1
|
Nurzyńska-Wierdak R. Plants with Potential Importance in Supporting the Treatment of Depression: Current Trends, and Research. Pharmaceuticals (Basel) 2024; 17:1489. [PMID: 39598400 PMCID: PMC11597216 DOI: 10.3390/ph17111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Depression is one of the most common diseases in the world, and it is also the most common mental disorder. Depressive disorders are a real threat not only to individuals, but also to the general population. This disease is a leading cause of disability and inability to work. Due to the numerous side effects of conventional drugs, attention is increasingly being paid to other solutions, including herbal medicines. Many plant species are known for their traditional uses in the treatment of anxiety, insomnia, and depression. The clinically proven effects of adaptogenic raw materials on depression symptoms are probably related to the positive impact of some secondary metabolites (terpenoids, alkaloids, glucosinolates, phenols). Currently, it is emphasized that in many cases the antioxidant and anti-inflammatory properties of plant substances play a protective role at the neurocellular level. Among the medicinal plants analyzed in clinical trials for the treatment of depression, the following seem to be particularly interesting: saffron (Crocus L.), turmeric (Curcuma L.), ginkgo (Ginkgo L.), St. John's wort (Hypericum L.), and passionflower (Passiflora L.), which have broad and strong biological activity, well-documented history of action and use, and effectiveness in preventing and/or treating anxiety and depression. These plants are still in the sphere of biochemical and phytopharmaceutical research, the results of which are very promising.
Collapse
Affiliation(s)
- Renata Nurzyńska-Wierdak
- Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland
| |
Collapse
|
2
|
Zhu C, Liu J, Lin J, Xu J, Yu E. Investigating the effects of Ginkgo biloba leaf extract on cognitive function in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14914. [PMID: 39238068 PMCID: PMC11377177 DOI: 10.1111/cns.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disorder with limited treatment options. This study aimed to investigate the therapeutic effects of Ginkgo biloba leaf extract (GBE) on AD and explore its potential mechanisms of action. METHODS Key chemical components of GBE, including quercetin, luteolin, and kaempferol, were identified using network pharmacology methods. Bioinformatics analysis revealed their potential roles in AD through modulation of the PI3K/AKT/NF-κB signaling pathway. RESULTS Mouse experiments demonstrated that GBE improved cognitive function, enhanced neuronal morphology, and reduced serum inflammatory factors. Additionally, GBE modulated the expression of relevant proteins and mRNA. CONCLUSION GBE shows promise as a potential treatment for AD. Its beneficial effects on cognitive function, neuronal morphology, and inflammation may be attributed to its modulation of the PI3K/AKT/NF-κB signaling pathway. These findings provide experimental evidence for the application of Ginkgo biloba leaf in AD treatment and highlight its potential mechanisms of action.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Liu
- The Second People's Hospital of Chuzhou Sleep Disorders Department, Chuzhou, China
| | - Jixin Lin
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxi Xu
- General Psychiatric Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Enyan Yu
- Clinical Psychology Department, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
3
|
Wei PW, Wang X, Wang C, Chen M, Liu MZ, Liu WX, He YL, Xu GB, Zheng XH, Zhang H, Liu HM, Wang B. Ginkgo biloba L. exocarp petroleum ether extract inhibits methicillin-resistant Staphylococcus aureus by modulating ion transport, virulence, and biofilm formation in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117957. [PMID: 38493904 DOI: 10.1016/j.jep.2024.117957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As reported in the Ancient Chinese Medicinal Books, Ginkgo biloba L. fruit has been used as a traditional Chinese medicine for the treatment asthma and cough or as a disinfectant. Our previous study demonstrated that G. biloba exocarp extract (GBEE), an extract of a traditional Chinese herb, inhibits the formation of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. However, GBEE is a crude extract that contains many components, and the underlying mechanisms of purified GBEE fractions extracted with solvents of different polarities are unknown. AIM OF THE STUDY This study aimed to investigate the different components in GBEE fractions extracted with solvents of different polarities and their antibacterial effects and mechanisms against MRSA and Staphylococcus haemolyticus biofilms both in vitro and in vivo. METHODS The components in different fractions were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). Microbroth dilution assays and time growth curves were used to determine the antibacterial effects of the fractions on 15 clinical bacterial isolates. Crystal violet staining, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to identify the fractions that affected bacterial biofilm formation. The potential MRSA targets of the GBEE fraction obtained with petroleum ether (PE), denoted GBEE-PE, were screened by transcriptome sequencing, and the gene expression profile was verified by quantitative polymerase chain reaction (qPCR). RESULTS HPLC-HRMS analysis revealed that the four GBEE fractions (extracted with petroleum ether, ethyl acetate, n-butanol, and water) contained different ginkgo components, and the antibacterial effects decreased as the polarity of the extraction solvent increased. The antibacterial activity of GBEE-PE was greater than that of the GBEE fraction extracted with ethyl acetate (EA). GBEE-PE improved H. illucens survival and reduced MRSA colonization in model mouse organs. Crystal violet staining and SEM and TEM analyses revealed that GBEE-PE inhibited MRSA and S. haemolyticus biofilm formation. Transcriptional analysis revealed that GBEE-PE inhibits MRSA biofilms by altering ion transport, cell wall metabolism and virulence-related gene expression. In addition, the LO2 cell viability and H. illucens toxicity assay data showed that GBEE-PE at 20 mg/kg was nontoxic. CONCLUSION The GBEE fractions contained different components, and their antibacterial effects decreased with increases in the polarity of the extraction solvent. GBEE-PE limited MRSA growth and biofilm formation by affecting ion transport, cell wall synthesis, and virulence-related pathways. This research provides a more detailed overview of the mechanism by which GBEE-PE inhibits MRSA both in vitro and in vivo and suggests that GBEE-PE is a new prospective antimicrobial with the potential to be used in MRSA therapeutics in the future.
Collapse
Affiliation(s)
- Peng-Wei Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Cong Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Formulation (R&D) Department, Guiyang, 550001, China
| | - Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China
| | - Meng-Zhu Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Yan-Ling He
- Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, Zhejiang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
| | - Xiao-He Zheng
- Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, Zhejiang, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, 550002, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China.
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
4
|
Han Y, Chen K, Yu H, Cui C, Li H, Hu Y, Zhang B, Li G. Maf1 loss regulates spinogenesis and attenuates cognitive impairment in Alzheimer's disease. Brain 2024; 147:2128-2143. [PMID: 38226680 PMCID: PMC11146433 DOI: 10.1093/brain/awae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Alzheimer's disease is neurodegenerative and characterized by progressive cognitive impairment. Synaptic dysfunction appears in the early stage of Alzheimer's disease and is significantly correlated with cognitive impairment. However, the specific regulatory mechanism remains unclear. Here, we found the transcription factor Maf1 to be upregulated in Alzheimer's disease and determined that conditional knockout of Maf1 in a transgenic mouse model of Alzheimer's disease restored learning and memory function; the downregulation of Maf1 reduced the intraneuronal calcium concentration and restored neuronal synaptic morphology. We also demonstrated that Maf1 regulated the expression of NMDAR1 by binding to the promoter region of Grin1, further regulating calcium homeostasis and synaptic remodelling in neurons. Our results clarify the important role and mechanism of the Maf1-NMDAR1 signalling pathway in stabilizing synaptic structure, neuronal function and behaviour during Alzheimer's disease pathogenesis. This therefore serves as a potential diagnostic and therapeutic target for the early stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongbo Hu
- Department of Neurology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), the Second Military Medical University, Shanghai 200092, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer's Disease. J Alzheimers Dis 2024; 101:S285-S298. [PMID: 39422946 DOI: 10.3233/jad-231372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Extracts made from plants are complex mixtures of substances with varying compositions depending on the plant material and method of manufacture. This complexity makes it difficult for scientists and clinicians to interpret findings from pharmacological and clinical research. We performed a narrative review summarizing information on ginkgo biloba leaf extract, its composition, pharmacological data and clinical evidence supporting its administration for the treatment of Alzheimer's disease (AD). Medicinal products containing ginkgo biloba leaf extract which are manufactured in compliance with the requirements of the European Pharmacopoeia are approved as medicinal products for the treatment of dementia and related conditions by drug regulatory agencies in Europe, Asia and South America. As multicomponent mixtures, they may affect various targets in the pathogenesis of AD, the most common form of dementia. Pharmacodynamic studies demonstrate the effects of EGb 761 and individual constituents on various pathophysiological features of experimentally induced cognitive impairment and neurodegeneration that could contribute to its clinical efficacy. The safety and efficacy in the treatment of AD and cognitive decline has been studied in randomized, placebo-controlled clinical trials. Most of the studies that investigate the effects of ginkgo biloba extract (GbE) used the special extract EGb 761, which makes it the best-researched plant preparation worldwide. It is therefore the only herbal alternative to standard-of-care anti-dementia drugs. However, the mechanism of action has not been fully elucidated yet, and the clinical studies in AD show heterogeneity.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
8
|
Biernacka P, Adamska I, Felisiak K. The Potential of Ginkgo biloba as a Source of Biologically Active Compounds-A Review of the Recent Literature and Patents. Molecules 2023; 28:3993. [PMID: 37241734 PMCID: PMC10222153 DOI: 10.3390/molecules28103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Ginkgo biloba is a relict tree species showing high resistance to adverse biotic and abiotic environmental factors. Its fruits and leaves have high medicinal value due to the presence of flavonoids, terpene trilactones and phenolic compounds. However, ginkgo seeds contain toxic and allergenic alkylphenols. The publication revises the latest research results (mainly from 2018-2022) regarding the chemical composition of extracts obtained from this plant and provides information on the use of extracts or their selected ingredients in medicine and food production. A very important section of the publication is the part in which the results of the review of patents concerning the use of Ginkgo biloba and its selected ingredients in food production are presented. Despite the constantly growing number of studies on its toxicity and interactions with synthetic drugs, its health-promoting properties are the reason for the interest of scientists and motivation to create new food products.
Collapse
Affiliation(s)
- Patrycja Biernacka
- Faculty of Food Science and Fisheries, Department of Food Science and Technology—West Pomeranian University of Technology, 70-310 Szczecin, Poland
| | | | | |
Collapse
|
9
|
Ojo O, Adegboye ARA. The Effects of Nutrition on Chronic Conditions. Nutrients 2023; 15:nu15051066. [PMID: 36904066 PMCID: PMC10004789 DOI: 10.3390/nu15051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
The effects of nutrition on chronic conditions, such as diabetes, obesity, heart disease, and stroke, continue to generate interest among researchers [...].
Collapse
Affiliation(s)
- Omorogieva Ojo
- School of Health Sciences, University of Greenwich, Avery Hill Campus, London SE9 2UG, UK
- Correspondence:
| | - Amanda Rodrigues Amorim Adegboye
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry CV8 3LG, UK
- Centre for Healthcare Research, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
10
|
Role of Oxidative Stress in Peyronie's Disease: Biochemical Evidence and Experiences of Treatment with Antioxidants. Int J Mol Sci 2022; 23:ijms232415969. [PMID: 36555611 PMCID: PMC9781573 DOI: 10.3390/ijms232415969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Peyronie's disease (PD) is a chronic inflammatory condition affecting adult males, involving the tunica albuginea of the corpora cavernosa of the penis. PD is frequently associated with penile pain, erectile dysfunction, and a secondary anxious-depressive state. The etiology of PD has not yet been completely elucidated, but local injury is generally recognized to be a triggering factor. It has also been widely proven that oxidative stress is an essential, decisive component in all inflammatory processes, whether acute or chronic. Current conservative medical treatment comprises oral substances, penile injections, and physical therapy. AIM This article intends to show how antioxidant therapy is able to interfere with the pathogenetic mechanisms of the disease. METHOD This article consists of a synthetic narrative review of the current scientific literature on antioxidant therapy for this disease. RESULTS The good results of the antioxidant treatment described above also prove that the doses used were adequate and the concentrations of the substances employed did not exceed the threshold at which they might have interacted negatively with the mechanisms of the redox regulation of tissue. CONCLUSIONS We believe new, randomized, controlled studies are needed to confirm the efficacy of treatment with antioxidants. However, we consider the experiences of antioxidant treatment which can already be found in the literature useful for the clinical practice of urologists in the treatment of this chronic inflammatory disease.
Collapse
|
11
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|