1
|
Charles S, Edgar MP. Geometric Deep learning Prioritization and Validation of Cannabis Phytochemicals as Anti-HCV Non-nucleoside Direct-acting Inhibitors. Biomed Eng Comput Biol 2024; 15:11795972241306881. [PMID: 39678171 PMCID: PMC11638990 DOI: 10.1177/11795972241306881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The rate of acute hepatitis C increased by 7% between 2020 and 2021, after the number of cases doubled between 2014 and 2020. With the current adoption of pan-genotypic HCV therapy, there is a need for improved availability and accessibility of this therapy. However, double and triple DAA-resistant variants have been identified in genotypes 1 and 5 with resistance-associated amino acid substitutions (RAASs) in NS3/4A, NS5A, and NS5B. The role of this research was to screen for novel potential NS5B inhibitors from the cannabis compound database (CBD) using Deep Learning. Methods Virtual screening of the CBD compounds was performed using a trained Graph Neural Network (GNN) deep learning model. Re-docking and conventional docking were used to validate the results for these ligands since some had rotatable bonds >10. About 31 of the top 67 hits from virtual screening and docking were selected after ADMET screening. To verify their candidacy, 6 random hits were taken for FEP/MD and Molecular Simulation Dynamics to confirm their candidacy. Results The top 200 compounds from the deep learning virtual screening were selected, and the virtual screening results were validated by re-docking and conventional docking. The ADMET profiles were optimal for 31 hits. Simulated complexes indicate that these hits are likely inhibitors with suitable binding affinities and FEP energies. Phytil Diphosphate and glucaric acid were suggested as possible ligands against NS5B.
Collapse
Affiliation(s)
- Ssemuyiga Charles
- PharmaQsar Bioinformatics Firm, Kampala, Uganda
- Department of Microbiology, Kampala International University, School of Natural and Applied Sciences (SONAS), Kansanga, Kampala, Uganda
| | - Mulumba Pius Edgar
- PharmaQsar Bioinformatics Firm, Kampala, Uganda
- Department of Microbiology, Kampala International University, School of Natural and Applied Sciences (SONAS), Kansanga, Kampala, Uganda
| |
Collapse
|
2
|
D’Almeida AP, Neta AAI, de Andrade-Lima M, de Albuquerque TL. Plant-based probiotic foods: current state and future trends. Food Sci Biotechnol 2024; 33:3401-3422. [PMID: 39493382 PMCID: PMC11525375 DOI: 10.1007/s10068-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract Plant-based probiotic foods (PBPFs) have recently become a notable choice for many consumers. While less recognized than dairy products, these foods offer efficient alternatives for individuals with lactose intolerance, vegans, or those aiming for more sustainable dietary practices. Traditional fermented PBPFs, such as kimchi, sauerkraut, and kombucha, are part of cultures from different countries and have gained more significant popularity in recent years globally due to their peculiar flavors and health benefits. However, new plant-based probiotic products have also been studied and made available to consumers of the growing demand in this sector. Therefore, this review discusses trends in plant-based probiotic production, known benefits, and characteristics. Challenges currently faced in manufacturing, distribution, marketing, consumer acceptance, and legislation are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Alan Portal D’Almeida
- Department of Chemical Engineering, Technology Center, Federal University of Ceará, Fortaleza, CE 60455-760 Brazil
| | - Aida Aguilera Infante Neta
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| | - Micael de Andrade-Lima
- Natural Resources Institute (NRI), University of Greenwich, Medway Campus, Chatham, ME4 4TB UK
| | - Tiago Lima de Albuquerque
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| |
Collapse
|
3
|
Cai H, Zhang Y, Wang J, Deng Y, Liu J, Wu Z, Cao D, Song Z, Wang L, Xie B. D-glucaro-1,4-lactone improves Diethylnitrosamine induced hepatocellular carcinoma in rats via the uric acid-ROS pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118569. [PMID: 38996947 DOI: 10.1016/j.jep.2024.118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei dihuang pills is a famous Traditional Chinese Medicine with various anti-cancer properties. Over 50 pharmaceutical manufacturers produce Liuwei dihuang pills in China and an estimated millions of people around the world orally take it every day. D-glucaro-1,4-lactone (1,4-GL) was quantified to be about 12.0 mg/g in Liuwei dihuang pills and a primary bioactive component of it inhibiting the activity of β-glucuronidase in vivo. 1,4-GL can prevent and effectively inhibit various types of cancer. However, its exact mechanism of action remains unknown. The study would justify the traditional usage of Liuwei dihuang pills against cancers. AIM OF THE STUDY 1,4-GL, a bioactive ingredient derived from Liuwei dihuang pills, a famous Traditional Chinese Medicine, could delay the progression of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The mechanism underpinning the effect, however, remains poorly understood. MATERIALS AND METHODS Healthy and HCC rats were treated with or without 1,4-GL (40.0 mg/kg) and 1HNMR-based metabonomic analysis was employed. 10 metabolites in uric acid pathway were quantitatively determined by UPLC-MS/MS. The expression of xanthine dehydrogenase (XDH), SLC2A9 mRNA, and SLC2A9 protein was determined using RT-qPCR and Western Blot. The effect of 1,4-GL on HCC-LM3 cells was verified in vitro. The alterations of ROS activity, SLC2A9 and XDH gene levels were observed in NCTC-1469 cells induced by lipopolysaccharide (LPS) after 1,4-GL treatment. RESULTS After the intervention of 1,4-GL, improved pathological morphology, liver lesions in HCC rats was observed with restored serum levels of AFP, AST, ALP, γ-GGT and Fisher's ratio. Hepatic metabonomics revealed that puring metabolism were significantly regulated by 1,4-GL in HCC rats. Uric acid, xanthine and hypoxanthine levels were quantified by UPLC-MS/MS and found to be nearly restored to control levels after 1,4-GL treatment in HCC rats. Changes in xanthine oxidase activity, XDH mRNA expression, and SLC2A9 mRNA and protein expression were also reversed. 1,4-GL treatment in LM3 HCC cells were consistent with the results in vivo. Furthermore, oxidative stress indicators such as T-SOD, GSH, CAT and MDA in serum and liver were improved after HCC rats treated with 1,4-GL. In vitro, 1,4-GL was observed to reduce lipopolysaccharide-induced ROS levels in NCTC-1469 cells with enhanced mRNA and protein expression of SLC2A9 and decreased mRNA level of XDH. CONCLUSION The protective effects of 1,4-GL against DEN-induced HCC by reducing uric acid and ROS levels due to down-regulation of uric acid production and up-regulation of SLC2A9 expressions. 1,4-GL may represent a novel treatment that improves recovery from HCC by targeting uric acid-ROS pathway.
Collapse
MESH Headings
- Animals
- Diethylnitrosamine/toxicity
- Uric Acid/blood
- Male
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Rats
- Reactive Oxygen Species/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Rats, Sprague-Dawley
- Lactones/pharmacology
- Cell Line, Tumor
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Signal Transduction/drug effects
- Drugs, Chinese Herbal/pharmacology
- Disaccharides/pharmacology
Collapse
Affiliation(s)
- Hongxin Cai
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Jingyu Wang
- Department of Pathology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Yufeng Deng
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China.
| | - Jiangyuan Liu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhiguo Wu
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China; Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
| | - Dejian Cao
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China.
| | - Zhiying Song
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China; Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
| | - Lele Wang
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China.
| | - Baogang Xie
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Zhou J, Xue Y, Zhang Z, Wang Y, Wu A, Gao X, Liu Z, Zheng Y. Cell factories for biosynthesis of D-glucaric acid: a fusion of static and dynamic strategies. World J Microbiol Biotechnol 2024; 40:292. [PMID: 39112688 DOI: 10.1007/s11274-024-04097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
D-glucaric acid is an important organic acid with numerous applications in therapy, food, and materials, contributing significantly to its substantial market value. The biosynthesis of D-glucaric acid (GA) from renewable sources such as glucose has garnered significant attention due to its potential for sustainable and cost-effective production. This review summarizes the current understanding of the cell factories for GA production in different chassis strains, from static to dynamic control strategies for regulating their metabolic networks. We highlight recent advances in the optimization of D-glucaric acid biosynthesis, including metabolic dynamic control, alternative feedstocks, metabolic compartments, and so on. Additionally, we compare the differences between different chassis strains and discuss the challenges that each chassis strain must overcome to achieve highly efficient GA productions. In this review, the processes of engineering a desirable cell factory for highly efficient GA production are just like an epitome of metabolic engineering of strains for chemical biosynthesis, inferring general trends for industrial chassis strain developments.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yinan Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zheng Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yihong Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anyi Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
5
|
Munteanu C, Schwartz B. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency. Nutrients 2023; 16:24. [PMID: 38201854 PMCID: PMC10780850 DOI: 10.3390/nu16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present review deals with two main ingredients of energy/power drinks: B vitamins and glucuronolactone and their possible effect on the immune system. There is a strong relationship between the recommended daily dose of selected B vitamins and a functional immune system. Regarding specific B vitamins: (1) Riboflavin is necessary for the optimization of reactive oxygen species (ROS) in the fight against bacterial infections caused by Staphylococcus aureus and Listeria monocytogenes. (2) Niacin administered within normal doses to obese rats can change the phenotype of skeletal fibers, and thereby affect muscle metabolism. This metabolic phenotype induced by niacin treatment is also confirmed by stimulation of the expression of genes involved in the metabolism of free fatty acids (FFAs) and oxidative phosphorylation at this level. (3) Vitamin B5 effects depend primarily on the dose, thus large doses can cause diarrhea or functional disorders of the digestive tract whereas normal levels are effective in wound healing, liver detoxification, and joint health support. (4) High vitamin B6 concentrations (>2000 mg per day) have been shown to exert a significant negative impact on the dorsal root ganglia. Whereas, at doses of approximately 70 ng/mL, sensory symptoms were reported in 80% of cases. (5) Chronic increases in vitamin B12 have been associated with the increased incidence of solid cancers. Additionally, glucuronolactone, whose effects are not well known, represents a controversial compound. (6) Supplementing with D-glucarates, such as glucuronolactone, may help the body's natural defense system function better to inhibit different tumor promoters and carcinogens and their consequences. Cumulatively, the present review aims to evaluate the relationship between the selected B vitamins group, glucuronolactone, and the immune system and their associations to bioavailability, doses, and efficiency.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
6
|
Iqbal M, Waqas M, Mo Q, Shahzad M, Zeng Z, Qamar H, Mehmood K, Kulyar MFEA, Nawaz S, Li J. Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115689. [PMID: 37992645 DOI: 10.1016/j.ecoenv.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.
Collapse
Affiliation(s)
- Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Poonch 12350, Azad Jammu and Kashmir, Pakistan
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Ayyadurai VAS, Deonikar P. Attenuation of Aging-Related Oxidative Stress Pathways by Phytonutrients: A Computational Systems Biology Analysis. Nutrients 2023; 15:3762. [PMID: 37686794 PMCID: PMC10489992 DOI: 10.3390/nu15173762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aging results from gradual accumulation of damage to the cellular functions caused by biochemical processes such as oxidative stress, inflammation-driven prolonged cellular senescence state, immune system malfunction, psychological stress, and epigenetic changes due to exposure to environmental toxins. Plant-derived bioactive molecules have been shown to ameliorate the damage from oxidative stress. This research seeks to uncover the mechanisms of action of how phytochemicals from fruit/berry/vegetable (FBV) juice powder mitigate oxidative stress. The study uses a computational systems biology approach to (1) identify biomolecular pathways of oxidative stress; (2) identify phytochemicals from FBV juice powder and their specific action on oxidative stress mechanisms; and (3) quantitatively estimate the effects of FBV juice powder bioactive compounds on oxidative stress. The compounds in FBV affected two oxidative stress molecular pathways: (1) reactive oxygen species (ROS) production and (2) antioxidant enzyme production. Six bioactive compounds including cyanidin, delphinidin, ellagic acid, kaempherol, malvidin, and rutin in FBV significantly lowered production of ROS and increased the production of antioxidant enzymes such as catalase, heme oxygenase-1, superoxide dismutase, and glutathione peroxidase. FBV juice powder provides a combination of bioactive compounds that attenuate aging by affecting multiple pathways of oxidative stress.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Cambridge, MA 02138, USA;
| | | |
Collapse
|
8
|
Barnes MJ. Nutrition-Based Strategies to Reduce Exercise-Induced Muscle Damage and Soreness. Nutrients 2023; 15:nu15112523. [PMID: 37299486 DOI: 10.3390/nu15112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise induced-muscle damage (EIMD) occurs after strenuous and/or novel exercise that involves repeated eccentric contractions [...].
Collapse
Affiliation(s)
- Matthew J Barnes
- School of Sport, Exercise & Nutrition, Massey University, Palmerston North 4472, New Zealand
| |
Collapse
|