapse
|
16
|
McMorris T, Hale BJ, Pine BS, Williams TB. Creatine supplementation research fails to support the theoretical basis for an effect on cognition: Evidence from a systematic review. Behav Brain Res 2024; 466:114982. [PMID: 38582412 DOI: 10.1016/j.bbr.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/15/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Creatine supplementation has been put forward as a possible aid to cognition, particularly for vegans, vegetarians, the elderly, sleep deprived and hypoxic individuals. However, previous narrative reviews have only provided limited support for these claims. This is despite the fact that research has shown that creatine supplementation can induce increased brain concentrations of creatine, albeit to a limited extent. We carried out a systematic review to examine the current state of affairs. The review supported claims that creatine supplementation can increases brain creatine content but also demonstrated somewhat equivocal results for effects on cognition. It does, however, provide evidence to suggest that more research is required with stressed populations, as supplementation does appear to significantly affect brain content. Issues with research design, especially supplementation regimens, need to be addressed. Future research must include measurements of creatine brain content.
Collapse
Affiliation(s)
- Terry McMorris
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom; Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO12ER, United Kingdom.
| | - Beverley J Hale
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom
| | - Beatrice S Pine
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom
| | - Thomas B Williams
- Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO12ER, United Kingdom
| |
Collapse
|
17
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
18
|
Gordji-Nejad A, Matusch A, Kleedörfer S, Jayeshkumar Patel H, Drzezga A, Elmenhorst D, Binkofski F, Bauer A. Single dose creatine improves cognitive performance and induces changes in cerebral high energy phosphates during sleep deprivation. Sci Rep 2024; 14:4937. [PMID: 38418482 PMCID: PMC10902318 DOI: 10.1038/s41598-024-54249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 03/01/2024] Open
Abstract
The inverse effects of creatine supplementation and sleep deprivation on high energy phosphates, neural creatine, and cognitive performances suggest that creatine is a suitable candidate for reducing the negative effects of sleep deprivation. With this, the main obstacle is the limited exogenous uptake by the central nervous system (CNS), making creatine only effective over a long-term diet of weeks. Thus far, only repeated dosing of creatine over weeks has been studied, yielding detectable changes in CNS levels. Based on the hypothesis that a high extracellular creatine availability and increased intracellular energy consumption will temporarily increase the central creatine uptake, subjects were orally administered a high single dose of creatinemonohydrate (0.35 g/kg) while performing cognitive tests during sleep deprivation. Two consecutive 31P-MRS scans, 1H-MRS, and cognitive tests were performed each at evening baseline, 3, 5.5, and 7.5 h after single dose creatine (0.35 g/kg) or placebo during sub-total 21 h sleep deprivation (SD). Our results show that creatine induces changes in PCr/Pi, ATP, tCr/tNAA, prevents a drop in pH level, and improves cognitive performance and processing speed. These outcomes suggest that a high single dose of creatine can partially reverse metabolic alterations and fatigue-related cognitive deterioration.
Collapse
Affiliation(s)
- Ali Gordji-Nejad
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Sophie Kleedörfer
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Harshal Jayeshkumar Patel
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alexander Drzezga
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
19
|
Wu H, Xie J, Peng W, Ji F, Qian J, Shen Q, Hou G. Effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. Front Vet Sci 2024; 11:1364815. [PMID: 38435369 PMCID: PMC10904544 DOI: 10.3389/fvets.2024.1364815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Exogenous supplementation of guanidinoacetic acid can mechanistically regulate the energy distribution in muscle cells. This study aimed to investigate the effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. We randomly divided 480 42 days-old female Jiaji ducks into four groups with six replicates and 20 ducks for each replicate. The control group was fed the basal diet, and the experimental groups were fed the basal diet with 400, 600, and 800 mg/kg (GA400, GA600, and GA800) guanidinoacetic acid, respectively. Compared with the control group, (1) the total cholesterol (p = 0.0262), triglycerides (p = 0.0357), malondialdehyde (p = 0.0452) contents were lower in GA400, GA600 and GA800 in the liver; (2) the total cholesterol (p = 0.0365), triglycerides (p = 0.0459), and malondialdehyde (p = 0.0326) contents in breast muscle were decreased in GA400, GA600 and GA800; (3) the high density lipoprotein (p = 0.0356) and apolipoprotein-A1 (p = 0.0125) contents were increased in GA600 in the liver; (4) the apolipoprotein-A1 contents (p = 0.0489) in breast muscle were higher in GA600 and GA800; (5) the lipoprotein lipase contents (p = 0.0325) in the liver were higher in GA600 and GA800; (6) the malate dehydrogenase contents (p = 0.0269) in breast muscle were lower in GA400, GA600, and GA800; (7) the insulin induced gene 1 (p = 0.0326), fatty acid transport protein 1 (p = 0.0412), and lipoprotein lipase (p = 0.0235) relative expression were higher in GA400, GA600, and GA800 in the liver; (8) the insulin induced gene 1 (p = 0.0269), fatty acid transport protein 1 (p = 0.0234), and lipoprotein lipase (p = 0.0425) relative expression were increased in GA400, GA600, and GA800 in breast muscle. In this study, the optimum dosage of 600 mg/kg guanidinoacetic acid improved the liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks.
Collapse
Affiliation(s)
- Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiajun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Weiqi Peng
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinyu Qian
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qian Shen
- Hainan Xuhuai Technology Co., Ltd., Haikou, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
20
|
Finnegan E, Daly E, Ryan L. Nutritional Considerations of Irish Performance Dietitians and Nutritionists in Concussion Injury Management. Nutrients 2024; 16:497. [PMID: 38398823 PMCID: PMC10891776 DOI: 10.3390/nu16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Sport-related concussion incidence has increased in many team-based sports, such as rugby, Gaelic (camogie, hurling, football), and hockey. Concussion disrupts athletes' brain function, causing an "energy crisis" that requires energy and nutrient support to restore function and heal. Performance dietitians and nutritionists play a role in supporting athletes' post-injury nutritional demands. This study aimed to investigate Irish performance dietitians' and nutritionists' knowledge and implementation of nutritional strategies to manage and support athletes' recovery following concussion. In-depth, semi-structured interviews were conducted with seventeen (n = 17) Irish performance dietitians and nutritionists recruited from the Sport and Exercise Nutrition register and other sporting body networks across Ireland. Participants practised or had practised with amateur and/or professional athletes within the last ten years. All interviews and their transcripts were thematically analysed to extract relevant insights. These data provided valuable insights revealing performance dietitians and nutritionists: (1) their awareness of concussion events and (2) their use of nutritional supports for concussion management. Furthermore, the research highlighted their implementation of 'novel nutritional protocols' specifically designed to support and manage athletes' concussion recovery. There was a clear contrast between participants who had an awareness and knowledge of the importance of nutrition for brain recovery after sport-related concussion(s) and those who did not. Participants presenting with a practical understanding mentioned re-emphasising certain foods and supplements they were already recommending to athletes in the event of a concussion. Performance dietitians and nutritionists were keeping up to date with nutrition research on concussions, but limited evidence has prevented them from implementing protocols in practice. Meanwhile, participants mentioned trialling/recommending nutritional protocols, such as carbohydrate reloading, reducing omega-6 intake, and acutely supplementing creatine, omega-3 fish oils high in Docosahexaenoic acid, and probiotics to support brain healing. Performance dietitians' and nutritionists' use of nutrition protocols with athletes following concussion was linked to their knowledge and the limited scientific evidence available. Nutrition implementation, therefore, may be overlooked or implemented with uncertainty, which could negatively affect athletes' recovery following sports-related concussions.
Collapse
Affiliation(s)
| | | | - Lisa Ryan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), H91 T8NW Galway, Ireland; (E.F.); (E.D.)
| |
Collapse
|
21
|
Xue M, Yu R, Yang L, Xie F, Fang M, Tang Q. Metabolomics and transcriptomics of embryonic livers reveal hypoxia adaptation of Tibetan chickens. BMC Genomics 2024; 25:131. [PMID: 38302894 PMCID: PMC10832288 DOI: 10.1186/s12864-024-10030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Exploring the hypoxia adaptation mechanism of Tibetan chicken is of great significance for revealing the survival law of Tibetan chicken and plateau animal husbandry production. To investigate the hypoxia adaptation of Tibetan chickens (TBCs), an integrative metabolomic-transcriptomic analysis of the liver on day 18 of embryonic development was performed. Dwarf laying chickens (DLCs), a lowland breed, were used as a control. RESULTS A total of 1,908 metabolites were identified in both TBCs and DLCs. Energy metabolism and amino acid metabolism related differentially regulated metabolites (DRMs) were significantly enriched under hypoxia. Important metabolic pathways including the TCA cycle and arginine and proline metabolism were screened; PCK1, SUCLA2, and CPS1 were found to be altered under hypoxic conditions. In addition, integrated analysis suggested potential differences in mitochondrial function, which may play a crucial role in the study of chicken oxygen adaptation. CONCLUSIONS These results suggest that hypoxia changed the gene expression and metabolic patterns of embryonic liver of TBCs compared to DLCs. Our study provides a basis for uncovering the molecular regulation mechanisms of hypoxia adaptation in TBCs with the potential application of hypoxia adaptation research for other animals living on the Qinghai-Tibet plateau, and may even contribute to the study of diseases caused by hypoxia.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Runjie Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Lixian Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Qiguo Tang
- Development Center of Science and Technology, MARA, 100176, Beijing, China.
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
22
|
Karger G, Berger J, Dringen R. Modulation of Cellular Levels of Adenosine Phosphates and Creatine Phosphate in Cultured Primary Astrocytes. Neurochem Res 2024; 49:402-414. [PMID: 37855866 PMCID: PMC10787699 DOI: 10.1007/s11064-023-04039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Adenosine triphosphate (ATP) is the main energy currency of all cells, while creatine phosphate (CrP) is considered as a buffer of high energy-bond phosphate that facilitates rapid regeneration of ATP from adenosine diphosphate (ADP). Astrocyte-rich primary cultures contain ATP, ADP and adenosine monophosphate (AMP) in average specific contents of 36.0 ± 6.4 nmol/mg, 2.9 ± 2.1 nmol/mg and 1.7 ± 2.1 nmol/mg, respectively, which establish an adenylate energy charge of 0.92 ± 0.04. The average specific cellular CrP level was found to be 25.9 ± 10.8 nmol/mg and the CrP/ATP ratio was 0.74 ± 0.28. The specific cellular CrP content, but not the ATP content, declined with the age of the culture. Absence of fetal calf serum for 24 h caused a partial loss in the cellular contents of both CrP and ATP, while application of creatine for 24 h doubled the cellular CrP content and the CrP/ATP ratio, but did not affect ATP levels. In glucose-deprived astrocytes, the high cellular ATP and CrP contents were rapidly depleted within minutes after application of the glycolysis inhibitor 2-deoxyglucose and the respiratory chain inhibitor antimycin A. For those conditions, the decline in CrP levels always preceded that of ATP contents. In contrast, incubation of glucose-fed astrocytes for up to 30 min with antimycin A had little effect on the high cellular ATP content, while the CrP level was significantly lowered. These data demonstrate the importance of cellular CrP for maintaining a high cellular ATP content in astrocytes during episodes of impaired ATP regeneration.
Collapse
Affiliation(s)
- Gabriele Karger
- Faculty 2 (Biology/Chemistry), Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Julius Berger
- Faculty 2 (Biology/Chemistry), Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Faculty 2 (Biology/Chemistry), Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
23
|
Kureshi S, Mendizabal M, Francis J, Djalilian HR. Conservative Management of Acute Sports-Related Concussions: A Narrative Review. Healthcare (Basel) 2024; 12:289. [PMID: 38338173 PMCID: PMC10855441 DOI: 10.3390/healthcare12030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This review explores the application of the conservative management model for pain to sports-related concussions (SRCs), framing concussions as a distinct form of pain syndrome with a pathophysiological foundation in central sensitization. Drawing parallels with proven pain management models, we underscore the significance of a proactive approach to concussion management. Recognizing concussions as a pain syndrome allows for the tailoring of interventions in alignment with conservative principles. This review first covers the epidemiology and controversies surrounding prolonged concussion recovery and persistent post-concussion symptoms (PPCS). Next, the pathophysiology of concussions is presented within the central sensitization framework, emphasizing the need for early intervention to mitigate the neuroplastic changes that lead to heightened pain sensitivity. Five components of the central sensitization process specific to concussion injuries are highlighted as targets for conservative interventions in the acute period: peripheral sensitization, cerebral metabolic dysfunction, neuroinflammation, glymphatic system dysfunction, and pain catastrophizing. These proactive interventions are emphasized as pivotal in accelerating concussion recovery and reducing the risk of prolonged symptoms and PPCS, in line with the philosophy of conservative management.
Collapse
Affiliation(s)
- Sohaib Kureshi
- Neurosurgical Medical Clinic, San Diego, CA 92111, USA
- TBI Virtual, San Diego, CA 92111, USA
| | | | | | - Hamid R. Djalilian
- TBI Virtual, San Diego, CA 92111, USA
- Departments of Otolaryngology, Neurological Surgery, and Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Prochazkova P, Sonka K, Roubalova R, Jezkova J, Nevsimalova S, Buskova J, Merkova R, Dvorakova T, Prihodova I, Dostalova S, Tlaskalova-Hogenova H. Investigation of anti-neuronal antibodies and disparity in central hypersomnias. Sleep Med 2024; 113:220-231. [PMID: 38056084 DOI: 10.1016/j.sleep.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
STUDY OBJECTIVES Microbial antigens can elicit an immune response leading to the production of autoantibodies cross-reacting with autoantigens. Still, their clinical significance in human sera in the context of brain diseases is unclear. Therefore, assessment of natural autoantibodies reacting with their neuropeptides may elucidate the autoimmune etiology of central hypersomnias. The study aims to determine whether serum autoantibody levels differ in patients with different types of central hypersomnias (narcolepsy type 1 and 2, NT1 and NT2; idiopathic hypersomnia, IH) and healthy controls and if the differences could suggest the participation of autoantibodies in disease pathogenesis. METHODS Sera from 91 patients with NT1, 27 with NT2, 46 with IH, and 50 healthy controls were examined for autoantibodies against assorted neuropeptides. Participants were screened using questionnaires related to sleep disorders, quality of life, and mental health conditions. In addition, serum biochemical parameters and biomarkers of microbial penetration through the intestinal wall were determined. RESULTS A higher prevalence of autoantibodies against neuropeptides was observed only for alpha-melanocytes-stimulating hormone (α-MSH) and neuropeptide glutamic acid-isoleucine (NEI), which differed slightly among diagnoses. Patients with both types of narcolepsy exhibited signs of microbial translocation through the gut barrier. According to the questionnaires, patients diagnosed with NT2 or IH had subjectively worse life quality than patients with NT1. Patients displayed significantly lower levels of bilirubin and creatinine and slightly higher alkaline phosphatase values than healthy controls. CONCLUSIONS Overall, serum anti-neuronal antibodies prevalence is rare, suggesting that their participation in the pathophysiology of concerned sleep disorders is insignificant. Moreover, their levels vary slightly between diagnoses indicating no major diagnostic significance.
Collapse
Affiliation(s)
- Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Janet Jezkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sona Nevsimalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jitka Buskova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radana Merkova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Dvorakova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Stets VV, Kolobaeva EG, Grabko EA, Shestopalov AE. [Nutritional support in rehabilitation of victims with severe combined trauma]. Khirurgiia (Mosk) 2024:62-72. [PMID: 39422007 DOI: 10.17116/hirurgia202410162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To evaluate the clinical and rehabilitation effectiveness of the protein module (Fresubin Protein) in therapeutic nutrition in patients with severe combined injury (polytrauma) at the rehabilitation stage in a specialized department (neurosurgery). MATERIAL AND METHODS We examined 43 victims who received a combined injury that required treatment in the intensive care unit with subsequent transfer to a specialized department (neurosurgery). At the stage of treatment and rehabilitation in the specialized department, we assessed the biochemical parameters of carbohydrate, fat and protein metabolism, body composition, as well as energy metabolism using indirect calorimetry, and the functional state of the gastrointestinal tract. In the comparison group, patients received a standard diet at the rate of 30 kcal/kg BW. The main group received a standard diet (30 kcal/kg BW) with the addition of a protein module (0.8 g/kg BW) to the diet as an additional source of protein. RESULTS In both observation groups, moderate to severe protein-energy malnutrition was diagnosed before the study (decreased total protein level - 50.63±1.3 g/l, albumin - 27.97±0.95 g/l, transferrin - 1.33±0.9 g/l). Anthropometric parameters (BMI=17.1±1.2 kg/m2, BMD=20.15±1.5 cm, OP=22.2±1.1 cm, TKFST=8.4±0.5 cm) indicated a deficiency of the somatic protein pool, lean and fat body mass. No pronounced disorders of carbohydrate and fat metabolism were noted. A correlation was found between the dynamics of protein metabolism and the inflammatory process parameters (CRP, white blood cell count, r=-0.79, p=0.001). Against the background of nutritional support with the inclusion of a protein module in the diet, by the 21st day, patients of the main group showed a reliable (p<0.05) normalization of protein metabolism parameters, an increase in lean body mass. CONCLUSION The results of the studies indicate that in victims with severe combined trauma, upon admission to the treatment and rehabilitation stage in a specialized department, despite the intensive care provided in the intensive care unit, moderate to severe protein-energy malnutrition with severe protein metabolism disorders is diagnosed. This is manifested by a decrease in the concentration of total protein, albumin, transferrin, and somatic protein pool. Low lean mass values indicate a deficiency of the protein component of nutritional support, a decrease in lean and muscle mass. The consequence of which is a limitation of the volume of rehabilitation, an increased risk of complications. The identified protein deficiency dictates the need to increase the protein component of therapeutic nutrition. Inclusion of a protein module in the therapeutic nutrition program at the rate of 0.8 g/kg of body weight ensures adequate correction of protein metabolism disorders, overall nutritional status in severe combined injury and creates the prerequisites for increasing the effectiveness of rehabilitation measures.
Collapse
Affiliation(s)
- V V Stets
- Main Military Clinical Hospital named after Academician N.N. Burdenko, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - E G Kolobaeva
- Main Military Clinical Hospital named after Academician N.N. Burdenko, Moscow, Russia
| | - E A Grabko
- Main Military Clinical Hospital named after Academician N.N. Burdenko, Moscow, Russia
| | - A E Shestopalov
- Main Military Clinical Hospital named after Academician N.N. Burdenko, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
- Federal State Budgetary Institution of Science Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| |
Collapse
|
26
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
27
|
Oliveira EF, Forbes SC, Borges EQ, Machado LF, Candow DG, Machado M. Association between dietary creatine and visuospatial short-term memory in older adults. Nutr Health 2023; 29:731-736. [PMID: 35603861 DOI: 10.1177/02601060221102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aims: The purpose was to examine the relationship between habitual dietary creatine intake obtained in food and visuospatial short-term memory (VSSM). Methods: Forty-two participants (32 females, 10 males; > 60 yrs of age) completed a 5-day dietary recall to estimate creatine intake and performed a cognitive assessment which included a visuospatial short-term memory test (forward and reverse corsi block test) and a mini-mental state examination (MMSE). Pearson correlation coefficients were determined. Further, cohorts were derived based on the median creatine intake. Results: There was a significant correlation between the forward Corsi (r = 0.703, P < 0.001), reverse Corsi (r = 0.715, P < 0.001), and the memory sub-component of the MMSE (r = 0.406, P = 0.004). A median creatine intake of 0.382 g/day was found. Participants consuming greater than the median had a significantly higher Corsi (P = 0.005) and reverse Corsi (P < 0.001) scores compared to participants ingesting less than the median. Conclusions: Dietary creatine intake is positively associated with measures of memory in older adults. Clinical Implications: Older adults should consider food sources containing creatine (i.e. red meat, seafood) due to the positive association with visuospatial short-term memory.
Collapse
Affiliation(s)
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | | | | | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Marco Machado
- Universidade Iguaçu Campus V, Itaperuna, RJ, Brazil
- Itaperuna Universitary Foundation (FUNITA), Itaperuna, RJ, Brazil
| |
Collapse
|
28
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
29
|
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023; 15:4977. [PMID: 38068833 PMCID: PMC10708571 DOI: 10.3390/nu15234977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Equestrian sport is under-researched within the sport science literature, creating a possible knowledge vacuum for athletes and support personnel wishing to train and perform in an evidence-based manner. This review aims to synthesise available evidence from equitation, sport, and veterinary sciences to describe the pertinent rider physiology of equestrian disciplines. Estimates of energy expenditure and the contribution of underpinning energy systems to equestrian performance are used to provide nutrition and hydration recommendations for competition and training in equestrian disciplines. Relative energy deficiency and disordered eating are also considered. The practical challenges of the equestrian environment, including competitive, personal, and professional factors, injury and concussion, and female participation, are discussed to better highlight novelty within equestrian disciplines compared to more commonly studied sports. The evidence and recommendations are supported by example scenarios, and future research directions are outlined.
Collapse
Affiliation(s)
- Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Te Pūkenga, Hamilton 3200, New Zealand
| | - Jane M. Williams
- Department of Animal Science, Hartpury University, Hartpury Gl19 3BE, UK;
| | - Jeni Pearce
- High Performance Sport New Zealand, Auckland 0632, New Zealand;
| |
Collapse
|
30
|
Sandkühler JF, Kersting X, Faust A, Königs EK, Altman G, Ettinger U, Lux S, Philipsen A, Müller H, Brauner J. The effects of creatine supplementation on cognitive performance-a randomised controlled study. BMC Med 2023; 21:440. [PMID: 37968687 PMCID: PMC10647179 DOI: 10.1186/s12916-023-03146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Creatine is an organic compound that facilitates the recycling of energy-providing adenosine triphosphate (ATP) in muscle and brain tissue. It is a safe, well-studied supplement for strength training. Previous studies have shown that supplementation increases brain creatine levels, which might increase cognitive performance. The results of studies that have tested cognitive performance differ greatly, possibly due to different populations, supplementation regimens, and cognitive tasks. This is the largest study on the effect of creatine supplementation on cognitive performance to date. METHODS Our trial was preregistered, cross-over, double-blind, placebo-controlled, and randomised, with daily supplementation of 5 g for 6 weeks each. We tested participants on Raven's Advanced Progressive Matrices (RAPM) and on the Backward Digit Span (BDS). In addition, we included eight exploratory cognitive tests. About half of our 123 participants were vegetarians and half were omnivores. RESULTS Bayesian evidence supported a small beneficial effect of creatine. The creatine effect bordered significance for BDS (p = 0.064, η2P = 0.029) but not RAPM (p = 0.327, η2P = 0.008). There was no indication that creatine improved the performance of our exploratory cognitive tasks. Side effects were reported significantly more often for creatine than for placebo supplementation (p = 0.002, RR = 4.25). Vegetarians did not benefit more from creatine than omnivores. CONCLUSIONS Our study, in combination with the literature, implies that creatine might have a small beneficial effect. Larger studies are needed to confirm or rule out this effect. Given the safety and broad availability of creatine, this is well worth investigating; a small effect could have large benefits when scaled over time and over many people. TRIAL REGISTRATION The trial was prospectively registered (drks.de identifier: DRKS00017250, https://osf.io/xpwkc/ ).
Collapse
Affiliation(s)
- Julia Fabienne Sandkühler
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| | - Xenia Kersting
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Mainz, Germany
| | - Annika Faust
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Eva Kathrin Königs
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - George Altman
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Helge Müller
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Health, Witten/Herdecke University, Witten, Germany
| | - Jan Brauner
- Department of Health, Witten/Herdecke University, Witten, Germany
- Department of Computer Science, University of Oxford, Oxford, UK
- Future of Humanity Institute, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Slankamenac J, Ranisavljev M, Todorovic N, Ostojic J, Stajer V, Ostojic SM. Effects of six-month creatine supplementation on patient- and clinician-reported outcomes, and tissue creatine levels in patients with post-COVID-19 fatigue syndrome. Food Sci Nutr 2023; 11:6899-6906. [PMID: 37970399 PMCID: PMC10630839 DOI: 10.1002/fsn3.3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 11/17/2023] Open
Abstract
Dietary creatine has been recently put forward as a possible intervention strategy to reduce post-COVID-19 fatigue syndrome yet no clinical study so far evaluated its efficacy and safety for this perplexing condition. In this parallel-group, randomized placebo-controlled double-blind trial, we analyzed the effects of 6-month creatine supplementation (4 g of creatine monohydrate per day) on various patient- and clinician-reported outcomes, and tissue creatine levels in 12 patients with post-COVID-19 fatigue syndrome. Creatine intake induced a significant increase in tissue creatine levels in vastus medialis muscle and right parietal white matter compared to the baseline values at both 3-month and 6-month follow-ups (p < .05). Two-way analysis of variance with repeated measures revealed a significant difference (treatment vs. time interaction) between interventions in tissue creatine levels (p < .05), with the creatine group was superior to placebo to augment creatine levels at vastus medialis muscle, left frontal white matter, and right parietal white matter. Creatine supplementation induced a significant reduction in general fatigue after 3 months of intake compared to baseline values (p = .04), and significantly improved scores for several post-COVID-19 fatigue syndrome-related symptoms (e.g., ageusia, breathing difficulties, body aches, headache, and difficulties concentrating) at 6-month follow-up (p < .05). Taking creatine for 6 months appears to improve tissue bioenergetics and attenuate clinical features of post-COVID-19 fatigue syndrome; additional studies are warranted to confirm our findings in various post-COVID-19 cohorts.
Collapse
Affiliation(s)
- Jelena Slankamenac
- Applied Bioenergetics Lab, Faculty of Sport and PEUniversity of Novi SadNovi SadSerbia
| | - Marijana Ranisavljev
- Applied Bioenergetics Lab, Faculty of Sport and PEUniversity of Novi SadNovi SadSerbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and PEUniversity of Novi SadNovi SadSerbia
| | - Jelena Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PEUniversity of Novi SadNovi SadSerbia
- Faculty of MedicineUniversity of Novi SadNovi SadSerbia
| | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and PEUniversity of Novi SadNovi SadSerbia
| | - Sergej M. Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PEUniversity of Novi SadNovi SadSerbia
- Department of Nutrition and Public HealthUniversity of AgderKristiansandNorway
- Faculty of Health SciencesUniversity of PecsPecsHungary
| |
Collapse
|
32
|
Ryberg M, Boraxbekk CJ, Kjaer M, Demnitz N. Effects of acute physical activity on brain metabolites as measured by magnetic resonance spectroscopy ( 1H-MRS) in humans: A systematic review. Heliyon 2023; 9:e20534. [PMID: 37818016 PMCID: PMC10560775 DOI: 10.1016/j.heliyon.2023.e20534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Physical activity (PA) promotes brain health in a variety of domains including cognition, mood, and neuroplasticity. At the neurochemical level, the mechanisms underlying these effects in the brain are not fully understood. With proton Magnetic Resonance Spectroscopy (1H-MRS), it is possible to non-invasively quantify metabolite concentrations, enabling studies to obtain measures of exercise-induced neurochemical changes. This systematic review aimed to examine the existing literature on acute effects of PA on brain metabolites as measured by 1H-MRS. Four databases (Cochrane Central Register of Controlled Trials, PubMed, Embase, and PsycINFO) were searched, identifying 2965 studies, of which 9 met the inclusion criteria. Across studies, Gamma-AminoButyric Acid (GABA) and lactate tended to increase after exercise, while no significant changes in choline were reported. For glutamine/glutamate (Glx), studies were inconclusive. Conclusions were limited by the lack of consensus on 1H-MRS data processing and exercise protocols. To reduce inter-study differences, future studies are recommended to (1): apply a standardized exercise index (2), consider the onset time of MRS scans, and (3) follow standardized MRS quantification methods.
Collapse
Affiliation(s)
- Mathias Ryberg
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Carl-Johan Boraxbekk
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Naiara Demnitz
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
| |
Collapse
|
33
|
Li J, Xu S. Diagnosis and Treatment of X-Linked Creatine Transporter Deficiency: Case Report and Literature Review. Brain Sci 2023; 13:1382. [PMID: 37891751 PMCID: PMC10605349 DOI: 10.3390/brainsci13101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: X-linked creatine transporter deficiency (CTD) (OMIM 300036) is a rare group of inherited metabolic disorders characterized by global developmental delay/intellectual disability (GDD/ID), seizures, autistic behavior, and movement disorders. Pathogenic variants in the SLC6A8 gene, located at Xq28, are causative of the disease, leading to impaired creatine transport into the brain. Supplementation with creatine and its precursors, glycine and arginine, has been attempted, yet the treatment efficacy remains controversial. (2) Methods: Here we report a de novo SLC6A8 variant in a boy aged 3 years 9 months presenting with GDD, autistic behavior, and epilepsy. Elevated urinary creatine/creatinine ratio and diminished creatine peak on brain MR spectroscopy suggested the diagnosis of CTD. Genetic sequencing revealed a de novo hemizygous frameshift variant (NM_005629: c.1136_1137del, p. Glu379ValfsTer85). Creatine supplementation therapy was initiated after definitive diagnosis. Electroencephalography and MR spectroscopy were monitored during follow-up in concurrence with neuropsychological evaluations. The clinical phenotype and treatment response of CTD were summarized by systematic view of the literature. (3) Results: In silico analysis showed this variant to be deleterious, probably interfering with substrate binding and conformational changes during creatine transport. Creatine supplementation therapy led to seizure cessation and modest cognitive improvement after half-year's treatment. (4) Conclusions: This case highlights the importance of MR spectroscopy and metabolic screening in males with GDD/ID, allowing for early diagnosis and therapeutic intervention. Mechanistic understanding and case-per-se analysis are required to enable precision treatment for the patients.
Collapse
Affiliation(s)
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
34
|
Bahari Z, Jangravi Z, Hatef B, Valipour H, Meftahi GH. Creatine supplementation protects spatial memory and long-term potentiation against chronic restraint stress. Behav Pharmacol 2023; 34:330-339. [PMID: 37462147 DOI: 10.1097/fbp.0000000000000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Stress contributes to numerous psychopathologies, including memory impairment, and threatens one's well-being. It has been reported that creatine supplementation potentially influences cognitive processing. Hence, in this study, we examined the effects of creatine supplementation on memory, synaptic plasticity, and neuronal arborization in the CA1 region of the hippocampus in rats under chronic restraint stress (CRS). Thirty-two adult male Wistar rats (8 weeks old) weighing 200-250 g were randomly divided into four groups (n = 8/per group): control, stress, creatine, and stress + creatine. CRS was induced for 6 h per day for 14 days, and creatine supplementation was carried out by dissolving creatine (2 g/kg body weight per day) in the animals' drinking water for 14 days. We used the Barnes maze and shuttle box for spatial and passive avoidance memory examination. The in-vivo field potential recording and Golgi-Cox staining were also used to investigate long-term potentiation (LTP) and dendrite arborization in the CA1 pyramidal neurons. Chronic stress impaired spatial memory, dysregulated LTP parameters, and decreased the number of dendrites in the CA1 pyramidal neurons of stressed rats, and creatine supplementation modified these effects in stressed rats. It seems that creatine supplementation can improve spatial memory deficits and synaptic plasticity loss induced by CRS in hippocampal CA1 neurons, possibly by reducing the dendrite arborization damages. However, understanding its mechanism needs further investigation.
Collapse
Affiliation(s)
- Zahra Bahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Boshra Hatef
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | - Habib Valipour
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | | |
Collapse
|
35
|
Moriarty T, Bourbeau K, Dorman K, Runyon L, Glaser N, Brandt J, Hoodjer M, Forbes SC, Candow DG. Dose-Response of Creatine Supplementation on Cognitive Function in Healthy Young Adults. Brain Sci 2023; 13:1276. [PMID: 37759877 PMCID: PMC10526554 DOI: 10.3390/brainsci13091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
To determine if creatine (Cr) supplementation could influence cognitive performance and whether any changes were related to changes in prefrontal cortex (PFC) activation during such cognitive tasks, thirty (M = 11, F = 19) participants were evenly randomized to receive supplementation with Cr (CR10:10 g/day or CR20:20 g/day) or a placebo (PLA:10 g/day) for 6 weeks. Participants completed a cognitive test battery (processing speed, episodic memory, and attention) on two separate occasions prior to and following supplementation. Functional near-infrared spectroscopy (fNIRS) was used to measure PFC oxyhemoglobin (O2Hb) during the cognitive evaluation. A two-way repeated measures ANOVA was used to determine the differences between the groups and the timepoints for the cognitive performance scores and PFC O2Hb. In addition, a one-way ANOVA of % change was used to determine pre- and post-differences between the groups. Creatine (independent of dosage) had no significant effect on the measures of cognitive performance. There was a trend for decreased relative PFC O2Hb in the CR10 group versus the PLA group in the processing speed test (p = 0.06). Overall, six weeks of Cr supplementation at a moderate or high dose does not improve cognitive performance or change PFC activation in young adults.
Collapse
Affiliation(s)
- Terence Moriarty
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Kelsey Bourbeau
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Katie Dorman
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Lance Runyon
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Noah Glaser
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Jenna Brandt
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Mallory Hoodjer
- Department of Kinesiology & Athletic Training, University of Northern Iowa, Cedar Falls, IA 50614, USA; (K.B.); (K.D.); (L.R.); (N.G.); (J.B.); (M.H.)
| | - Scott C. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Darren G. Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada;
| |
Collapse
|
36
|
Nwafor D, Goeckeritz J, Hasanpour Z, Davidson C, Lucke-Wold B. Nutritional Support Following Traumatic Brain Injury: A Comprehensive Review. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2023; 8:236-247. [PMID: 37795213 PMCID: PMC10550050 DOI: 10.14218/erhm.2022.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury (TBI) can contribute to extensive dysbiosis of the gastrointestinal system, leading to worsened outcomes. The importance of nutrition in recovery is underappreciated but highly important. In this focused review, we discuss the timing of nutritional interventions with supporting data. We highlight routes of administration that are important given the extent of injury often seen in TBI. The increased energy demands can be met through these approaches. Furthermore, patients need increased vitamins, minerals, and supplements. These interventions are constantly being refined. The current standards are reviewed with an emphasis on evidence-based practices.
Collapse
Affiliation(s)
- Divine Nwafor
- Department of Neurosurgery, West Virginia University, Morgantown, USA
| | - Joel Goeckeritz
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Zahra Hasanpour
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | | |
Collapse
|
37
|
Meftahi GH, Hatef B, Pirzad Jahromi G. Creatine Activity as a Neuromodulator in the Central Nervous System. ARCHIVES OF RAZI INSTITUTE 2023; 78:1169-1175. [PMID: 38226371 PMCID: PMC10787915 DOI: 10.32592/ari.2023.78.4.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/05/2023] [Indexed: 01/17/2024]
Abstract
Creatine is a nutritional compound that potentially influences cognitive processing and neuroprotection. Recent evidence has demonstrated that similar to neurotransmitters, creatine is released in an excitotoxic and action potential-dependent manner and acts as a neuromodulator. Creatine deficiency syndromes are characterized by severe mental and developmental disorders. Studies have reported that brain creatine content could be enhanced with creatine supplementation. Nevertheless, there is still limited knowledge about the effects of creatine on the central nervous system. However, ample evidence has proved the neuroprotective effects of creatine on various mental aspects, such as cognition, memory skills, and spatial memory. The present review aimed to review available experimental data and clinical observations confirming creatine roles in the central transmission process. A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, and Google Scholar database using all available MeSH terms for Creatine, Phosphocreatine, Bioenergetics, Nervous system, Brain, Cognition, and Neuroprotection. Electronic database searches were combined and duplicates were removed. Here, first, creatine and its potential influence on cognitive health and performance were briefly reviewed. Next, the existing experimental and clinical evidence was specifically explored to understand how creatine could interact as a neurotransmitter in the nervous system. Studies have revealed that exogenous creatine supplementation decreases neuronal cell loss in experimental paradigms of neurological diseases. It was observed that creatine could interact with the N-methyl-D-aspartate receptor, Na+-K+-ATPase enzyme, GABAA receptor, serotonin 1A receptors, and presumably α1-adrenoceptor and play critical roles in the central transmission process which implies that creatine can be considered a neuromodulator.
Collapse
Affiliation(s)
- G H Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Hatef
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - G Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Alraddadi EA, Khojah AM, Alamri FF, Kecheck HK, Altaf WF, Khouqeer Y. Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies. Front Neurosci 2023; 17:1201971. [PMID: 37456992 PMCID: PMC10339234 DOI: 10.3389/fnins.2023.1201971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting people of all ages representing a significant social and public health burden. Current therapeutic options for epilepsy are not effective in a significant proportion of patients suggesting a need for identifying novel targets for the development of more effective therapeutics. There is growing evidence from animal and human studies suggesting a role of impaired brain energy metabolism and mitochondrial dysfunction in the development of epilepsy. Candidate compounds with the potential to target brain energetics have promising future in the management of epilepsy and other related neurological disorders. Creatine is a naturally occurring organic compound that serves as an energy buffer and energy shuttle in tissues, such as brain and skeletal muscle, that exhibit dynamic energy requirements. In this review, applications of creatine supplements in neurological conditions in which mitochondrial dysfunction is a central component in its pathology will be discussed. Currently, limited evidence mainly from preclinical animal studies suggest anticonvulsant properties of creatine; however, the exact mechanism remain to be elucidated. Future work should involve larger clinical trials of creatine used as an add-on therapy, followed by large clinical trials of creatine as monotherapy.
Collapse
Affiliation(s)
- Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman M. Khojah
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Husun K. Kecheck
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wid F. Altaf
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Jett S, Boneu C, Zarate C, Carlton C, Kodancha V, Nerattini M, Battista M, Pahlajani S, Williams S, Dyke JP, Mosconi L. Systematic review of 31P-magnetic resonance spectroscopy studies of brain high energy phosphates and membrane phospholipids in aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1183228. [PMID: 37273652 PMCID: PMC10232902 DOI: 10.3389/fnagi.2023.1183228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Many lines of evidence suggest that mitochondria have a central role in aging-related neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial dysfunction, cerebral energy dysmetabolism and oxidative damage increase with age, and are early event in AD pathophysiology and may precede amyloid beta (Aβ) plaques. In vivo probes of mitochondrial function and energy metabolism are therefore crucial to characterize the bioenergetic abnormalities underlying AD risk, and their relationship to pathophysiology and cognition. A majority of the research conducted in humans have used 18F-fluoro-deoxygluose (FDG) PET to image cerebral glucose metabolism (CMRglc), but key information regarding oxidative phosphorylation (OXPHOS), the process which generates 90% of the energy for the brain, cannot be assessed with this method. Thus, there is a crucial need for imaging tools to measure mitochondrial processes and OXPHOS in vivo in the human brain. 31Phosphorus-magnetic resonance spectroscopy (31P-MRS) is a non-invasive method which allows for the measurement of OXPHOS-related high-energy phosphates (HEP), including phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi), in addition to potential of hydrogen (pH), as well as components of phospholipid metabolism, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs). Herein, we provide a systematic review of the existing literature utilizing the 31P-MRS methodology during the normal aging process and in patients with mild cognitive impairment (MCI) and AD, with an additional focus on individuals at risk for AD. We discuss the strengths and limitations of the technique, in addition to considering future directions toward validating the use of 31P-MRS measures as biomarkers for the early detection of AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Vibha Kodancha
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michael Battista
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
40
|
Prokopidis K, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DG. Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:416-427. [PMID: 35984306 PMCID: PMC9999677 DOI: 10.1093/nutrit/nuac064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT From an energy perspective, the brain is very metabolically demanding. It is well documented that creatine plays a key role in brain bioenergetics. There is some evidence that creatine supplementation can augment brain creatine stores, which could increase memory. OBJECTIVE A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to determine the effects of creatine supplementation on memory performance in healthy humans. DATA SOURCES The literature was searched through the PubMed, Web of Science, Cochrane Library, and Scopus databases from inception until September 2021. DATA EXTRACTION Twenty-three eligible RCTs were initially identified. Ten RCTs examining the effect of creatine supplementation compared with placebo on measures of memory in healthy individuals met the inclusion criteria for systematic review, 8 of which were included in the meta-analysis. DATA ANALYSIS Overall, creatine supplementation improved measures of memory compared with placebo (standard mean difference [SMD] = 0.29, 95%CI, 0.04-0.53; I2 = 66%; P = 0.02). Subgroup analyses revealed a significant improvement in memory in older adults (66-76 years) (SMD = 0.88; 95%CI, 0.22-1.55; I2 = 83%; P = 0.009) compared with their younger counterparts (11-31 years) (SMD = 0.03; 95%CI, -0.14 to 0.20; I2 = 0%; P = 0.72). Creatine dose (≈ 2.2-20 g/d), duration of intervention (5 days to 24 weeks), sex, or geographical origin did not influence the findings. CONCLUSION Creatine supplementation enhanced measures of memory performance in healthy individuals, especially in older adults (66-76 years). SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42021281027.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- is with the Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
| | - Panagiotis Giannos
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- is with the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Konstantinos K Triantafyllidis
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- is with the Department of Nutrition & Dietetics, Musgrove Park Hospital, Taunton & Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Konstantinos S Kechagias
- are with the Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- is with the Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- is with the Department of Obstetrics & Gynaecology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Scott C Forbes
- is with the Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, Manitoba, Canada
| | - Darren G Candow
- is with the Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
41
|
The Metabolites and Mechanism Analysis of Genistin against Hyperlipidemia via the UHPLC-Q-Exactive Orbitrap Mass Spectrometer and Metabolomics. Molecules 2023; 28:molecules28052242. [PMID: 36903488 PMCID: PMC10005657 DOI: 10.3390/molecules28052242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Genistin, an isoflavone, has been reported to have multiple activities. However, its improvement of hyperlipidemia is still unclear, and the same is true with regard to its mechanism. In this study, a high-fat diet (HFD) was used to induce a hyperlipidemic rat model. The metabolites of genistin in normal and hyperlipidemic rats were first identified to cause metabolic differences with Ultra-High-Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS). The relevant factors were determined via ELISA, and the pathological changes of liver tissue were examined via H&E staining and Oil red O staining, which evaluated the functions of genistin. The related mechanism was elucidated through metabolomics and Spearman correlation analysis. The results showed that 13 metabolites of genistin were identified in plasma from normal and hyperlipidemic rats. Of those metabolites, seven were found in normal rat, and three existed in two models, with those metabolites being involved in the reactions of decarbonylation, arabinosylation, hydroxylation, and methylation. Three metabolites, including the product of dehydroxymethylation, decarbonylation, and carbonyl hydrogenation, were identified in hyperlipidemic rats for the first time. Accordingly, the pharmacodynamic results first revealed that genistin could significantly reduce the level of lipid factors (p < 0.05), inhibited lipid accumulation in the liver, and reversed the liver function abnormalities caused by lipid peroxidation. For metabolomics results, HFD could significantly alter the levels of 15 endogenous metabolites, and genistin could reverse them. Creatine might be a beneficial biomarker for the activity of genistin against hyperlipidemia, as revealed via multivariate correlation analysis. These results, which have not been reported in the previous literature, may provide the foundation for genistin as a new lipid-lowering agent.
Collapse
|
42
|
Ahmed A, Afzaal M, Ali SW, Muzammil HS, Masood A, Saleem MA, Saeed F, Hussain M, Rasheed A, Al Jbawi E. Effect of vegan diet (VD) on sports performance: a mechanistic review of metabolic cascades. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ammar Masood
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Awais Saleem
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
43
|
Escalante G, Gonzalez AM, St Mart D, Torres M, Echols J, Islas M, Schoenfeld BJ. Analysis of the efficacy, safety, and cost of alternative forms of creatine available for purchase on Amazon.com: are label claims supported by science? Heliyon 2022; 8:e12113. [PMID: 36544833 PMCID: PMC9761713 DOI: 10.1016/j.heliyon.2022.e12113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Creatine monohydrate (CM) is an established and effective dietary supplement, but it is not the only form of creatine. We analyzed forms of creatine for sale on Amazon.com" title = "http://Amazon.com">Amazon.com and evaluated if the advertised claims are supported by the available scientific evidence. We also analyzed the cost per gram of the forms of creatine. A total of 175 creatine supplements were included and we reported the total creatine content per serving, form(s) of creatine in products, product claims, and prevalence of products third party certified. The identified products contained 16 forms of creatine other than CM. The prevalence of products containing functional ingredients with CM or forms of creatine was 29.7%, and the prevalence of products containing blends of different forms of creatine was 21.7%. Only 8% of products were third party certified. The products using only CM (n = 91) had a mean price per gram of $0.12 ± 0.08, whereas products using only other forms of creatine (n = 32) had a mean price per gram of $0.26 ± 0.17. Approximately 88% of alternative creatine products in this study are classified as having limited to no evidence to support bioavailability, efficacy, and safety.
Collapse
|
44
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
45
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
46
|
Samadi M, Askarian A, Shirvani H, Shamsoddini A, Shakibaee A, Forbes SC, Kaviani M. Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137992. [PMID: 35805647 PMCID: PMC9265371 DOI: 10.3390/ijerph19137992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023]
Abstract
The purpose was to investigate the effects of a 7-day creatine (Cr) loading protocol at the end of four weeks of β-alanine supplementation (BA) on physical performance, blood lactate, cognitive performance, and resting hormonal concentrations compared to BA alone. Twenty male military personnel (age: 21.5 ± 1.5 yrs; height: 1.78 ± 0.05 m; body mass: 78.5 ± 7.0 kg; BMI: 23.7 ± 1.64 kg/m2) were recruited and randomized into two groups: BA + Cr or BA + placebo (PL). Participants in each group (n = 10 per group) were supplemented with 6.4 g/day of BA for 28 days. After the third week, the BA + Cr group participants were also supplemented with Cr (0.3 g/kg/day), while the BA + PL group ingested an isocaloric placebo for 7 days. Before and after supplementation, each participant performed a battery of physical and cognitive tests and provided a venous blood sample to determine resting testosterone, cortisol, and IGF-1. Furthermore, immediately after the last physical test, blood lactate was assessed. There was a significant improvement in physical performance and mathematical processing in the BA + Cr group over time (p < 0.05), while there was no change in the BA + PL group. Vertical jump performance and testosterone were significantly higher in the BA + Cr group compared to BA + PL. These results indicate that Cr loading during the final week of BA supplementation (28 days) enhanced muscular power and appears to be superior for muscular strength and cognitive performance compared to BA supplementation alone.
Collapse
Affiliation(s)
- Mohammad Samadi
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Ali Askarian
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Hossein Shirvani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Alireza Shamsoddini
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Scott C. Forbes
- Faculty of Education, Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure and Applied Science, Acadia University, Wolfville, NS B4P 2R6, Canada
- Correspondence:
| |
Collapse
|