1
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
2
|
Vivanco PG, Taboada P, Coelho A. The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties. Nutrients 2023; 15:4274. [PMID: 37836558 PMCID: PMC10574233 DOI: 10.3390/nu15194274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Scientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.
Collapse
Affiliation(s)
- Pablo García Vivanco
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain
- Nutrition and Digestive Working Group, Spanish Society of Clinical, Family, and Community Pharmacy (SEFAC), 28045 Madrid, Spain
| | - Pablo Taboada
- Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Westmark CJ. Toward an understanding of the role of the exposome on fragile X phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:141-170. [PMID: 37993176 DOI: 10.1016/bs.irn.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Fragile X syndrome (FXS) is the leading known monogenetic cause of autism with an estimated 21-50% of FXS individuals meeting autism diagnostic criteria. A critical gap in medical care for persons with autism is an understanding of how environmental exposures and gene-environment interactions affect disease outcomes. Our research indicates more severe neurological and metabolic outcomes (seizures, autism, increased body weight) in mouse and human models of autism spectrum disorders (ASD) as a function of diet. Thus, early-life exposure to chemicals in the diet could cause or exacerbate disease outcomes. Herein, we review the effects of potential dietary toxins, i.e., soy phytoestrogens, glyphosate, and polychlorinated biphenyls (PCB) in FXS and other autism models. The rationale is that potentially toxic chemicals in the diet, particularly infant formula, could contribute to the development and/or severity of ASD and that further study in this area has potential to improve ASD outcomes through dietary modification.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States; Molecular Environmental Toxicology Center, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States.
| |
Collapse
|
4
|
Liu S, Li L, Ren D. Anti-Cancer Potential of Phytochemicals: The Regulation of the Epithelial-Mesenchymal Transition. Molecules 2023; 28:5069. [PMID: 37446730 DOI: 10.3390/molecules28135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes significantly to the metastasis, invasion, and development of treatment resistance in cancer cells. Current research has demonstrated that phytochemicals are emerging as a potential source of safe and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT in the progression of cancers, then summarize phytochemicals with diverse structures that could block the EMT process in different types of cancer. Hopefully, these will provide some guidance for future research on phytochemicals targeting EMT.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
5
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Chen JR, Samuel HA, Shlisky J, Sims CR, Lazarenko OP, Williams DK, Andres A, Badger TM. A Longitudinal Observational Study of Skeletal Development Between Ages 3 Months and 6 Years in Children Fed Human Milk, Milk Formula or Soy Formula. Am J Clin Nutr 2023:S0002-9165(23)46321-6. [PMID: 37028556 DOI: 10.1016/j.ajcnut.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Early infant feeding can impact skeletal development. Most children are fed breast milk (BF), dairy based infant formula (MF), or soy based infant formula (SF) during the first year of life. The National Health and Nutrition Examination Survey 2003-2010 reports that 12% of U.S. infants consume soy-based infant formula. Despite potential effects of soy-associated isoflavones on skeletal development, studies investigating bone metabolism and structural and functional bone indices in children are lacking. OBJECTIVE The aim of this observational study was to investigate early effects of SF intake on bone metabolism and structure during the first 6 years of life by comparing infants fed BF, MF, or SF. DESIGN A total of 433 healthy infants were followed from 3 months to 6 years of age. Children's skeletal development was assessed using dual-energy X-ray absorptiometry (DXA, N=433) and peripheral quantitative computed tomography (pQCT, N=78). Urinary biomarkers of bone metabolism (N-terminal telopeptide of type I collagen [NTx] and osteocalcin) were evaluated by immunoassays at 6, 24, 60 and 72 months. RESULTS No statistically significant group differences were observed in BMD between children who were BF, MF or SF using DXA or pQCT. At 6 years of age, children who consumed SF in infancy had significantly greater whole- body BMC measured by DXA compared to the MF group. Six-month-old SF boys had significantly greater levels of NTx compared to MF boys, as well as significantly greater osteocalcin levels compared to BF boys. CONCLUSIONS Together, these data suggest that while SF infants at age 6 months may have some enhanced bone metabolism compared to BF and MF infants, as indicated by the urinary biomarkers, no differences in bone metabolism or BMD were noted between ages 2 and 6 years. CLINICAL TRIAL REGISTRY NUMBER NCT00616395; https://clinicaltrials.gov/ct2/show/NCT00616395.
Collapse
|
7
|
Kwak JH, Eun CS, Han DS, Kim YS, Song KS, Choi BY, Kim HJ. Association between soy products, fruits, vegetables, and dairy products and gastric cancer risk in Helicobacter pylori-infected subjects: a case-control study in Korea. Nutr Res Pract 2023; 17:122-134. [PMID: 36777798 PMCID: PMC9884584 DOI: 10.4162/nrp.2023.17.1.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/13/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Consumption of certain protective foods may help inhibit Helicobacter pylori (H. pylori) associated gastric pathologies. However, studies conducted to assess the efficacy of protective foods in H. pylori-infected subjects are either limited or inconsistent. This study evaluated the association of individual or a combination of protective foods on the incidence of gastric cancer (GC) in H. pylori-positive subjects through a case-control study. MATERIALS/METHODS Subjects aged 20-79 years were selected from 2 hospitals between December 2002 and September 2006. In total, 134 patients and 212 controls tested positive for H. pylori infection. Among these, we included 82 pairs of cases and controls matched by sex, age (± 5 years), enrollment period (± 1 years), and hospital. RESULTS A higher intake of soy products was associated with a significantly lower risk of GC than a lower intake of soy products (odds ratio [OR] = 0.37, 95% confidence interval [CI] = 0.14-0.96). Additionally, a higher fruit intake resulted in a significantly lower risk of GC than a lower fruit intake (OR = 0.35, 95% CI = 0.13-0.94). A combination of food groups was evaluated, and a lower risk of GC was observed with a high intake of both soy products and fruits (OR = 0.20, 95% CI = 0.06-0.67), high intake of soy and dairy products (OR = 0.28, 95% CI = 0.10-0.78) and high intake of fruits and dairy products (OR = 0.28, 95% CI = 0.09-0.83). CONCLUSIONS A high intake of soy products or fruits was associated with a lower risk of GC. A combination of soy products or fruits with dairy products was associated with a lower risk of GC. A balanced intake of soy products, fruits, and dairy products may help reduce GC risk.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Chang Soo Eun
- Division of Gastroenterology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Dong Soo Han
- Division of Gastroenterology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Yong Sung Kim
- Functional Genomics Institute, PDXen Biosystems Co., Daejeon 34129, Korea
| | - Kyu Sang Song
- Department of Pathology, Chungnam National University College of Medicine, Daejeon 34134, Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Hyun Ja Kim
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
8
|
Sex-dependent associations between MAP3K1 gene polymorphisms and soy products with the gastric cancer risk in Korea: a case-control study. BMC Gastroenterol 2022; 22:513. [PMID: 36510163 PMCID: PMC9743679 DOI: 10.1186/s12876-022-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/OBJECTIVES The hormone-dependent effect of MAP3K1 gene polymorphisms may explain sex-specific differences in gastric cancer (GC) risk. Phytoestrogens have been shown to interact with this genetic factor. Here, we investigated the association between MAP3K1 gene polymorphisms and GC risk by sex and whether these associations differ depending on soy products intake. METHODS Participants aged 20-79 years were recruited from two hospitals between December 2002 and September 2006. In all, 440 cases and 485 controls were recruited, among, 246 pairs of cases and controls, matched by sex, age (± 5 years), study admission period (± 1 years), and hospital, were included for the analysis. RESULTS In dominant model, men with the A allele of rs252902 showed significantly increased GC risk (odd ratio; OR=2.19, 95% confidence interval; CI=1.31-3.64) compared to GG homozygotes. When stratified by intake of soy products, men with the A allele of rs252902 and low intake of soy products showed significantly higher GC risk (OR=3.29, 95% CI=1.55-6.78) than that in GG homozygotes. CONCLUSIONS Men with the risk allele of MAP3K1 had a significantly increased GC risk compared to GG homozygotes; this trend was more pronounced in those with low intake of soy products.
Collapse
|
9
|
Lim I, Kang M, Kim BC, Ha J. Metabolomic and transcriptomic changes in mungbean ( Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1030677. [PMID: 36325566 PMCID: PMC9618701 DOI: 10.3389/fpls.2022.1030677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Mungbean (Vigna radiata) sprouts are consumed globally as a healthy food with high nutritional values, having antioxidant and anticancer capacity. Under mild salinity stress, plants accumulate more secondary metabolites to alleviate oxidative stress. In this study, metabolomic and transcriptomic changes in mungbean sprouts were identified using a reference cultivar, sunhwa, to understand the regulatory mechanisms of secondary metabolites in response to salinity stress. Under salinity conditions, the contents of phenylpropanoid-derived metabolites, including catechin, chlorogenic acid, isovitexin, p-coumaric acid, syringic acid, ferulic acid, and vitexin, significantly increased. Through RNA sequencing, 728 differentially expressed genes (DEGs) were identified and 20 DEGs were detected in phenylpropanoid and flavonoid biosynthetic pathways. Among them, 11 DEGs encoding key enzymes involved in the biosynthesis of the secondary metabolites that increased after NaCl treatment were significantly upregulated, including dihydroflavonol 4-reductase (log2FC 1.46), caffeoyl-CoA O-methyltransferase (1.38), chalcone synthase (1.15), and chalcone isomerase (1.19). Transcription factor families, such as MYB, WRKY, and bHLH, were also identified as upregulated DEGs, which play a crucial role in stress responses in plants. Furthermore, this study showed that mild salinity stress can increase the contents of phenylpropanoids and flavonoids in mungbean sprouts through transcriptional regulation of the key enzymes involved in the biosynthetic pathways. Overall, these findings will provide valuable information for molecular breeders and scientists interested in improving the nutritional quality of sprout vegetables.
Collapse
|
10
|
Metabolic and Developmental Changes in Germination Process of Mung Bean (Vigna radiata (L.) R. Wilczek) Sprouts under Different Water Spraying Interval and Duration. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6256310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mung bean is one of the world’s most important legume crops and is a major protein source, particularly in developing countries. Various polyphenolic compounds and nutrients accumulate in mung bean sprouts during germination. Mung bean sprouts are consumed globally as an excellent food source of bioactive phenolic compounds. The contents of phenols and flavonoids and antioxidant activity were monitored for four days after germination under four different spraying conditions using three mung bean cultivars. On the third day after germination, the sprout extract showed the highest antioxidant capacity. The length and thickness of hypocotyl of mung bean sprouts appeared to be the most suitable for consumption on the third day after germination. Using high-performance liquid chromatography analysis, eight phytochemicals were identified, and neochlorogenic acid was identified for the first time in mung bean sprouts. End products (neochlorogenic acid, chlorogenic acid, vitexin, and isovitexin) showed certain trends in their contents for four days, while intermediates (caffeic acid, catechin, syringic acid, and p-coumaric acid) were highly responsive to watering condition and cultivars. Watering interval significantly affected the length of root and lateral root development. Both cultivars and watering conditions and/or their interaction significantly affected the biochemical and physical traits of mung bean sprouts. The results suggest that watering conditions need to be considered as an important factor to improve food quality of mung bean sprouts. Our phenotypic and metabolic profiling would provide potential information for production of mung bean sprouts that fit consumers’ preferences.
Collapse
|
11
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
12
|
Kwak JH, Park CH, Eun CS, Han DS, Kim YS, Song KS, Choi BY, Kim HJ. Dietary Intake of Soy Products, Vegetables, and Dairy Products and Gastric Cancer Survival according to Histological Subtype: a Long-term Prospective Cohort Study. J Gastric Cancer 2021; 21:403-417. [PMID: 35079442 PMCID: PMC8753285 DOI: 10.5230/jgc.2021.21.e36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Owing to differences in the general characteristics of gastric cancer (GC) according to histological type, the association of GC risk factors, such as diet, may also differ depending on the histological type. We investigated the associations between individual and combined intake of soy products, vegetables, and dairy products and GC mortality by following up cases of death among Korean GC cases and whether these associations differ according to the histological type. MATERIALS AND METHODS A total of 508 GC cases were enrolled from two hospitals between 2002 and 2006. Their survival or death was prospectively followed up until December 31, 2016, through a review of medical records and telephonic surveys. Finally, 300 GC cases classified as intestinal- or diffuse-type GC cases were included. The median follow-up period was 7.1 years. RESULTS In the fully adjusted model, a high intake of soy products (hazard ratio [HR], 0.43; 95% confidence interval [CI], 0.19-0.96) and the combination of soy products and vegetables (HR, 0.34; 95% CI, 0.12-0.96) or soy products and dairy products (HR, 0.37; 95% CI, 0.14-0.98) decreased the mortality from intestinal-type GC. In particular, patients consuming various potentially protective foods (HR, 0.23; 95% CI, 0.06-0.83) showed a highly significant association with a lower mortality from intestinal-type GC. However, no significant association was found with diffuse-type GC. CONCLUSIONS High intake of potentially protective foods, including soy products, vegetables, and dairy products, may help increase survival in intestinal-type GC.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung, Korea
| | - Chan Hyuk Park
- Division of Gastroenterology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Chang Soo Eun
- Division of Gastroenterology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Dong Soo Han
- Division of Gastroenterology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Yong Sung Kim
- Funtional Genomics Institute, PDXen Biosystems Co., ETRI Convergence Commercialization Center, Daejeon, Korea
| | - Kyu Sang Song
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyun Ja Kim
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung, Korea
| |
Collapse
|
13
|
Yang L, Lu D, Yang B, Peng Z, Fang K, Liu Z, Song P, Ren Z, Wang L, Zhou J, Dong Q. DEHP-induced testicular injury through gene methylation pathway and the protective effect of soybean isoflavones in Sprague-Dawley rats. Chem Biol Interact 2021; 348:109569. [PMID: 34197824 DOI: 10.1016/j.cbi.2021.109569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 06/25/2021] [Indexed: 02/05/2023]
Abstract
As one of the most important members of Phthalate esters (PAEs), di-(2-ethylhexyl) phthalate (DEHP) is widely used in plastics and known as a male reproductive toxicant. Many studies have shown that soybean isoflavones (SI) can rescue the testicular injury caused by DEHP, but the underlying mechanism is unknown. Because methylation is one of the most important mechanisms for maintaining normal biological functions, we studied whether methylation is involved in testicular injury induced by DEHP and whether SI could counter testicular impairment in peripubertal male Sprague Dawley rats. Compared with the control group, we found that the mRNA levels of testicular Sod2, Gpx1, and Igf-1 significantly decreased in the 900 mg/kg DEHP group (DEHP' group) (P < 0.01); however, in the DEHP + SI group, the mRNA levels of the genes obviously increased compared with the DEHP' group (P < 0.01). Simultaneously, the methylation level changes of testicular Sod2, Gpx1, and Igf-1 were similar to the mRNA levels (P < 0.01). Therefore, DEHP may affect testis and leydig cells via inducing methylation of Sod2, Gpx1, and Igf-1, and SI may rescue the impairments at the methylation level. In summary, SI is supposed to be used in DEHP-induced testicular injury treatment.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Dongliang Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Urology, Shenzheng Hospital, Southern Medical University, Shenzheng, 518110, PR China.
| | - Bo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Kun Fang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhengju Ren
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Linchun Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
14
|
Roth K, Coussement L, Knatko EV, Higgins M, Steyaert S, Proby CM, de Meyer T, Dinkova-Kostova AT. Clinically relevant aberrant Filip1l DNA methylation detected in a murine model of cutaneous squamous cell carcinoma. EBioMedicine 2021; 67:103383. [PMID: 34000624 PMCID: PMC8138604 DOI: 10.1016/j.ebiom.2021.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinomas (cSCC) are among the most common and highly mutated human malignancies. Understanding the impact of DNA methylation in cSCC may provide avenues for new therapeutic strategies. METHODS We used reduced-representation bisulfite sequencing for DNA methylation analysis of murine cSCC. Differential methylation was assessed at the CpG level using limma. Next, we compared with human cSCC Infinium HumanMethylation BeadArray data. Genes were considered to be of major relevance when they featured at least one significantly differentially methylated CpGs (RRBS) / probes (Infinium) with at least a 30% difference between tumour vs. control in both a murine gene and its human orthologue. The human EPIC Infinium data were used to distinguish two cSCC subtypes, stem-cell-like and keratinocyte-like tumours. FINDINGS We found increased average methylation in mouse cSCC (by 12.8%, p = 0.0011) as well as in stem-cell like (by 3.1%, p=0.002), but not keratinocyte-like (0.2%, p = 0.98), human cSCC. Comparison of differentially methylated genes revealed striking similarities between human and mouse cSCC. Locus specific methylation changes in mouse cSCC often occurred in regions of potential regulatory function, including enhancers and promoters. A key differentially methylated region was located in a potential enhancer of the tumour suppressor gene Filip1l and its expression was reduced in mouse tumours. Moreover, the FILIP1L locus showed hypermethylation in human cSCC and lower expression in human cSCC cell lines. INTERPRETATION Deregulation of DNA methylation is an important feature of murine and human cSCC that likely contributes to silencing of tumour suppressor genes, as shown for Filip1l. FUNDING British Skin Foundation, Cancer Research UK.
Collapse
Affiliation(s)
- Kevin Roth
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Louis Coussement
- Biobix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; CRIG, Cancer Research Institute Ghent, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Elena V Knatko
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Sandra Steyaert
- Biobix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Charlotte M Proby
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Tim de Meyer
- Biobix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; CRIG, Cancer Research Institute Ghent, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.
| |
Collapse
|
15
|
Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet. Curr Pharm Des 2021; 27:802-815. [PMID: 32942973 DOI: 10.2174/1381612826999200917154747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development. OBJECTIVE Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption. CONCLUSION The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.
Collapse
Affiliation(s)
- Vaadala Sridevi
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Ponneri Naveen
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | | | - Pamuru R Reddy
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Mohammed Arifullah
- Institute of Food Security and Sustainable Agriculture (IFSSA) & Faculty of Agrobased Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
16
|
Sharma S, Katoch V, Kumar S, Chatterjee S. Functional relationship of vegetable colors and bioactive compounds: Implications in human health. J Nutr Biochem 2021; 92:108615. [PMID: 33705954 DOI: 10.1016/j.jnutbio.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/16/2023]
Abstract
Vegetables are essential protective diet ingredients that supply ample amounts of minerals, vitamins, carbohydrates, proteins, dietary fiber, and various nutraceutical compounds for protection against various disease conditions. Color is the most important quality parameter for the farmers to access the harvest maturity while for the consumer's reliable indices to define acceptability or rejection. The colored vegetables contain functional compounds like chlorophylls, carotenoids, betalains, anthocyanins, etc. well recognized for their antioxidant, antimicrobial, hypolipidemic, neuroprotective, antiaging, diuretic, and antidiabetic properties. Recently, there has been a shift in food consumption patterns from processed to semi-processed or fresh fruits and vegetables to ensure a healthy disease-free life. This shifted the focus of agriculture scientists and food processors from food security to nutrition security. This has resulted in recent improvements to existing crops like blue tomato, orange cauliflower, colored and/or black carrots, with improved color, and thus enriched bioactive compounds. Exhaustive laboratory trials though are required to document and establish their minimum effective concentrations, bioavailability, and specific health benefits. Efforts should also be directed to breed color-rich cultivars or to improve the existing varieties through conventional and molecular breeding approaches. The present review has been devoted to a better understanding of vegetable colors with specific health benefits and to provide in-hand information about the effect of specific pigment on body organs, the effect of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Vegetable Science and Floriculture, CSK HPKV, Palampur-176062 (H.P.), India; MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan-173229 (H.P.), India.
| | - Viveka Katoch
- Department of Vegetable Science and Floriculture, CSK HPKV, Palampur-176062 (H.P.), India
| | - Satish Kumar
- College of Horticulture and Forestry, Thunag, Mandi, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230 (H.P.), India
| | - Subhrajyoti Chatterjee
- Department of Horticulture, MSSSOA, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
17
|
Barański M, Średnicka-Tober D, Rempelos L, Hasanaliyeva G, Gromadzka-Ostrowska J, Skwarło-Sońta K, Królikowski T, Rembiałkowska E, Hajslova J, Schulzova V, Cakmak I, Ozturk L, Hallmann E, Seal C, Iversen PO, Vigar V, Leifert C. Feed Composition Differences Resulting from Organic and Conventional Farming Practices Affect Physiological Parameters in Wistar Rats-Results from a Factorial, Two-Generation Dietary Intervention Trial. Nutrients 2021; 13:377. [PMID: 33530419 PMCID: PMC7911726 DOI: 10.3390/nu13020377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recent human cohort studies reported positive associations between organic food consumption and a lower incidence of obesity, cancer, and several other diseases. However, there are very few animal and human dietary intervention studies that provide supporting evidence or a mechanistic understanding of these associations. Here we report results from a two-generation, dietary intervention study with male Wistar rats to identify the effects of feeds made from organic and conventional crops on growth, hormonal, and immune system parameters that are known to affect the risk of a number of chronic, non-communicable diseases in animals and humans. A 2 × 2 factorial design was used to separate the effects of contrasting crop protection methods (use or non-use of synthetic chemical pesticides) and fertilizers (mineral nitrogen, phosphorus and potassium (NPK) fertilizers vs. manure use) applied in conventional and organic crop production. Conventional, pesticide-based crop protection resulted in significantly lower fiber, polyphenol, flavonoid, and lutein, but higher lipid, aldicarb, and diquat concentrations in animal feeds. Conventional, mineral NPK-based fertilization resulted in significantly lower polyphenol, but higher cadmium and protein concentrations in feeds. Feed composition differences resulting from the use of pesticides and/or mineral NPK-fertilizer had a significant effect on feed intake, weight gain, plasma hormone, and immunoglobulin concentrations, and lymphocyte proliferation in both generations of rats and in the second generation also on the body weight at weaning. Results suggest that relatively small changes in dietary intakes of (a) protein, lipids, and fiber, (b) toxic and/or endocrine-disrupting pesticides and metals, and (c) polyphenols and other antioxidants (resulting from pesticide and/or mineral NPK-fertilizer use) had complex and often interactive effects on endocrine, immune systems and growth parameters in rats. However, the physiological responses to contrasting feed composition/intake profiles differed substantially between the first and second generations of rats. This may indicate epigenetic programming and/or the generation of "adaptive" phenotypes and should be investigated further.
Collapse
Affiliation(s)
- Marcin Barański
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Dominika Średnicka-Tober
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Leonidas Rempelos
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Gultakin Hasanaliyeva
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
- Department of Sustainable Crop and Food Protection, Food and Environmental Sciences, Faculty of Agriculture, Universita Catollica del Sacro Cuore, I-29122 Piacenza, Italy
| | - Joanna Gromadzka-Ostrowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Krystyna Skwarło-Sońta
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Tomasz Królikowski
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ewa Rembiałkowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Institute of Chemical Technology, UCT Prague, 166 28 Prague, Czech Republic
| | - Vera Schulzova
- Department of Food Analysis and Nutrition, Institute of Chemical Technology, UCT Prague, 166 28 Prague, Czech Republic
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Levent Ozturk
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Ewelina Hallmann
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Chris Seal
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
| | - Vanessa Vigar
- NatMed, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| | - Carlo Leifert
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- SCU Plant Science, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| |
Collapse
|
18
|
The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int J Mol Sci 2020; 22:ijms22010218. [PMID: 33379327 PMCID: PMC7795922 DOI: 10.3390/ijms22010218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Given the growing number of type 2 diabetic individuals and the substantial social and financial costs associated with diabetes management, every effort should be made to improve its prevention and treatment methods. There is an ongoing search for natural dietary compounds that could be used for this purpose. This narrative review focuses on the therapeutic potential of isoflavones in diabetes prevention and treatment. This review summarizes (i) the molecular mechanisms of isoflavones action that are critical to their anti-diabetic properties; (ii) preclinical (in vitro and in vivo) studies evaluating the influence of isoflavones on the function of key organs involved in the pathogenesis of diabetes; and (iii) epidemiological studies and clinical trials that assessed the effectiveness of isoflavones in the prevention and treatment of type 2 diabetes in humans. Apart from discussing the effects of isoflavones on the function of organs “classically” associated with the pathogenesis of diabetes (pancreas, liver, muscles, and adipose tissue), the impact of these compounds on other organs that contribute to the glucose homeostasis (gastrointestinal tract, kidneys, and brain) is also reviewed.
Collapse
|
19
|
Zakłos-Szyda M, Gałązka-Czarnecka I, Grzelczyk J, Budryn G. Cicer arietinum L. Sprouts' Influence on Mineralization of Saos-2 and Migration of MCF-7 Cells. Molecules 2020; 25:E4490. [PMID: 33007937 PMCID: PMC7583992 DOI: 10.3390/molecules25194490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, we investigated the biological activity of four extracts obtained from Cicer arietinum L. sprouts. The fermentation of the sprouts with Lactobacillus casei and their incubation with β-glucosidase elevated the concentrations of isoflavonoids, especially coumestrol, formononetin and biochanin A. To study the biological activity of C. arietinum, the human osteosarcoma Saos-2 and human breast cancer MCF-7 cell lines were used. The extracts obtained from fermented sprouts exhibited the strongest ability to decrease intracellular oxidative stress in both types of cells. They augmented mineralization and alkaline phosphatase activity in Saos-2 cells, as well as diminished the secretion of interleukin-6 and tumor necrosis factor α. Simultaneously, the extracts, at the same doses, inhibited the migration of MCF-7 cells. On the other hand, elevated concentrations of C. arietinum induced apoptosis in estrogen-dependent MCF-7 cells, while lower doses stimulated cell proliferation. These results are important for carefully considering the use of fermented C. arietinum sprouts as a dietary supplement component for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Ilona Gałązka-Czarnecka
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (I.G.-C.); (J.G.); (G.B.)
| | - Joanna Grzelczyk
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (I.G.-C.); (J.G.); (G.B.)
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (I.G.-C.); (J.G.); (G.B.)
| |
Collapse
|
20
|
Jabeen A, Sharma A, Gupta I, Kheraldine H, Vranic S, Al Moustafa AE, Al Farsi HF. Elaeagnus angustifolia Plant Extract Inhibits Epithelial-Mesenchymal Transition and Induces Apoptosis via HER2 Inactivation and JNK Pathway in HER2-Positive Breast Cancer Cells. Molecules 2020; 25:E4240. [PMID: 32947764 PMCID: PMC7570883 DOI: 10.3390/molecules25184240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
Elaeagnus angustifolia (EA) is a medicinal plant used for treating several human diseases in the Middle East. Meanwhile, the outcome of EA extract on HER2-positive breast cancer remains nascent. Thus, we herein investigated the effects of the aqueous EA extract obtained from the flowers of EA on two HER2-positive breast cancer cell lines, SKBR3 and ZR75-1. Our data revealed that EA extract inhibits cell proliferation and deregulates cell-cycle progression of these two cancer cell lines. EA extract also prevents the progression of epithelial-mesenchymal transition (EMT), an important event for cancer invasion and metastasis; this is accompanied by upregulations of E-cadherin and β-catenin, in addition to downregulations of vimentin and fascin, which are major markers of EMT. Thus, EA extract causes a drastic decrease in cell invasion ability of SKBR3 and ZR75-1 cancer cells. Additionally, we found that EA extract inhibits colony formation of both cell lines in comparison with their matched control. The molecular pathway analysis of HER2 and JNK1/2/3 of EA extract exposed cells revealed that it can block HER2 and JNK1/2/3 activities, which could be the major molecular pathway behind these events. Our findings implicate that EA extract may possess chemo-preventive effects against HER2-positive breast cancer via HER2 inactivation and specifically JNK1/2/3 signaling pathways.
Collapse
Affiliation(s)
- Ayesha Jabeen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Anju Sharma
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, Qatar University, Doha P.O. Box 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Halema F. Al Farsi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.J.); (A.S.); (I.G.); (H.K.); (S.V.)
| |
Collapse
|
21
|
Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12:97. [PMID: 32616071 PMCID: PMC7330981 DOI: 10.1186/s13148-020-00893-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing life expectancy but also healthspan seems inaccessible as of yet but it may become a reality in the foreseeable future. To extend lifespan, it is essential to unveil molecular mechanisms involved in ageing. As for healthspan, a better understanding of the mechanisms involved in age-related pathologies is crucial. MAIN BODY We focus on the epigenetic side of ageing as ageing is traced by specific epigenetic patterns and can be measured by epigenetic clocks. We discuss to what extent exposure to environmental factor, such as alcohol use, unhealthy diet, tobacco and stress, promotes age-related conditions. We focused on inflammation, cancer and Alzheimer's disease. Finally, we discuss strategies to reverse time based on epigenetic reprogramming. CONCLUSIONS Reversibility of the epigenetic marks makes them promising targets for rejuvenation. For this purpose, a better understanding of the epigenetic mechanisms underlying ageing is essential. Epigenetic clocks were successfully designed to monitor these mechanisms and the influence of environmental factors. Further studies on age-related diseases should be conducted to determine their epigenetic signature, but also to pinpoint the defect in the epigenetic machinery and thereby identify potential therapeutic targets. As for rejuvenation, epigenetic reprogramming is still at an early stage.
Collapse
Affiliation(s)
- Clémence Topart
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Emilie Werner
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Paola B Arimondo
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
22
|
Kuryłowicz A, Cąkała-Jakimowicz M, Puzianowska-Kuźnicka M. Targeting Abdominal Obesity and Its Complications with Dietary Phytoestrogens. Nutrients 2020; 12:nu12020582. [PMID: 32102233 PMCID: PMC7071386 DOI: 10.3390/nu12020582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
In the assessment of the health risk of an obese individual, both the amount of adipose tissue and its distribution and metabolic activity are essential. In adults, the distribution of adipose tissue differs in a gender-dependent manner and is regulated by sex steroids, especially estrogens. Estrogens affect adipocyte differentiation but are also involved in the regulation of the lipid metabolism, insulin resistance, and inflammatory activity of the adipose tissue. Their deficiency results in unfavorable changes in body composition and increases the risk of metabolic complications, which can be partially reversed by hormone replacement therapy. Therefore, the idea of the supplementation of estrogen-like compounds to counteract obesity and related complications is compelling. Phytoestrogens are natural plant-derived dietary compounds that resemble human estrogens in their chemical structure and biological activity. Supplementation with phytoestrogens may confer a range of beneficial effects. However, results of studies on the influence of phytoestrogens on body composition and prevalence of obesity are inconsistent. In this review, we present data from in vitro, animal, and human studies regarding the role of phytoestrogens in adipose tissue development and function in the context of their potential application in the prevention of visceral obesity and related complications.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Correspondence: ; Tel.: +48226086591; Fax: +48226086410
| | - Marta Cąkała-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826, Warsaw, Poland
| |
Collapse
|
23
|
Qi W, Wang Y, Yao J, Sun H, Duan X, Song G, Pang S, Wang C, Li A. Genistein inhibits AOM/DSS-induced colon cancer by regulating lipid droplet accumulation and the SIRT1/FOXO3a pathway in high-fat diet-fed female mice. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1684452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Jinli Yao
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Shaojie Pang
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Chunling Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Liu C, Li H, Wang K, Zhuang J, Chu F, Gao C, Liu L, Feng F, Zhou C, Zhang W, Sun C. Identifying the Antiproliferative Effect of Astragalus Polysaccharides on Breast Cancer: Coupling Network Pharmacology With Targetable Screening From the Cancer Genome Atlas. Front Oncol 2019; 9:368. [PMID: 31157164 PMCID: PMC6533882 DOI: 10.3389/fonc.2019.00368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background:Astragalus polysaccharides (APS), natural plant compounds, have recently emerged as a promising strategy for cancer treatment, but little is known concerning their effects on breast cancer (BC) tumorigenesis. Methods: We obtained breast cancer genetic data from The Cancer Genome Atlas (TCGA) database, network pharmacology to further clarify its biological properties. Survival analysis and molecular docking techniques were implemented for the final screening to obtain key target information. Our experiments focused on the detection of intervention effects of APS on BC cells (MCF-7 and MDA-MB-231), and quantitative RT-PCR (qRT-PCR) was used to assess the expression of key targets. Results: A total of 1,439 differentially expressed genes (DEGs) were identified by TCGA and used to build disease networks. Module analysis, gene ontology and pathway analysis revealed characteristic of the DEGs network. Topological properties were used to identify key targets, survival analysis and molecular docking finally found that the targets of APS regulation of BC cells may be CCNB1, CDC6, and p53. Through cell viability, migration and invasion assays, we found that APS interferes with the development of breast cancer in MCF7 and MDA-MB-231 cells in a dose-dependent manner. Furthermore, qRT-PCR verification suggested that the expression of CCNB1 and CDC6 in breast cancer cells was significantly downregulated in response to APS, while expression of the tumor suppressor gene P53 was significantly increased. Conclusion: Results of this study suggest therapeutic potential for APS in BC treatment, possibly through interventions with CCNB1, CDC6, and P53. Furthermore, these findings illustrate the feasibility of using network pharmacology to connect large-scale target data as a way to discover the mechanism of natural products interfering with disease.
Collapse
Affiliation(s)
- Cun Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kejia Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fuhao Chu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Wenfeng Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Weifang, China
| |
Collapse
|
25
|
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Dhanasekaran DN, Isidoro C. Epigenetic targeting of autophagy for cancer prevention and treatment by natural compounds. Semin Cancer Biol 2019; 66:34-44. [PMID: 31054926 DOI: 10.1016/j.semcancer.2019.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
Despite the undeniable progress made in the last decades, cancer continues to challenge the scientists engaged in searching for an effective treatment for its prevention and cure. One of the malignant hallmarks that characterize cancer cell biology is the altered metabolism of sugars and amino acids. Autophagy is a pathway allowing the macromolecular turnover via recycling of the substrates resulting from the lysosomal degradation of damaged or redundant cell molecules and organelles. As such, autophagy guarantees the proteome quality control and cell homeostasis. Data from in vitro, in animals and in patients researches show that dysregulation of autophagy favors carcinogenesis and cancer progression, making this process an ineluctable target of cancer therapy. The autophagy process is regulated at genetic, epigenetic and post-translational levels. Targeting autophagy with epigenetic modifiers could represent a valuable strategy to prevent or treat cancer. A wealth of natural products from terrestrial and marine living organisms possess anti-cancer activity. Here, we review the experimental proofs demonstrating the ability of natural compounds to regulate autophagy in cancer via epigenetics. The hope is that in the near future this knowledge could translate into effective intervention to prevent and cure cancer.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
26
|
Liu M, Yi Y, Zhao M. Effect of dexmedetomidine anesthesia on perioperative levels of TNF-α and IL-6 in patients with ovarian cancer. Oncol Lett 2019; 17:5517-5522. [PMID: 31186772 PMCID: PMC6507361 DOI: 10.3892/ol.2019.10247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/08/2019] [Indexed: 01/05/2023] Open
Abstract
Effect of continuous use of dexmedetomidine during general anesthesia on perioperative levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in patients undergoing radical resection of ovarian cancer was investigated. The initial treatment of ovarian cancer is mainly radical surgery. Most patients with ovarian cancer radical surgery can achieve good results, but the use of improper anesthetic drugs in radical surgery can easily lead to unstable patient vital signs. Therefore, the selection of appropriate anesthetic drugs has become the key to radical ovarian cancer surgery. There are few reports on the use of dexmedetomidine in anesthesia for ovarian cancer radical surgery. This study was performed to retrospectively analyze the case data of patients undergoing laparoscopic ovarian cancer radical surgery, and to compare the hemodynamics of dexmedetomidine anesthesia with midazolam anesthesia and the concentrations of TNF-α and IL-6, to provide reference for clinical implementation of ovarian cancer radical surgery. The hemodynamics of patients in the dexmedetomidine group were stable compared with the midazolam group. Serum TNF-α and IL-6 levels were significantly lower in the dexmedetomidine group than that in the midazolam group. If dexmedetomidine were continuously used during general anesthesia, the perioperative serum levels of TNF-α and IL-6 could be effectively reduced in patients undergoing radical resection of ovarian cancer, and the perioperative stress response was suppressed.
Collapse
Affiliation(s)
- Maodong Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yusheng Yi
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Mingqiang Zhao
- Department of Anesthesiology, Qingdao Center Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
27
|
Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol 2019; 145:1087-1109. [DOI: 10.1007/s00432-019-02892-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
|
28
|
Bilancio G, Cavallo P, Ciacci C, Cirillo M. Dietary Protein, Kidney Function and Mortality: Review of the Evidence from Epidemiological Studies. Nutrients 2019; 11:nu11010196. [PMID: 30669401 PMCID: PMC6356875 DOI: 10.3390/nu11010196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
The World Health Organization recommends a minimum requirement of 0.8 g/day protein/kg ideal weight. Low protein diets are used against kidney failure progression. Efficacy and safety of these diets are uncertain. This paper reviews epidemiological studies about associations of protein intake with kidney function decline and mortality. Three studies investigated these associations; two reported data on mortality. Protein intake averaged >60 g/day and 1.2 g/day/kg ideal weight. An association of baseline protein intake with long-term kidney function decline was absent in the general population and/or persons with normal kidney function but was significantly positive in persons with below-normal kidney function. Independent of kidney function and other confounders, a J-curve relationship was found between baseline protein intake and mortality due to ≈35% mortality excess for non-cardiovascular disease in the lowest quintile of protein intake, a quintile where protein intake averaged <0.8 g/day/kg ideal weight. Altogether, epidemiological evidence suggests that, in patients with reduced kidney function, protein intakes of ≈0.8 g/d/kg ideal weight could limit kidney function decline without adding non-renal risks. Long-term lower protein intake could increase mortality. In most patients, an intake of ≈0.8 g/day/kg would represent a substantial reduction of habitual intake considering that average intake is largely higher.
Collapse
Affiliation(s)
- Giancarlo Bilancio
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi (SA), Italy.
| | - Pierpaolo Cavallo
- Dipartimento di Fisica, Università di Salerno, 84084 Fisciano (SA), Italy.
| | - Carolina Ciacci
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi (SA), Italy.
| | - Massimo Cirillo
- Dipartimento di Sanità Pubblica, Università Federico II, 80131 Naples (NA), Italy.
| |
Collapse
|
29
|
Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK, Solar P, Kello M, Kajo K, Busselberg D, Pec M, Danko J. Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J 2018; 9:403-419. [PMID: 30538792 DOI: 10.1007/s13167-018-0154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
In contrast to the genetic component in mammary carcinogenesis, epigenetic alterations are particularly important for the development of sporadic breast cancer (BC) comprising over 90% of all BC cases worldwide. Most of the DNA methylation processes are physiological and essential for human cellular and tissue homeostasis, playing an important role in a number of key mechanisms. However, if dysregulated, DNA methylation contributes to pathological processes such as cancer development and progression. A global hypomethylation of oncogenes and hypermethylation of tumor-suppressor genes are characteristic of most cancer types. Moreover, histone chemical modifications and non-coding RNA-associated multi-gene controls are considered as the key epigenetic mechanisms governing the cellular homeostasis and differentiation states. A number of studies demonstrate dietary plant products as actively affecting the development and progression of cancer. "Nutri-epigenetics" focuses on the influence of dietary agents on epigenetic mechanisms. This approach has gained considerable attention; since in contrast to genetic alterations, epigenetic modifications are reversible affect early carcinogenesis. Currently, there is an evident lack of papers dedicated to the phytochemicals/plant extracts as complex epigenetic modulators, specifically in BC. Our paper highlights the role of plant natural compounds in targeting epigenetic alterations associated with BC development, progression, as well as its potential chemoprevention in the context of preventive medicine. Comprehensive measures are stated with a great potential to advance the overall BC management in favor of predictive, preventive, and personalized medical services and can be considered as "proof-of principle" model, for their potential application to other multifactorial diseases.
Collapse
Affiliation(s)
- Sona Uramova
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.,3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Dankova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Barbora Zolakova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- 4Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | | | - Taeg Kyu Kwon
- 6Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Peter Solar
- 7Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- 8Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Dietrich Busselberg
- 10Qatar Foundation, Weill Cornell Medical College in Qatar, Education City, Doha Qatar
| | - Martin Pec
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Jan Danko
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
30
|
Coussement L, Bolca S, Van Criekinge W, Trooskens G, Mensaert K, Poels K, Roche N, Blondeel P, Godderis L, Depypere H, De Meyer T. Exploratory analysis of the human breast DNA methylation profile upon soymilk exposure. Sci Rep 2018; 8:13617. [PMID: 30206342 PMCID: PMC6133922 DOI: 10.1038/s41598-018-31767-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Upon soy consumption, isoflavone metabolites attain bioactive concentrations in breast tissue possibly affecting health. Though in vitro epigenetic activity of soy metabolites has been described, the in vivo impact on the epigenome is largely unknown. Therefore, in this case-control study, the breast glandular tissue DNA methylome was explored in women undergoing an aesthetic breast reduction. After a run-in phase, 10 generally healthy Belgian or Dutch women received soymilk for 5 days. MethylCap-seq methylation profiles were compared with those of 10 matched controls. Isoflavones and their microbial metabolites were quantified in urine, serum, and glandular breast tissue (liquid chromatography-mass spectrometry) and 17β-estradiol in glandular breast tissue (immunoassay). Global DNA methylation levels were obtained for 6 cases and 5 controls using liquid chromatography-mass spectrometry. Although lower MethylCap-seq coverages were observed, mass spectrometry results and computational LINE-1 methylation analysis did not provide evidence supporting global methylation alterations upon treatment. At a false discovery rate of 0.05, no differentially methylated loci were identified. Moreover, a set of previously identified loci was specifically tested, but earlier reported results could not be validated. In conclusion, after a 5-day soymilk treatment, no major general epigenetic reprogramming in breast tissue could be found in this exploratory study.
Collapse
Affiliation(s)
- Louis Coussement
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Belgium, Coupure Links 653, B-9000, Ghent, Belgium
| | - Selin Bolca
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Belgium, Coupure Links 653, B-9000, Ghent, Belgium
| | - Wim Van Criekinge
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Belgium, Coupure Links 653, B-9000, Ghent, Belgium.,Bioinformatics Institute Ghent: from Nucleotides 2 Networks (BIG-N2N), Ghent University, Belgium, Ghent University - VIB, Technologiepark 927, B-9052, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University (Hospital), Belgium, Ghent University Hospital MRB, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - Geert Trooskens
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Belgium, Coupure Links 653, B-9000, Ghent, Belgium
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Belgium, Coupure Links 653, B-9000, Ghent, Belgium
| | - Katrien Poels
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Belgium, Kapucijnenvoer 35 blok d, box 7001, B-3000, Leuven, Belgium
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Belgium, University Hospital 2K12 IC, De Pintelaan 185, B-9000, Ghent, Belgium
| | - Phillip Blondeel
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Belgium, University Hospital 2K12 IC, De Pintelaan 185, B-9000, Ghent, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Belgium, Kapucijnenvoer 35 blok d, box 7001, B-3000, Leuven, Belgium
| | - Herman Depypere
- Department of Uro-Gynaecology, Ghent University Hospital, Belgium, Corneel Heymanslaan 10, P3, B-9000, Ghent, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Belgium, Coupure Links 653, B-9000, Ghent, Belgium. .,Bioinformatics Institute Ghent: from Nucleotides 2 Networks (BIG-N2N), Ghent University, Belgium, Ghent University - VIB, Technologiepark 927, B-9052, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University (Hospital), Belgium, Ghent University Hospital MRB, Corneel Heymanslaan 10, B-9000, Ghent, Belgium.
| |
Collapse
|
31
|
Dutta B, Park JE, Qing ITY, Kon OL, Sze SK. Soy-Derived Phytochemical Genistein Modifies Chromatome Topology to Restrict Cancer Cell Proliferation. Proteomics 2018; 18:e1700474. [PMID: 29963755 DOI: 10.1002/pmic.201700474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Epidemiological data indicate that human cancer risk is significantly reduced by the consumption of soy-based foods containing the "phytoestrogen" genistein, which can signal via host cell estrogen receptors. While additional chemoprotective effects of genistein induced by epigenetic factors have also been reported, the key molecules and mechanisms involved are poorly defined. We therefore investigated genistein effects on chromatin-bound proteins in the estrogen receptor-deficient cell line MDA-MB-231 which is insensitive to phytoestrogen signaling. After exposure to low-dose genistein for >1 month, MDA-MB-231 cells exhibited stable epigenetic alterations that are analyzed via partial MNase digestion and TMT-based quantitative proteomics. 3177 chromatin-bound proteins are identified with high confidence, including 882 molecules that displayed altered binding topology after cell conditioning with genistein. Prolonged phytochemical exposure conferred heritable changes in the binding topology of key epigenetic regulators including ATRX, SUV39H1/H2, and HP1BP3 that are preserved in untreated progeny, resulting in sustained downregulation of proliferation genes and reduced cell growth. These data indicate that soy derivative genistein exerts complex estrogen receptor-independent effects on the epigenome likely to influence tumorigenesis by restricting cell growth.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ivan Toh Yi Qing
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
32
|
Shen H, He D, Wang S, Ding P, Wang J, Ju J. Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system. Drug Dev Ind Pharm 2018; 44:1536-1542. [PMID: 29848136 DOI: 10.1080/03639045.2018.1483384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hongxue Shen
- Anhui University of Chinese Medicine, Hefei, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dandan He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuxia Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianan Wang
- School of Pharmaceutical Sciences, Jining Medical University, Rizhao, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170359. [PMID: 29685968 PMCID: PMC5915727 DOI: 10.1098/rstb.2017.0359] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/18/2022] Open
Abstract
Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet-epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(-)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Cirillo M, Cavallo P, Bilancio G, Lombardi C, Terradura Vagnarelli O, Laurenzi M. Low Protein Intake in the Population: Low Risk of Kidney Function Decline but High Risk of Mortality. J Ren Nutr 2018; 28:235-244. [PMID: 29439930 DOI: 10.1053/j.jrn.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/01/2017] [Accepted: 11/19/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This population-based study investigated low protein intake, mortality, and kidney function decline. DESIGN Observational longitudinal cohort study. SUBJECTS Target cohort consisted of 4,679 adults participating in 1988-1992 and 2001-2007 examinations of the Gubbio Study (baseline and follow-up). Data collection included overnight urine urea nitrogen (UUN) and other variables at baseline, serum creatinine at baseline and follow-up, and mortality from baseline to follow-up. Three hundred seventy-two persons were excluded for missing data. UUN in the lowest 20% of the distribution was defined as low and used as index of low protein intake. Estimated glomerular filtration rate (eGFR, mL/minute × 1.73 m2) was used as kidney function index. INTERVENTION None (observational study). MAIN OUTCOME MEASURE Mortality and eGFR decline are the main outcome measures, and eGFR decline was defined as eGFR change from baseline to follow-up ≤ mean-1 standard deviation (Z-score ≤ -1). RESULTS Eight hundred seventy-one deaths occurred over 15.9 ± 4.0 years of observation (417 from cardiovascular disease and 276 from neoplastic disease). Low UUN associated with mortality (hazard ratio, HR = 1.31, 95% confidence interval, CI = 1.12/1.53) due to association with mortality from neoplastic disease (HR = 1.33, 95% CI = 1.02/1.76). Mortality-corrected follow-up response rate was 79.9% (n = 2845). Baseline to follow-up eGFR change was -9.9 ± 10.1, and eGFR decline was found in 454 examinees. Low UUN associated with eGFR decline only in subgroup with baseline eGFR <90 (n = 1441, odds ratio = 0.44, 95% CI = 0.22/0.85). Low baseline eGFR interacted with the association between low UUN and eGFR decline (P = .024). CONCLUSION Low protein intake predicted higher mortality in the whole population and lower incidence of eGFR decline only in subgroup with reduced kidney function.
Collapse
Affiliation(s)
- Massimo Cirillo
- Unit of Nephrology, Department "Scuola Medica Salernitana", University of Salerno, Salerno, Italy; Unit of Nephrology, Department of Medical Sciences, University Hospital, Salerno, Italy.
| | - Pierpaolo Cavallo
- Lab of Complex Systems in Physics of Public Health, Department of Physics, University of Salerno, Salerno, Italy
| | - Giancarlo Bilancio
- Unit of Nephrology, Department "Scuola Medica Salernitana", University of Salerno, Salerno, Italy; Unit of Nephrology, Department of Medical Sciences, University Hospital, Salerno, Italy
| | - Cinzia Lombardi
- Unit of Medical Genetics, Department of Maternal and Child Health, Rummo Hospital, Benevento, Italy
| | | | | |
Collapse
|
35
|
Saleh AI, Mohamed I, Mohamed AA, Abdelkader M, Yalcin HC, Aboulkassim T, Batist G, Yasmeen A, Moustafa AEA. Elaeagnus angustifolia Plant Extract Inhibits Angiogenesis and Downgrades Cell Invasion of Human Oral Cancer Cells via Erk1/Erk2 Inactivation. Nutr Cancer 2018; 70:297-305. [PMID: 29300111 DOI: 10.1080/01635581.2018.1412472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral cancer is a common malignancy in both men and women worldwide; this cancer is characterized by a marked propensity for invasion and spreading to local lymph nodes. On the other hand, Elaeagnus angustifolia (EA) is a medicinal plant that has been used for centuries for treating many human diseases in the Middle East. However, the effect of EA plant extract on human cancers especially oral has not been investigated yet. Thus, first we examined the outcome of EA flower extract on angiogenesis, using the chorioallantoic membrane (CAM) of the chicken embryo; we found that EA extract reduces blood vessel development of the CAM. Then, we investigated the effect of EA flower extract on selected parameters in FaDu and SCC25 oral cancer cell lines. Our results show that EA extract inhibits cell proliferation and colony formation, in addition to the initiation of S cell cycle arrest and reduction of G1/G2 phase. In parallel, EA extract provokes differentiation to an epithelial phenotype "mesenchymal-to-epithelial transition: MET" which is the opposite of "epithelial-to-mesenchymal transition, EMT": an important event in cell invasion and metastasis. Thus, EA plant extract causes a dramatic decrease in cell invasion and motility abilities of FaDu and SCC25 cancer cells in comparison with their controls. These changes are accompanied by an upregulation of E-cadherin expression. The molecular pathway analysis of the EA flower extract reveals that it can inhibit the phosphorylation of Erk1/Erk2, which could be behind the inhibition of angiogenesis, the initiation of MET event, and the overexpression of E-cadherin. Our findings indicate that EA plant extract can reduce human oral cancer progression by the inhibition of angiogenesis and cell invasion via Erk1/Erk2 signaling pathways.
Collapse
Affiliation(s)
| | - Islam Mohamed
- a College of Medicine, Qatar University , Doha , Qatar
| | | | | | | | - Tahar Aboulkassim
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , Montreal , Quebec , Canada
| | - Gerald Batist
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , Montreal , Quebec , Canada.,d Oncology Department , McGill University , Montreal , Quebec , Canada
| | - Amber Yasmeen
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , Montreal , Quebec , Canada
| | - Ala-Eddin Al Moustafa
- a College of Medicine, Qatar University , Doha , Qatar.,b Biomedical Research Centre, Qatar University , Doha , Qatar.,d Oncology Department , McGill University , Montreal , Quebec , Canada.,e Syrian Research Cancer Centre of the Syrian Society against Cancer , Aleppo , Syria
| |
Collapse
|
36
|
Acconcia F, Fiocchetti M, Marino M. Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Mol Cell Endocrinol 2017; 457:3-12. [PMID: 27816767 DOI: 10.1016/j.mce.2016.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
The hormone 17β-estradiol (E2) contributes to body homeostasis maintenance by regulating many different physiological functions in both male and female organs. E2 actions in reproductive and non-reproductive tissues rely on a complex net of nuclear and extra-nuclear signal transduction pathways triggered by at least two estrogen receptor subtypes (ERα and ERβ). Consequently, the de-regulation of E2:ER signaling contributes to the pathogenesis of many diseases including cancer. Among other factors, the ERα/ERβ ratio is considered one of the pivotal mechanisms at the root of E2 action in cancer progression. Remarkably, several natural or synthetic exogenous chemicals, collectively called xenoestrogens, bind to ERs and interfere with their signals and intracellular functions. In this review, the molecular mechanism(s) through which xenoestrogens influence ERα and ERβ intracellular concentrations and the consequences of this influence on E2-related cancer will be discussed.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
37
|
Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer 2017; 17:813. [PMID: 29202800 PMCID: PMC5715491 DOI: 10.1186/s12885-017-3829-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023] Open
Abstract
Background Genistein has been known to inhibit proliferation and induce apoptosis in several kinds of cancer cells. While knowledge of genistein in regulating epithelial mesenchymal transition (EMT) of colon cancer cells is unknown. Methods To investigate the effects and mechanisms of genistein on EMT of colon cancer cells, HT-29 cells were used and treated by genistein and TNF-α in this paper. EMT was determined by cell invasion assays using a transwell chamber and the expression changes of EMT-related markers were confirmed by RT–PCR, Western blotting, and immunofluorescence staining. Results Genistein inhibited cell migration at 200 μmol/L. Genistein reversed the EMT of colon cancer cells by upregulation of E-cadherin and downregulation of N-cadherin, accompanied by the suppression of EMT related makers, such as Snail2/slug, ZEB1, ZEB2, FOXC1, FOXC2 and TWIST1. Moreover, genistein can inhibit the expression of notch-1, p-NF-κB and NF-κB, while promote the expression of Bax/Bcl-2 and caspase-3 in HT-29 cells. Conclusion The present study demonstrated that genistein suppressed the migration of colon cancer cells by reversal the EMT via suppressing the Notch1/NF-κB/slug/E-cadherin pathway. Genistein may be developed as a potential antimetastasis agent to colon cancer.
Collapse
Affiliation(s)
- Panpan Zhou
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China.,Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zebin Hu
- Institue for In Vitro Diagnostic Reagents Control, the National Institutes for food and drug Control (NIFDC), Beijing, 100050, People's Republic of China
| | - Wenruo Chen
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| | - Wentao Qi
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China.
| | - Aike Li
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| |
Collapse
|
38
|
Mechanism study of isoflavones as an anti-retinoblastoma progression agent. Oncotarget 2017; 8:88401-88409. [PMID: 29179444 PMCID: PMC5687614 DOI: 10.18632/oncotarget.19365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023] Open
Abstract
Isoflavones, bioactive soy compounds, are known to exhibit anticancer activities. The present study investigated the anticancer activities of isoflavones on human retinoblastoma Y79 cells in vitro and in vivo. An MTT cell viability assay showed that the half maximal inhibitory concentration value of isoflavones against human retinoblastoma Y79 cells is 1.23 ± 0.42 μmol/l. Flow cytometry analysis indicated that isoflavones blocked G1/S progression. Western blot analysis demonstrated that the mammalian target of rapamycin (mTOR) pathway in Y79 cells was inhibited by isoflavones, with a concomitant decrease in cyclin E1, which accounted for the isoflavone-mediated G1 phase arrest. Isoflavones also inhibited human retinoblastoma growth in vivo; western blot analysis showed inhibition of mTOR and downregulation of cyclin E1 in an isoflavone-treated xenograft mouse model. Together, these results illustrate that isoflavones inhibit retinoblastoma tumour growth in vitro and vivo and that inactivation of the mTOR pathway and downregulation of cyclin E1 is involved in this action. The results of this study suggest that isoflavones could be tested as promising anti-retinoblastoma agent.
Collapse
|
39
|
[Isoflavone-containing dietary supplements]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:305-313. [PMID: 28168353 DOI: 10.1007/s00103-016-2497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Isoflavones (IFs) from soy and other legumes have weak estrogenic properties. Isolated IFs are available as dietary supplements and advertised to alleviate symptoms of menopause. The present chapter provides an overview of the occurrence, the chemical structure of IFs and their metabolites, the market situation and reviews the current evidence on the efficacy and safety of IF-containing dietary supplements.The biological effectiveness of IFs is attributable to the activation of the estrogen receptor (ER). Studies on the influence of IFs on endogenous estrogen levels in women show inconsistent results. So far, the European Food Safety Authority (EFSA) has rejected all submitted health claims for IFs due to insufficient scientific evidence for any of the postulated health effects. Based on the results of their recent risk assessment, the EFSA concluded that the available human studies did not support the hypothesis of adverse effects of isolated IFs on the human mammary gland, uterus or thyroid in healthy postmenopausal women. However, the assessment does not allow a general statement on the safety of IF-containing dietary supplements. Studies in animal models are often not comparable with the complex interactions in humans due to differences in the metabolism of IFs, in the developmental stage at time of consumption and in the temporarily restricted uptake of IFs during certain stages of life. CONCLUSION So far, for none of the advertised functions is unequivocal scientific evidence available. On the basis of available data, potential unwanted side effects cannot be fully excluded. This holds particularly true for women with undiagnosed diseases, especially for those with undetected precancerous lesions in the mammary gland.
Collapse
|
40
|
Magnet U, Urbanek C, Gaisberger D, Tomeva E, Dum E, Pointner A, Haslberger A. Topical equol preparation improves structural and molecular skin parameters. Int J Cosmet Sci 2017; 39:535-542. [DOI: 10.1111/ics.12408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- U. Magnet
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - C. Urbanek
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - D. Gaisberger
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - E. Tomeva
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - E. Dum
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A. Pointner
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A.G. Haslberger
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| |
Collapse
|
41
|
vel Szic KS, Declerck K, Crans RA, Diddens J, Scherf DB, Gerhäuser C, Berghe WV. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget 2017; 8:40434-40453. [PMID: 28467815 PMCID: PMC5522326 DOI: 10.18632/oncotarget.17107] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by poor prognosis and a DNA hypomethylation profile. Withaferin A (WA) is a plant derived steroidal lactone which holds promise as a therapeutic agent for treatment of breast cancer (BC). We determined genome-wide DNA methylation changes in weakly-metastatic and aggressive, metastatic BC cell lines, following 72h treatment to a sub-cytotoxic concentration of WA. In contrast to the DNA demethylating agent 5-aza-2'-deoxycytidine (DAC), WA treatment of MDA-MB-231 cells rather tackles an epigenetic cancer network through gene-specific DNA hypermethylation of tumor promoting genes including ADAM metallopeptidase domain 8 (ADAM8), urokinase-type plasminogen activator (PLAU), tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), and genes related to detoxification (glutathione S-transferase mu 1, GSTM1), or mitochondrial metabolism (malic enzyme 3, ME3). Gene expression and pathway enrichment analysis further reveals epigenetic suppression of multiple cancer hallmarks associated with cell cycle regulation, cell death, cancer cell metabolism, cell motility and metastasis. Remarkably, DNA hypermethylation of corresponding CpG sites in PLAU, ADAM8, TNSF12, GSTM1 and ME3 genes correlates with receptor tyrosine-protein kinase erbB-2 amplification (HER2)/estrogen receptor (ESR)/progesterone receptor (PR) status in primary BC tumors. Moreover, upon comparing differentially methylated WA responsive target genes with DNA methylation changes in different clinical subtypes of breast cancer patients in the cancer genome atlas (TCGA), we found that WA silences HER2/PR/ESR-dependent gene expression programs to suppress aggressive TNBC characteristics in favor of luminal BC hallmarks, with an improved therapeutic sensitivity. In this respect, WA may represent a novel and attractive phyto-pharmaceutical for TNBC treatment.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Division of Hematology, Oncology and Stem Cell Transplantation, Center for Translational Cell Research, The University Medical Center Freiburg, Freiburg, Germany
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - René A.J Crans
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Laboratory for GPCR Expression and Signal Transduction (L-GEST), Department of Biochemistry and Microbiology, University of Ghent, Ghent, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David B. Scherf
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhäuser
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
42
|
Muramatsu D, Okabe M, Takaoka A, Kida H, Iwai A. Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced Thrombospondin-1 expression. Sci Rep 2017; 7:2831. [PMID: 28588201 PMCID: PMC5460285 DOI: 10.1038/s41598-017-03053-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Black yeast, Aureobasidium pullulans is extracellularly produced β-(1,3), (1,6)-D-glucan (β-glucan) under certain conditions. In this study, using Glycine max cv. Kurosengoku (Kurosengoku soybeans), the production of β-glucan through fermentation of A. pullulans was evaluated, and the effects of A. pullulans cultured fluid (AP-CF) containing β-glucan made with Kurosengoku soybeans (kAP-CF) on a human monocyte derived cell line, Mono Mac 6 cells were investigated. Concentration of β-glucan in kAP-CF reached the same level as normal AP-CF. An anti-angiogenic protein, Thrombospondin-1 (THBS1) was effectively induced after the stimulation with kAP-CF for comparison with AP-CF. The THBS1 is also induced after stimulation with hot water extract of Kurosengoku soybeans (KS-E), while the combined stimulation of β-glucan with KS-E more effectively induced THBS1 than that with KS-E alone. These results suggest effects of A. pullulans-produced β-glucan on the enhancement of Kurosengoku soybean-induced THBS1 expression.
Collapse
Affiliation(s)
- Daisuke Muramatsu
- Aureo Science Co., Ltd., Hokudai Business Spring, North 21, West 12, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mitsuyasu Okabe
- Aureo Co., Ltd., 54-1 Kazusakoito, Kimitsu, Chiba, 292-1149, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Hiroshi Kida
- Hokkaido University Research Center for Zoonosis Control, North 20, West 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Atsushi Iwai
- Aureo Science Co., Ltd., Hokudai Business Spring, North 21, West 12, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
- Aureo Co., Ltd., 54-1 Kazusakoito, Kimitsu, Chiba, 292-1149, Japan.
| |
Collapse
|
43
|
Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174:1263-1280. [PMID: 27723080 PMCID: PMC5429336 DOI: 10.1111/bph.13622] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Phytoestrogens are plant-derived dietary compounds with structural similarity to 17-β-oestradiol (E2), the primary female sex hormone. This structural similarity to E2 enables phytoestrogens to cause (anti)oestrogenic effects by binding to the oestrogen receptors. The aim of the present review is to present a state-of-the-art overview of the potential health effects of dietary phytoestrogens. Various beneficial health effects have been ascribed to phytoestrogens, such as a lowered risk of menopausal symptoms like hot flushes and osteoporosis, lowered risks of cardiovascular disease, obesity, metabolic syndrome and type 2 diabetes, brain function disorders, breast cancer, prostate cancer, bowel cancer and other cancers. In contrast to these beneficial health claims, the (anti)oestrogenic properties of phytoestrogens have also raised concerns since they might act as endocrine disruptors, indicating a potential to cause adverse health effects. The literature overview presented in this paper illustrates that several potential health benefits of phytoestrogens have been reported but that, given the data on potential adverse health effects, the current evidence on these beneficial health effects is not so obvious that they clearly outweigh the possible health risks. Furthermore, the data currently available are not sufficient to support a more refined (semi) quantitative risk-benefit analysis. This implies that a definite conclusion on possible beneficial health effects of phytoestrogens cannot be made. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Karsten Beekmann
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
44
|
Edwards MR, Dai R, Heid B, Cecere TE, Khan D, Mu Q, Cowan C, Luo XM, Ahmed SA. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice. Int Immunol 2017; 29:263-276. [PMID: 28637300 PMCID: PMC5890898 DOI: 10.1093/intimm/dxx033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
The course and severity of lupus in spontaneous murine lupus models varies among laboratories, which may be due to variations in diet, housing and/or local environmental conditions. In this study, we investigated the influence of common rodent diets while keeping other factors constant. Female lupus-prone MRL/lpr (MRL/MpJ-Faslpr/J) mice were subjected to the same housing conditions and given one of the three diets: Teklad 7013 containing isoflavone-rich soy and alfalfa, Harlan 2018 isoflavone-rich soy-based diet or Research Diets Inc. D11112226 (RD) purified-ingredients diet containing casein and no phytoestrogens. While the total caloric intake was similar among all three treatment groups, mice fed on the 2018 diet developed higher levels of proteinuria and mice fed on either 7013 or 2018 developed higher levels of glomerular immune complex deposition. Remarkably, mice fed the RD diet had markedly decreased proteinuria with diminished C3, total IgG, IgG1 and IgG3 immune complex deposition, along with reduced CD11b+ cellular infiltration into the glomeruli. The type of diet intake also influenced cytokine production, fecal microbiota (increased Lachnospiraceae in mice fed on 2018), altered microRNAs (miRNAs; higher levels of lupus-associated miR-148a and miR-183 in mice fed on 7013 and/or 2018) and altered DNA methylation. This is the first study to comprehensively compare the cellular, molecular and epigenetic effects of these commercial diets in murine lupus.
Collapse
Affiliation(s)
- Michael R Edwards
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rujuan Dai
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bettina Heid
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Thomas E Cecere
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Deena Khan
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qinghui Mu
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catharine Cowan
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xin M Luo
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - S Ansar Ahmed
- Infectious Disease Research Facility (IDRF), Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
45
|
Wang B, Wu C. Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice. Exp Ther Med 2017; 14:276-282. [PMID: 28672925 PMCID: PMC5488499 DOI: 10.3892/etm.2017.4469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/24/2017] [Indexed: 01/10/2023] Open
Abstract
It has been hypothesized that soy isoflavones exhibit anti-oxidative and anti-inflammatory functions, however, the effects of soy isoflavones on inflammatory bowel diseases remain unknown. Therefore, the present study aimed to investigate the effect and underlying mechanism of dietary soy isoflavones on dextran sulfate sodium (DSS)-induced colitis. Mice were administered DSS and soy isoflavones, and histomorphometry, oxidative stress, inflammation and intestinal tight junctions were determined. The current study demonstrated that dietary soy isoflavones alleviated DSS-induced growth suppression, colonic inflammatory response, oxidative stress and colonic barrier dysfunction. DSS treatment was indicated to activate Toll-like receptor 4 (TRL4) and myeloid differentiation protein 88 (MyD88) in mice, whereas dietary soy isoflavones inhibited Myd88 expression in DSS-challenged mice. In conclusion, dietary soy isoflavones alleviate DSS-induced inflammation in mice, which may be associated with enhancing antioxidant function and inhibiting the TLR4/MyD88 signal.
Collapse
Affiliation(s)
- Bin Wang
- Department of Food and Nutritional Engineering, Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223005, P.R. China
| | - Cunbing Wu
- Department of Food Engineering, Jiangsu Polytechnic of Finance and Economics, Huaian, Jiangsu 223005, P.R. China
| |
Collapse
|
46
|
DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in Breast Cancer Patients. Genes (Basel) 2017; 8:genes8050144. [PMID: 28505145 PMCID: PMC5448018 DOI: 10.3390/genes8050144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
Early postnatal exposures to Bisphenol A (BPA) and genistein (GEN) have been reported to predispose for and against mammary cancer, respectively, in adult rats. Since the changes in cancer susceptibility occurs in the absence of the original chemical exposure, we have investigated the potential of epigenetics to account for these changes. DNA methylation studies reveal that prepubertal BPA exposure alters signaling pathways that contribute to carcinogenesis. Prepubertal exposure to GEN and BPA + GEN revealed pathways involved in maintenance of cellular function, indicating that the presence of GEN either reduces or counters some of the alterations caused by the carcinogenic properties of BPA. We subsequently evaluated the potential of epigenetic changes in the rat mammary tissues to predict survival in breast cancer patients via the Cancer Genomic Atlas (TCGA). We identified 12 genes that showed strong predictive values for long-term survival in estrogen receptor positive patients. Importantly, two genes associated with improved long term survival, HPSE and RPS9, were identified to be hypomethylated in mammary glands of rats exposed prepuberally to GEN or to GEN + BPA respectively, reinforcing the suggested cancer suppressive properties of GEN.
Collapse
|
47
|
Ratovitski EA. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics 2017; 18:175-205. [PMID: 28367075 PMCID: PMC5345332 DOI: 10.2174/1389202917666160803165229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence shows that hallmarks of cancer include: "genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development". Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Head and Neck Cancer Research Division, Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
48
|
Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit Rev Food Sci Nutr 2017; 57:1280-1293. [PMID: 26565435 DOI: 10.1080/10408398.2014.989958] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Isoflavones (genistein, daidzein, and glycitein) are bioactive compounds with mildly estrogenic properties and often referred to as phytoestrogen. These are present in significant quantities (up to 4-5 mg·g-1 on dry basis) in legumes mainly soybeans, green beans, mung beans. In grains (raw materials) they are present mostly as glycosides, which are poorly absorbed on consumption. Thus, soybeans are processed into various food products for digestibility, taste and bioavailability of nutrients and bioactives. Main processing steps include steaming, cooking, roasting, microbial fermentation that destroy protease inhibitors and also cleaves the glycoside bond to yield absorbable aglycone in the processed soy products, such as miso, natto, soy milk, tofu; and increase shelf lives. Processed soy food products have been an integral part of regular diets in many Asia-Pacific countries for centuries, e.g. China, Japan and Korea. However, in the last two decades, there have been concerted efforts to introduce soy products in western diets for their health benefits with some success. Isoflavones were hailed as magical natural component that attribute to prevent some major prevailing health concerns. Consumption of soy products have been linked to reduction in incidence or severity of chronic diseases such as cardiovascular, breast and prostate cancers, menopausal symptoms, bone loss, etc. Overall, consuming moderate amounts of traditionally prepared and minimally processed soy foods may offer modest health benefits while minimizing potential for any adverse health effects.
Collapse
Affiliation(s)
| | - M Humayoun Akhtar
- b Guelph Research and Development Centre, Agriculture and Agri-Food Canada , Guelph , Ontario , Canada
| |
Collapse
|
49
|
Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. Soy Formula and Epigenetic Modifications: Analysis of Vaginal Epithelial Cells from Infant Girls in the IFED Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:447-452. [PMID: 27539829 PMCID: PMC5332195 DOI: 10.1289/ehp428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/28/2016] [Accepted: 06/09/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. OBJECTIVES Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. METHODS Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula-fed and six cow formula-fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula-fed and 22 cow formula-fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. RESULTS The epigenome-wide scan suggested differences in methylation between soy formula-fed and cow formula-fed infants at three CpGs in the gene proline rich 5 like (PRR5L) (p < 104). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. CONCLUSIONS Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447-452; http://dx.doi.org/10.1289/EHP428.
Collapse
Affiliation(s)
- Sophia Harlid
- Epigenetics and Stem Cell Biology Laboratory,
- Epidemiology Branch,
| | | | | | | | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Jack A. Taylor
- Epigenetics and Stem Cell Biology Laboratory,
- Epidemiology Branch,
| |
Collapse
|
50
|
Abstract
Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment.
Collapse
Affiliation(s)
- Runchana Rungruangmaitree
- Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | | |
Collapse
|