1
|
Chakraborty N, Hoke A, Campbell R, Holmes-Hampton G, Kumar VP, Moyler C, Gautam A, Hammamieh R, Ghosh SP. Ionizing Radiation Dose Differentially Affects the Host-Microbe Relationship over Time. Microorganisms 2024; 12:1995. [PMID: 39458305 PMCID: PMC11509422 DOI: 10.3390/microorganisms12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microorganisms that colonize in or on a host play significant roles in regulating the host's immunological fitness and bioenergy production, thus controlling the host's stress responses. Radiation elicits a pro-inflammatory and bioenergy-expensive state, which could influence the gut microbial compositions and, therefore, the host-microbe bidirectional relationship. To test this hypothesis, young adult mice were exposed to total body irradiation (TBI) at doses of 9.5 Gy and 11 Gy, respectively. The irradiated mice were euthanized on days 1, 3, and 9 post TBI, and their descending colon contents (DCCs) were collected. The 16S ribosomal RNAs from the DCCs were screened to find the differentially enriched bacterial taxa due to TBI. Subsequently, these data were analyzed to identify the metagenome-specific biofunctions. The bacterial community of the DCCs showed increased levels of diversity as time progressed following TBI. The abundance profile was the most divergent at day 9 post 11 Gy TBI. For instance, an anti-inflammatory and energy-harvesting bacterium, namely, Firmicutes, became highly abundant and co-expressed in the DCC with pro-inflammatory Deferribacteres at day 9 post 11 Gy TBI. A systems evaluation found a diverging trend in the regulation profiles of the functional networks that were linked to the bacteria and metabolites of the DCCs, respectively. Additionally, the network clusters associated with lipid metabolism and bioenergy synthesis were found to be activated in the DCC bacteria but inhibited in the metabolite space at day 9 post 11 Gy. Taking these results together, the present analysis indicated a disrupted mouse-bacteria symbiotic relationship as time progressed after lethal irradiation. This information can help develop precise interventions to ameliorate the symptoms triggered by TBI.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Ross Campbell
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Candace Moyler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| |
Collapse
|
2
|
Marino Cerrato L, Schiano E, Iannuzzo F, Tenore GC, Summa V, Daglia M, Novellino E, Stornaiuolo M. A Rapid and Reliable Spectrofluorimetric Method to Measure the Urinary Lactulose/Mannitol Ratio for Dysbiosis Assessment. Biomedicines 2024; 12:1557. [PMID: 39062130 PMCID: PMC11274872 DOI: 10.3390/biomedicines12071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Gut microbiota plays a crucial role in human health homeostasis, and the result of its alteration, known as dysbiosis, leads to several pathologies (e.g., inflammatory bowel disease, metabolic syndrome, and Crohn's disease). Traditional methods used to assess dysbiosis include the dual sugar absorption test and the urinary lactulose/mannitol ratio (LMR) measurement using mass spectrometry. Despite its precision, this approach is costly and requires specialized equipment. Hence, we developed a rapid and reliable spectrofluorimetric method for measuring LMR in urine, offering a more accessible alternative. This spectrofluorimetric assay quantifies the fluorescence of nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) produced during the enzymatic oxidation of mannitol and lactulose, respectively. The assay requires 100 µL of urine samples and detects LMR values lower (eubiosis) and higher (dysbiosis) than 0.05, ultimately being amenable to high-throughput screening and automatization, making it practical for clinical and research settings. A validation of the method demonstrated its high precision, accuracy, and robustness. Additionally, this study confirmed analyte stability under various storage conditions, ensuring reliable results even with delayed analysis. Overall, this spectrofluorimetric technique reduces costs, time, and the environmental impact associated with traditional mass spectrometry methods, making it a viable option for widespread use in the assessment of dysbiosis.
Collapse
Affiliation(s)
- Lorenzo Marino Cerrato
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (E.N.)
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D’Annunzio, 66100 Chieti, Italy;
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Vincenzo Summa
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (E.N.)
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.M.C.); (G.C.T.); (V.S.); (M.D.)
| |
Collapse
|
3
|
Limveeraprajak N, Nakhawatchana S, Visukamol A, Siripakkaphant C, Suttajit S, Srisurapanont M. Efficacy and acceptability of S-adenosyl-L-methionine (SAMe) for depressed patients: A systematic review and meta- analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110985. [PMID: 38423354 DOI: 10.1016/j.pnpbp.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
This systematic review and meta-analysis aimed to assess the efficacy and acceptability of S-adenosyl-L-methionine (SAMe) in treating depression. We conducted a comprehensive search of PubMed, Embase, Cochrane Library, and ClinialTrials.gov from inception to July 3, 2023, identifying randomized controlled trials comparing SAMe with placebo or antidepressants (ADs). We synthesized data on reduced depressive symptoms (efficacy) and overall dropout rates (acceptability) using a random-effects model for pairwise frequentist meta-analysis. Our analysis included 23 trials (N = 2183) classified into three categories: 11 trials comparing SAMe and placebo, 5 trials comparing SAMe plus ADs and placebo plus ADs, and 7 trials comparing SAMe and ADs. Differences between experimental and control interventions in reducing depressive symptoms were observed: i) SAMe demonstrated significantly superior efficacy compared to placebo (SMD = -0.58, 95% CI = -0.93 to -0.23, I2 = 68%); ii) in conjunction with ADs, SAMe did not show a significant difference from placebo (SMD = -0.22, 95%CI = -0.63 to 0.19, I2 = 76%); and iii) SAMe did not exhibit a significant difference from ADs alone (SMD = 0.06, 95%CI = -0.06 to 0.18, I2 = 49%). No significant differences in dropout rates were observed across the three comparison categories. Moderate-certainty evidence suggests that SAMe monotherapy may offer a moderate therapeutic benefit in alleviating depressive symptoms. Considering its favorable acceptability profile, SAMe monotherapy should be considered as a treatment option for patients with depression. However, uncertainties regarding its efficacy as an adjunct to AD and its comparative efficacy with ADs remain unresolved.
Collapse
Affiliation(s)
| | | | - Apidsada Visukamol
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Sirijit Suttajit
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Manit Srisurapanont
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Goicoechea L, Torres S, Fàbrega L, Barrios M, Núñez S, Casas J, Fabrias G, García-Ruiz C, Fernández-Checa JC. S-Adenosyl-l-methionine restores brain mitochondrial membrane fluidity and GSH content improving Niemann-Pick type C disease. Redox Biol 2024; 72:103150. [PMID: 38599016 PMCID: PMC11022094 DOI: 10.1016/j.redox.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Fàbrega
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Mónica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Susana Núñez
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Li G, Liu H, Yu Y, Wang Q, Yang C, Yan Y, Wang F, Mao Y. Desulfovibrio desulfuricans and its derived metabolites confer resistance to FOLFOX through METTL3. EBioMedicine 2024; 102:105041. [PMID: 38484555 PMCID: PMC10950750 DOI: 10.1016/j.ebiom.2024.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Chemoresistance is a critical factor contributing to poor prognosis in clinical patients with cancer undergoing postoperative adjuvant chemotherapy. The role of gut microbiota in mediating resistance to tumour chemotherapy remains to be investigated. METHODS Patients with CRC were categorised into clinical benefit responders (CBR) and no clinical benefit responders (NCB) based on chemotherapy efficacy. Differential bacterial analysis using 16S rRNA sequencing revealed Desulfovibrio as a distinct microbe between the two groups. Employing a syngeneic transplantation model, we assessed the effect of Desulfovibrio on chemotherapy by measuring tumour burden, weight, and Ki-67 expression. We further explored the mechanisms underlying the compromised chemotherapeutic efficacy of Desulfovibrio using metabolomics, western blotting, colony formation, and cell apoptosis assays. FINDINGS In comparison, Desulfovibrio was more abundant in the NCB group. In vivo experiments revealed that Desulfovibrio colonisation in the gut weakened the efficacy of FOLFOX. Treatment with Desulfovibrio desulfuricans elevates serum S-adenosylmethionine (SAM) levels. Interestingly, SAM reduced the sensitivity of CRC cells to FOLFOX, thereby promoting the growth of CRC tumours. These experiments suggest that SAM promotes the growth and metastasis of CRC by driving the expression of methyltransferase-like 3 (METTL3). INTERPRETATION A high abundance of Desulfovibrio in the intestines indicates poor therapeutic outcomes for postoperative neoadjuvant FOLFOX chemotherapy in CRC. Desulfovibrio drives the manifestation of METTL3 in CRC, promoting resistance to FOLFOX chemotherapy by increasing the concentration of SAM. FUNDING This study is supported by Wuxi City Social Development Science and Technology Demonstration Project (N20201005).
Collapse
Affiliation(s)
- Guifang Li
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China; Wuxi Medical College of Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, Jiangsu, PR China
| | - Huan Liu
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China
| | - Yangmeng Yu
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China; Wuxi Medical College of Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, Jiangsu, PR China
| | - Qian Wang
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China; Wuxi Medical College of Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, Jiangsu, PR China
| | - Chen Yang
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China; Wuxi Medical College of Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, Jiangsu, PR China
| | - Yang Yan
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China; Wuxi Medical College of Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, Jiangsu, PR China
| | - Fang Wang
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China.
| | - Yong Mao
- Department of Cancer Diagnosis and Treatment Center, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, Jiangsu, PR China; Wuxi Medical College of Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, Jiangsu, PR China.
| |
Collapse
|
6
|
Ritz NL, Draper LA, Bastiaanssen TFS, Turkington CJR, Peterson VL, van de Wouw M, Vlckova K, Fülling C, Guzzetta KE, Burokas A, Harris H, Dalmasso M, Crispie F, Cotter PD, Shkoporov AN, Moloney GM, Dinan TG, Hill C, Cryan JF. The gut virome is associated with stress-induced changes in behaviour and immune responses in mice. Nat Microbiol 2024; 9:359-376. [PMID: 38316929 PMCID: PMC10847049 DOI: 10.1038/s41564-023-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Christopher J R Turkington
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Klara Vlckova
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Katherine E Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aurelijus Burokas
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Hugh Harris
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marion Dalmasso
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000, Caen, France
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Corke, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Bayes J, Schloss J, Sibbritt D. The use of diet for preventing and treating depression in young men: current evidence and existing challenges. Br J Nutr 2024; 131:214-218. [PMID: 37519245 PMCID: PMC10751942 DOI: 10.1017/s000711452300168x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Emerging evidence suggests that diet therapy (nutrients, foods and dietary patterns) could be effective as a potential adjunctive treatment option for major depressive disorder. Numerous mechanisms have been proposed, including the role inflammation, oxidative stress, brain-derived neurotrophic factor, the gastrointestinal tract microbiome and tryptophan/serotonin metabolism. Despite known differences in depression characteristics and treatment responses between males and females, there are limited sex-specific studies examining the role of diet in young men specifically. This is important as young men are often reluctant to seek mental health support, so finding treatment strategies which appeal to this demographic is crucial. This brief report provides an overview of the most recent advances in the use of diet for preventing and treating depression in young men, highlighting existing challenges and opportunities for future research. We recommend that clinicians discuss the role of diet with depressed young men, so that diet may be used alongside current treatment options.
Collapse
Affiliation(s)
- Jessica Bayes
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW2480, Australia
| | - Janet Schloss
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW2480, Australia
| | - David Sibbritt
- School of Public Health, University of Technology Sydney, Ultimo, NSW2007, Australia
| |
Collapse
|
8
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Vitetta L, Bambling M, Strodl E. Probiotics and Commensal Bacteria Metabolites Trigger Epigenetic Changes in the Gut and Influence Beneficial Mood Dispositions. Microorganisms 2023; 11:1334. [PMID: 37317308 DOI: 10.3390/microorganisms11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
The effect of the intestinal microbiome on the gut-brain axis has received considerable attention, strengthening the evidence that intestinal bacteria influence emotions and behavior. The colonic microbiome is important to health and the pattern of composition and concentration varies extensively in complexity from birth to adulthood. That is, host genetics and environmental factors are complicit in shaping the development of the intestinal microbiome to achieve immunological tolerance and metabolic homeostasis from birth. Given that the intestinal microbiome perseveres to maintain gut homeostasis throughout the life cycle, epigenetic actions may determine the effect on the gut-brain axis and the beneficial outcomes on mood. Probiotics are postulated to exhibit a range of positive health benefits including immunomodulating capabilities. Lactobacillus and Bifidobacterium are genera of bacteria found in the intestines and so far, the benefits afforded by ingesting bacteria such as these as probiotics to people with mood disorders have varied in efficacy. Most likely, the efficacy of probiotic bacteria at improving mood has a multifactorial dependency, relying namely on several factors that include the agents used, the dose, the pattern of dosing, the pharmacotherapy used, the characteristics of the host and the underlying luminal microbial environment (e.g., gut dysbiosis). Clarifying the pathways linking probiotics with improvements in mood may help identify the factors that efficacy is dependent upon. Adjunctive therapies with probiotics for mood disorders could, through DNA methylation molecular mechanisms, augment the intestinal microbial active cohort and endow its mammalian host with important and critical co-evolutionary redox signaling metabolic interactions, that are embedded in bacterial genomes, and that in turn can enhance beneficial mood dispositions.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2005, Australia
| | - Matthew Bambling
- Faculty of Medicine and Health, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Esben Strodl
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4058, Australia
| |
Collapse
|
10
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
DeSoto MC. Is a Genetic Diathesis for Poor Nutrition Becoming More Crucial Due to the Uniformity of COVID Social Stress? Nutrients 2023; 15:960. [PMID: 36839316 PMCID: PMC9967310 DOI: 10.3390/nu15040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
The important role of nutrition in proper neural functioning and mental health has seen wider acceptance, but is still sadly under recognized given the existent body of research. This Special Issue was designed to unite authoritative information on this topic in one volume. This editorial provides an overview of the issue, and suggests that the combination of social isolation, lack of exercise, and remaining indoors that overtook industrialized societies during 2020 are specific factors expected to change the Gene × Environment interactions for anxiety and depression. Importantly, the recent environmental changes may make biological diatheses for nutritional deficiencies even more problematic. The concept of G × E interaction is dissected to clarify a non-intuitive scenario: heritability may increase, even when a sharp increase in prevalence is entirely the result of an environmental change (e.g., COVID anxiety and isolation). Key research is highlighted, specific genetic examples are noted, and theoretical implications regarding natural selection are discussed.
Collapse
Affiliation(s)
- M Catherine DeSoto
- Department of Psychology, University of Northern Iowa, Cedar Falls, IA 50613, USA
| |
Collapse
|
12
|
Lerin C, Collado MC, Isganaitis E, Arning E, Wasek B, Demerath EW, Fields DA, Bottiglieri T. Revisiting One-Carbon Metabolites in Human Breast Milk: Focus on S-Adenosylmethionine. Nutrients 2023; 15:282. [PMID: 36678154 PMCID: PMC9863976 DOI: 10.3390/nu15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.
Collapse
Affiliation(s)
- Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, The University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
13
|
Ullah H, Di Minno A, Esposito C, El-Seedi HR, Khalifa SA, Baldi A, Greco A, Santonastaso S, Cioffi V, Sperandeo R, Sacchi R, Daglia M. Efficacy of a food supplement based on S-adenosyl methionine and probiotic strains in subjects with subthreshold depression and mild-to-moderate depression: A monocentric, randomized, cross-over, double-blind, placebo-controlled clinical trial. Biomed Pharmacother 2022; 156:113930. [DOI: 10.1016/j.biopha.2022.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/02/2022] Open
|
14
|
Yan J, Ren Q, Lin H, Liu Q, Fu J, Sun C, Li W, Ma F, Zhu Y, Li Z, Zhang G, Du Y, Liu H, Zhang X, Chen Y, Wang G, Huang G. Association between Dietary Patterns and the Risk of Depressive Symptoms in the Older Adults in Rural China. Nutrients 2022; 14:nu14173538. [PMID: 36079798 PMCID: PMC9460296 DOI: 10.3390/nu14173538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Geriatric depression, a chronic condition, has become a substantial burden in rural China. This study aimed to assess the association between dietary patterns and the risk of geriatric depression in rural China. Between March 2018 and June 2019, 3304 participants were recruited for this cross-sectional study in rural Tianjin, China. Principal component analysis was used to determine the major dietary patterns. The associations between dietary patterns and the risk of geriatric depression were assessed using a logistic regression model. Four dietary patterns were identified: vegetables-fruit, animal food, processed food, and milk-egg. The study found that vegetable-fruit (Q2 vs. Q1: OR = 0.62, 95% CI: 0.46–0.83; Q3 vs. Q1: OR = 0.54, 95% CI: 0.38–0.75; Q4 vs. Q1: OR = 0.39, 95% CI: 0.26–0.57) and animal food patterns (Q3 vs. Q1: OR = 0.69, 95% CI: 0.50–0.95; Q4 vs. Q1: OR = 0.58, 95% CI: 0.41–0.82) were associated with a decreased risk of depression, and inflammatory dietary pattern (Q2 vs. Q1: OR = 1.71, 95% CI: 1.23–2.38; Q3 vs. Q1: OR = 1.70, 95% CI: 1.22–2.36; Q4 vs. Q1: OR = 1.44, 95% CI: 1.03–2.03) was associated with an increased risk of depression. The present findings reinforce the importance of adopting an adequate diet consisting of vegetables, fruit and animal foods, while limiting the intake of pro-inflammatory foods, to decrease the risk of depression.
Collapse
Affiliation(s)
- Jing Yan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hongyan Lin
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Qian Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jingzhu Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Changqing Sun
- Neurosurgical Department, Baodi Clinical College, Tianjin Medical University, 8 Guangchuan Road, Baodi District, Tianjin 301899, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Fei Ma
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yun Zhu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yue Du
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yongjie Chen
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Guangshun Wang
- Department of Tumour, Baodi Clinical College, Tianjin Medical University, 8 Guangchuan Road, Baodi District, Tianjin 301899, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Correspondence: ; Tel.: +86-22-8333-6603; Fax: +86-22-8333-6603
| |
Collapse
|