1
|
Liu J, Li X, Zhu P. Effects of Various Heavy Metal Exposures on Insulin Resistance in Non-diabetic Populations: Interpretability Analysis from Machine Learning Modeling Perspective. Biol Trace Elem Res 2024; 202:5438-5452. [PMID: 38409445 DOI: 10.1007/s12011-024-04126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Increasing and compelling evidence has been proved that heavy metal exposure is involved in the development of insulin resistance (IR). We trained an interpretable predictive machine learning (ML) model for IR in the non-diabetic populations based on levels of heavy metal exposure. A total of 4354 participants from the NHANES (2003-2020) with complete information were randomly divided into a training set and a test set. Twelve ML algorithms, including random forest (RF), XGBoost (XGB), logistic regression (LR), GaussianNB (GNB), ridge regression (RR), support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), AdaBoost (AB), Gradient Boosting Decision Tree (GBDT), Voting Classifier (VC), and K-Nearest Neighbour (KNN), were constructed for IR prediction using the training set. Among these models, the RF algorithm had the best predictive performance, showing an accuracy of 80.14%, an AUC of 0.856, and an F1 score of 0.74 in the test set. We embedded three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) in RF model for model interpretation. Urinary Ba, urinary Mo, blood Pb, and blood Cd levels were identified as the main influencers of IR. Within a specific range, urinary Ba (0.56-3.56 µg/L) and urinary Mo (1.06-20.25 µg/L) levels exhibited the most pronounced upwards trend with the risk of IR, while blood Pb (0.05-2.81 µg/dL) and blood Cd (0.24-0.65 µg/L) levels showed a declining trend with IR. The findings on the synergistic effects demonstrated that controlling urinary Ba levels might be more crucial for the management of IR. The SHAP decision plot offered personalized care for IR based on heavy metal control. In conclusion, by utilizing interpretable ML approaches, we emphasize the predictive value of heavy metals for IR, especially Ba, Mo, Pb, and Cd.
Collapse
Affiliation(s)
- Jun Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xingyu Li
- Cardiovascular Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
2
|
Gulyas BZ, Mogeni B, Jackson P, Walton J, Caton SJ. Biofortification as a food-based strategy to improve nutrition in high-income countries: a scoping review. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39269149 DOI: 10.1080/10408398.2024.2402998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Biofortification (increasing the micronutrient content of food before harvest) has been successfully used to nutritionally improve staple foods in low- and middle-income countries. This approach could also help address micronutrient shortfalls in at-risk populations in high-income countries (HICs), however, the potential of biofortification interventions in this context is not well understood. The aim of this scoping review is to assess the nature and extent of available research evidence on biofortified foods in relation to human consumption in HICs. Literature searches were conducted in MEDLINE, WoS, ProQuest, CINAHL, AGRIS and Epistemonikos. Forty-six peer-reviewed articles were included. Most research was conducted in the USA (n = 15) and Italy (n = 11), on cereal crops (n = 14) and vegetables (n = 11), and on selenium (n = 12) and provitamin A (n = 11). Seven research domains were identified in the literature: bioavailability (n = 17); nutrient stability (n = 11); opinions and attitudes (n = 9); functionality (n = 9); sensory properties (n = 2); safety (n = 1); and modeling (n = 1). Evidence from HICs in each domain is limited. There is a need for more research particularly in areas sensitive to the cultural and socio-economic context.
Collapse
Affiliation(s)
- Boglarka Z Gulyas
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Brenda Mogeni
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Peter Jackson
- Institute for Sustainable Food, University of Sheffield, Sheffield, UK
| | - Jenny Walton
- Commercialization and Scaling, HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Samantha J Caton
- Sheffield Centre for Health And Related Research, Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Vultaggio L, Allevato E, Sabatino L, Ntatsi G, Rouphael Y, Torta L, La Bella S, Consentino BB. Modulation of cherry tomato performances in response to molybdenum biofortification and arbuscular mycorrhizal fungi in a soilless system. Heliyon 2024; 10:e33498. [PMID: 39027518 PMCID: PMC11255863 DOI: 10.1016/j.heliyon.2024.e33498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 μmol L-1], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 μmol L-1). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 μmol Mo L-1) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day-1 of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 μmol L-1) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Leo Sabatino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, 11855 Athens, Greece
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Livio Torta
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Salvatore La Bella
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
4
|
Ferrantelli V, Vasto S, Alongi A, Sabatino L, Baldassano D, Caldarella R, Gagliano R, Di Rosa L, Consentino BB, Vultaggio L, Baldassano S. Boosting plant food polyphenol concentration by saline eustress as supplement strategies for the prevention of metabolic syndrome: an example of randomized interventional trial in the adult population. Front Nutr 2023; 10:1288064. [PMID: 38196756 PMCID: PMC10774224 DOI: 10.3389/fnut.2023.1288064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Introduction Phenolic compounds in lettuce can increase by the application of positive stress (eustress) such as moderate saline stress. Phenolic compounds possess antioxidant capacity that is a key factor in the detoxification of excess reactive oxygen species. A double-blinded randomized interventional and placebo- controlled study design was carried out to compare the effect of daily dietary eustress lettuce ingestion in hepatic, lipid, bone, glucose, and iron metabolism. Methods Forty-two healthy volunteers, 19 female and 23 male participants, were divided into two groups. Participants were randomized into a polyphenol-enriched treatment (PET) arm or control arm. Each arm consumed 100 g/day of control or eustress (polyphenols enriched treatment = PET) lettuce for 12 days. Primary study outcomes were serological analysis for assessing hepatic, lipid, bone, iron, and glucose markers at baseline and after 12 days. Secondary outcomes assessed body composition. Results Salinity stress reduced plant yield but increased caffeic acid (+467%), chlorogenic acid (+320%), quercetin (+538%), and rutin (+1,095%) concentrations. The intake of PET lettuce reduced PTH, low-density lipoprotein (LDL), cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) enzyme levels and increased vitamin D and phosphate levels, while iron and glucose metabolism were unaffected. Discussion Supplementation with eustress lettuce by increasing polyphenols concentration ameliorates hepatic, lipid, and bone homeostasis. Body composition was not affected. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/NCT06002672, identifier: NCT06002672.
Collapse
Affiliation(s)
| | - Sonya Vasto
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Angelina Alongi
- Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Leo Sabatino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Davide Baldassano
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (ProMISE) G. D'Alessandro, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” University Hospital, Palermo, Italy
| | - Rosaria Gagliano
- Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Luigi Di Rosa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | - Lorena Vultaggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
6
|
Amato A, Baldassano S, Vasto S, Schirò G, Davì C, Drid P, Dos Santos Mendes FA, Caldarella R, D’Amelio M, Proia P. Effects of a Resistance Training Protocol on Physical Performance, Body Composition, Bone Metabolism, and Systemic Homeostasis in Patients Diagnosed with Parkinson's Disease: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013022. [PMID: 36293598 PMCID: PMC9602560 DOI: 10.3390/ijerph192013022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor impairments and it is correlated with loss of bone mineral density. This study aimed to analyze the effects of resistance training on bone metabolism, systemic homeostasis, body composition, and physical performance in people with PD. Thirteen subjects (age 64.83 ± 5.70) with PD diagnosis were recruited. Participants performed neuromuscular tests, body composition assessment, and blood sample analysis at baseline, and after an 11 weeks-training period. Each training session lasted 90 min, three times a week. The participants had significant improvements in the timed up and go (p < 0.01), sit to stand (p < 0.01), dominant peg-board (p < 0.05), dominant foot-reaction time (p < 0.01), and functional reach tests (p < 0.05). They showed better pressure foot distributions in the left forefoot (p < 0.05) and hindfoot (p < 0.05) and increased cervical right lateral bending angle (p < 0.05). The protocol affects bone metabolism markers osteocalcin (p < 0.05), calcium (p < 0.01), PTH (p < 0.01), the C-terminal telopeptide (CTX) (p < 0.01), and vitamin D (p < 0.05). Eleven weeks of resistance training improved manual dexterity, static and dynamic balance, reaction time, cervical ROM, and reduced bone loss in people with PD.
Collapse
Affiliation(s)
- Alessandra Amato
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (S.B.); (P.P.)
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” University Hospital, 90127 Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy
- Correspondence: (S.B.); (P.P.)
| |
Collapse
|
7
|
Baldassano S, Polizzi MR, Sabatino L, Caldarella R, Macaluso A, Alongi A, Caldara GF, Ferrantelli V, Vasto S. A New Potential Dietary Approach to Supply Micronutrients to Physically Active People through Consumption of Biofortified Vegetables. Nutrients 2022; 14:2971. [PMID: 35889926 PMCID: PMC9320783 DOI: 10.3390/nu14142971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023] Open
Abstract
Micronutrients are required in many reactions involved in physical activity and exercise. Most physically active people do not meet the body's needs in terms of micronutrients through diet. The novelty of the present manuscript is the use of an innovative dietary approach to supply micronutrients to physically active people through biofortified food. Therefore, the key point of this study was to verify whether supplementation with biofortified vegetables-and specifically molybdenum (Mo)-enriched lettuce-in healthy volunteers affects essential regulators of body homeostasis and, specifically, hematological parameters, iron and lipid metabolism, and hepatic function. Twenty-four healthy volunteers were allocated in a double-blinded manner to either a control group that consumed lettuce, or the intervention group, which consumed Mo-enriched lettuce, for 12 days. Blood samples were collected at baseline (T0) and after 12 days (T1). We found that supplementation with Mo-enriched lettuce did not affect hematological parameters, liver function, or lipid metabolism, but significantly improved iron homeostasis by increasing non-binding hemoglobin iron by about 37% and transferrin saturation by about 42%, while proteins of iron metabolism (e.g., transferrin, ferritin, ceruloplasmin) were not affected. The serum molybdenum concentration increased by about 42%. In conclusion, this study shows that consumption of Mo-biofortified lettuce ameliorates iron homeostasis in healthy subjects, and suggests that it could be used as a new nutritional supplementation strategy to avoid iron deficiency in physically active people.
Collapse
Affiliation(s)
- Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy;
| | - Maria Rita Polizzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy;
| | - Leo Sabatino
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), University of Palermo, Viale Delle Scienze, Ed. 5, 90128 Palermo, Italy;
| | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” University Hospital, 90128 Palermo, Italy;
| | - Andrea Macaluso
- Experimental Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.M.); (A.A.); (G.F.C.); (V.F.)
| | - Angelina Alongi
- Experimental Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.M.); (A.A.); (G.F.C.); (V.F.)
| | - Gaetano Felice Caldara
- Experimental Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.M.); (A.A.); (G.F.C.); (V.F.)
| | - Vincenzo Ferrantelli
- Experimental Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.M.); (A.A.); (G.F.C.); (V.F.)
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy;
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|