1
|
Li Y, Shao S, Zhou Y, Wang Y, Zheng W, Wang H, Wang M, Jin K, Zou H, Mou X. Oral administration of Folium Artemisiae Argyi-derived exosome-like nanovesicles can improve ulcerative colitis by regulating intestinal microorganisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156376. [PMID: 39813847 DOI: 10.1016/j.phymed.2025.156376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Ulcerative colitis (UC), an inflammatory disease characterized by intestinal barrier dysfunction, poses significant challenges because of the toxicity and adverse effects commonly associated with conventional therapies. Safer and more efficacious treatment strategies are needed. PURPOSE The purpose of this study was to treat UC with Folium Artemisiae Argyi exosome-like nanovesicles (FAELNs) and to explore its related mechanism to provide a safer and more effective means for the treatment of ulcerative colitis. METHODS We established an in vivo model of acute UC in mice and an in vitro inflammatory model using HT-29 human colorectal cancer cells. To evaluate the therapeutic effect of FAELNs on UC, we adopted various proxies, including changes in body weight and disease activity index (DAI) of mice, and measurement of colon length. The concentrations of myeloperoxide, interleukin (IL-1β), IL-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interferon-gamma in sera of mice were detected by ELISA. Immunohistochemistry, hematoxylin and eosin staining, and Alyssin blue staining were performed. The effect of HT-29 cells on oxidative stress was detected using an active oxygen probe, diacetyldichlorofluorescein, and flow cytometry. Western blotting was performed to detect the expression levels of Bax and Bcl-2 in HT-29 cells treated with FAELNs. The effects of FAELNs on IL-6 and IL-1β were detected by fluorescence quantitative PCR. Fecal 16S bacteria were detected, and the role of FAELNs was verified by α diversity and β diversity analyses, principal component analysis, species distribution, and function prediction. For microRNA sequencing of FAELNs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. To detect the metabolic and lipid groups of FAELNs, the components were identified and a pharmacological network was constructed to explore the related mechanisms and diseases. RESULTS FAELNs effectively alleviated the pathogenesis of UC induced by dextran sodium sulfate in animal models, restoring the integrity of the intestinal barrier and reversing an imbalance of the intestinal microbiota. CONCLUSION Our findings demonstrate the therapeutic potential of FAELNs in UC management, highlighting their scalability for mass production and encouraging prospects for clinical transformation.
Collapse
Affiliation(s)
- Yishu Li
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Su Shao
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, PR China
| | - Yuanhao Zhou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yuanyuan Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Wenjie Zheng
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Huanying Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, PR China
| | - Meixia Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, PR China; EVitai Bio (Hangzhou) Co. Ltd, Hangzhou 310056, PR China
| | - Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, PR China.
| | - Hai Zou
- Department of Critical Care, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
2
|
Liu W, Yan X, An J, Wang X, Mi H, Liu F. Modified Jiaoqi Powder enhances epithelial autophagy against TNF-triggered apoptosis in chronic ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:155996. [PMID: 39657404 DOI: 10.1016/j.phymed.2024.155996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND A vicious cycle of dysregulated intestinal epithelial cell death, intestinal barrier defect, and subsequent inflammation response is core to chronic ulcerative colitis (UC). Modified Jiaoqi Powder (MJQP), a traditional Chinese medicine formula, has been clinically applied to treat chronic relapsing and chronic persistent types of UC. Nevertheless, the underlying mechanisms of MJQP in chronic UC remains unknown. PURPOSE The present study aimed to demonstrate the favorable effects and potential molecular mechanisms of MJQP in chronic UC. METHODS The chemical components of MJQP and MJQP drug serum were identified by LC-MS/MS. The curative effects of MJQP were evaluated in a well-established DSS-induced chronic UC mice model by measuring body weight, colon length, disease activity index (DAI) and histological scores. Serum cytokines, including interleukin (IL)-1β, IL-12, IL-13, IL-4, tumor necrosis factor-alpha (TNF-α), and IFN-γ were measured using enzyme-linked immunosorbent assay. Western blotting, immunofluorescence, and MTT assay were used to analyze the effects of MJQP on colonic barrier function in chronic UC mice and human epithelial cell lines. TUNEL assay, western blotting, and flow cytometry were used to examine the related apoptosis indicators. An electron microscope was used to observe autophagosomes and autolysosomes, while western blotting and immunofluorescence were used to detect autophagy-associated proteins. Network pharmacology was used to predict potential targets and pathways of MJQP in UC. Finally, the TNF pathway-related proteins were detected by immunohistochemistry and western blotting. RESULTS MJQP administration prevented the UC progression, as evidenced by faster weight gain, longer colon length, lower histological scores and DAI, and up-/down- regulation of inflammatory factors. The expression of tight junction proteins, ki67, and E-cadherin increased dose-dependently after MJQP intervention. Moreover, MJQP treatment promoted the viability of NCM460 and Caco2 cells in a concentration-dependent manner. MJQP dose-dependently decreased the proportion of TUNEL-positive cells and attenuated the pro-apoptotic proteins cleaved-caspase 8 and cleaved-caspase 3 in colonic tissues. Flow cytometry also showed that MJQP dose-dependently decreased the apoptotic cell population of LPS-induced NCM460 and Caco2 cells. Electron microscopy revealed that autophagosomes and autolysosomes were significantly improved in the MJQP-treated groups. Additionally, autophagy-related proteins were significantly expressed after MJQP treatment. Network pharmacological analysis predicted that MJQP may alleviate chronic UC by promoting intestinal epithelial cell proliferation and affecting TNF-related signaling pathways. As anticipated, the TNF pathway-associated proteins were attenuated dose-dependently in colonic tissues after MJQP treatment. CONCLUSION These results provide novel therapeutic strategies indicating that MJQP may be a promising candidate treatment for chronic UC by promoting epithelial barrier restitution by enhancing epithelial autophagy against TNF-mediated apoptosis.
Collapse
Affiliation(s)
- Weiping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xingrui Yan
- Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinqi An
- Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
3
|
Haro-Reyes J, Raghupathi JK, Reddivari L. Composition of Human-Associated Gut Microbiota Determines 3-DF and 3-HF Anti-Colitic Activity in IL-10 -/- Mice. Nutrients 2024; 16:4232. [PMID: 39683625 DOI: 10.3390/nu16234232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Gut bacterial dysbiosis along with intestinal mucosal disruption plays a critical role in inflammatory disorders like ulcerative colitis. Flavonoids and other food bioactives have been studied in mice models as alternative treatments with minimal side effects. However, most of the research has been carried out with mice-native microbiota, which limits the comprehension of the interaction between flavonoids and human-associated bacteria. Hence, the objective of our study was to determine the effect of healthy human-associated microbiota on the anti-colitic activity of diets rich in anthocyanins (3-HF) and phlobaphenes (3-DF). METHODS In this regard, the interleukin (IL)-10 -/- mice model was utilized. Mice were divided into three groups for inoculation with human gut bacteria from three different healthy donors and assigned to four diets. A purified diet (Diet P) and three diets containing 25% near-isogenic lines (NILs) of corn were evaluated. Diets were substituted with NILs expressing only 3-DFs (diet B), only 3-HFs (diet C), and both 3-DF and 3-HF (diet D). RESULTS In an overall analysis, flavonoid-rich diets did not affect inflammatory markers, microbiota diversity, or gut metabolites, but diets containing anthocyanins improved barrier function parameters. However, when data was segmented by the recipient's microbiota from different human donors, the diet effects became significant. Furthermore, 3-HFs showed more beneficial effects than 3-DFs across the recipient's microbiota. CONCLUSIONS Our study suggests that the anti-colitic activity of 3-DF and 3-HF and their gut metabolites depends on the donor's microbial composition.
Collapse
Affiliation(s)
- Jose Haro-Reyes
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jayaprakash Kanijam Raghupathi
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Acharya Nagarjuna University, Guntur 522510, Andhra Pradesh, India
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Urganci Ü. Celiac Disease and Gut Microbiota: Herbal Treatment and Gluten-Free Diet. HERBAL MEDICINE FOR AUTOIMMUNE DISEASES 2024:159-184. [DOI: 10.2174/9789815305005124010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Celiac disease (CD) manifests as a targeted autoimmune response that
adversely affects the small intestine, primarily affecting individuals with a particular
genetic predisposition. Diagnosis centers on identifying this gluten-sensitive
enteropathy, which can be ameliorated through the implementation of a gluten-free diet
(GFD), correlating with mucosal healing and symptom alleviation. The human
microbiota, a vast symbiotic community within the gastrointestinal tract, profoundly
impacts human health. Advances in genome sequencing have elucidated the intricate
relationship between gut microbiota and autoimmune diseases, including CD,
emphasizing the significant role of dietary patterns in shaping the gut microbiota. The
influence of GFD on microbiota composition, the only clinically validated treatment
for CD, leads to a nutritional shift and potential macronutrient imbalance. Emerging
research also highlights the therapeutic potential of various herbs with antioxidant,
anti-inflammatory, antimicrobial, gastroprotective, and immunomodulatory properties
as complementary approaches to manage CD. This chapter synthesizes the complex
interactions between genetics, diet, gut microbiota, and potential herbal interventions in
CD, paving the way for more comprehensive understanding and management
strategies.
Collapse
Affiliation(s)
- Ünkan Urganci
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160,
Türkiye
| |
Collapse
|
6
|
Alami M, Boumezough K, Zerif E, Zoubdane N, Khalil A, Bunt T, Laurent B, Witkowski JM, Ramassamy C, Boulbaroud S, Fulop T, Berrougui H. In Vitro Assessment of the Neuroprotective Effects of Pomegranate ( Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress. Nutrients 2024; 16:3667. [PMID: 39519499 PMCID: PMC11547808 DOI: 10.3390/nu16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD). PURPOSE To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). METHODS We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ1-42)-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42-induced Tau-181 phosphorylation (pTau-181). RESULTS Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42-induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. CONCLUSION Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42-induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Echarki Zerif
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Nada Zoubdane
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA 02420, USA;
| | - Benoit Laurent
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Jacek M. Witkowski
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada;
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| |
Collapse
|
7
|
Gang G, Gao R, Zhao H, Xu Y, Xing Y, Jin X, Hong L, Yan S, Shi B. Effects of water extracts of Artemisia annua L. on rumen immune and antioxidative indexes, fermentation parameters and microbials diversity in lambs. Front Microbiol 2024; 15:1485882. [PMID: 39493850 PMCID: PMC11528157 DOI: 10.3389/fmicb.2024.1485882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The present study investigated the effects of water extracts of Artemisia annua L. (WEAA) on rumen immune and antioxidative indexes, fermentation parameters and microbial diversity in lambs. A total of 32 3-month-old Dorper × Han female lambs having comparable body weights (24±0.09 kg) were selected and were randomly assigned to four treatments, with eight repetitions for each treatment. The basal diet, consisting of 45% concentrate and 55% forage, was solely provided to the control group. For the other treatment groups, the basal diet was supplemented with WEAA at dosages of 500, 1000, and 1500 mg/kg diet, respectively. Rumen tissue samples were collected for the analysis of immune and antioxidative parameters, as well as related gene expression. Rumen fluid samples were collected to assess rumen fermentation parameters on days 30 and 60 and to evaluate the microbiota on day 60. Results showed that WEAA supplementation linearly or quadratically increased the content of sIgA, IL-4, IL-2 and the gene expression level of MyD88, IκB-α, IL-4, COX-2, iNOS in rumen tissue (p < 0.05), as well as the bacteria negatively associated with IL-6 (g_ [Eubacterium] _cellulosolvens_group). Furthermore, the addition of WEAA linearly or quadratically increased rumen T-SOD, GSH-Px (p < 0.05) and the gene expression level of Nrf2, SOD2, GSH-Px, HO-1 (p < 0.05), and decreased the rumen concentration of malondialdehyde (MDA) and gene expression level of Keap1 (p < 0.05), as well as the bacteria positively associated with T-AOC, T-SOD and GSH-Px (g_Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g__Marvinbryantia, g_unclassified_f_Eggerthellaceae). The supplementation of WEAA caused the concentration of microprotein (MCP), total volatile fatty acids (TVFA), propionate to increase either linearly or quadratically, while reducing the concentration of NH3-N and the acetate/propionate ratio (A:P) in rumen fluid (p < 0.05). The addition of WEAA linearly or quadratically increased the abundance of Actinobacteriota, Cyanobacteria and Lachnospiraceae_NK3A20_group (p < 0.10), and g__Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g_Marvinbryantia, g_Bifidobacterium were significantly abundant as specific microflora in the 1000 mg/kg WEAA supplementation group. In conclusion, dietary inclusion of 1000 mg/kg WEAA improved the rumen immune function, antioxidant status, rumen fermentation, and composition of rumen microbes in lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
8
|
Al Zahrani AJ, Shori AB, Al-Judaibi E. Fermented Soymilk with Probiotic Lactobacilli and Bifidobacterium Strains Ameliorates Dextran-Sulfate-Sodium-Induced Colitis in Rats. Nutrients 2024; 16:3478. [PMID: 39458472 PMCID: PMC11510403 DOI: 10.3390/nu16203478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Current treatments for inflammatory bowel disease (IBD) are relatively futile and the extended use of drugs may reduce effectiveness. Several probiotic strains have shown promise in relieving/treating IBD symptoms. Objectives: The current study investigated the impact of fermented soymilk with a mixture of probiotic starter cultures containing Lactobacillus rhamnosus, L. casei, L. plantarum, L. acidophilus, Bifidobacterium longum, and B. animalis subsp. lactis in rats with dextran sulfate sodium (DSS)-induced colitis compared to control. Methods: Rats were randomly assigned to five groups (5 rats/group; n = 25): G1: negative normal control; G2: positive control (DSS); G3: DSS with sulfasalazine (DSS-Z); G4: DSS with soymilk (DSS-SM), and G5: DSS with fermented soymilk (DSS-FSM). Parameters monitored included the following: the disease activity index (DAI), macroscopic and histological assessments of colitis, and a fecal microbial analysis performed to assess the severity of inflammation and ulceration. Results: The DSS-FSM rats group exhibited lower DAI scores (p < 0.05) than other treated groups during the induction period. A macroscopical examination revealed no ulceration or swelling in the intestinal mucosa of rats in the DSS-FSM-treated group, resembling the findings in the negative control group. In the positive control (DSS group), the colon tissue showed increased inflammation (p < 0.05), whereas those in the DSS-SM- and DSS-FSM-treated rats groups did not show significant macroscopic scores of colitis. The positive DSS control and DSS-Z groups had crypt erosion and ulceration areas, severe crypt damage, and epithelial surface erosion, which were absent in the negative control and DSS-FSM groups. The counts of Lactobacillus spp. and Bifidobacterium spp. remained stable in both G1 and G5 over 4 weeks. The consumption of fermented soymilk with a mixture of probiotics could minimize the severity of DSS-induced colitis in rats. Conclusion, it was found that fermented soymilk containing Lactobacilli and Bifidobacterium might be an effective vehicle for reducing the severity of DSS-induced colitis in rats.
Collapse
Affiliation(s)
- Ashwag Jaman Al Zahrani
- Faculty of Science, Department of Biological Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amal Bakr Shori
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Effat Al-Judaibi
- Faculty of Science, Department of Biological Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
9
|
Ahmed OM, Ahmed RR, Abdel-Hafeez DA, Ahmed RG, Mallasiy LO, EL-Gawaad NSA, Ahmed EA. Navel orange peel ethanolic extract and naringin ameliorate CFA-induced arthritis in Wistar rats through their modulatory effects on Th1/Th2/Th17 cytokines and oxidative stress. Am J Transl Res 2024; 16:4696-4713. [PMID: 39398602 PMCID: PMC11470294 DOI: 10.62347/oehx5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune illness affecting joint articulations, leading to a disability state. Currently, there is no satisfying optimal therapy except for immunosuppressants, which have variable and bad effects after long-term use. Hence, researchers have attempted to develop other alternative, safer, and more effective natural treatment agents that are effective and without undesirable effects. The objective of this research is to assess the antiarthritic properties of navel orange peel ethanolic extract (NOPEE) and naringin (NAR) in experimentally induced RA in male Wistar rats. RA was induced via two successive subcutaneous injections of 0.1 mL complete Freund's adjuvant (CFA) into a footpad of the right hind leg. The arthritic rats were orally treated with 100 mg/kg body weight (b.w.)/day of NOPEE or with 25 mg/kg b.w./day of NAR for 14 days. Results showed that treatment with NOPEE or NAR obviously counteracted the increased ankle joint circumference, inflammatory cell infiltration, pannus development, cartilage degradation, and synovial hyperplasia that developed in CFA-induced arthritic rats. Additionally, the elevation of serum rheumatoid factor (RF), prostaglandin E2 (PGE-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-17 (IL-17) were significantly declined in parallel to enhanced level of serum interleukin-4 (IL-4). Furthermore, NOPEE and NAR supplementation, reversed the negative oxidative effects of lipid peroxidation (LPO), nitric oxide (NO), as well as improved the antioxidant glutathione level (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) activities. Overall, the anti-arthritic effects of NOPEE and NAR may be mediated through their modulatory effects on T helper (Th)1/Th2/Th17 cytokines, oxidative stress, and the antioxidant defense system.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - Doria A Abdel-Hafeez
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - RG Ahmed
- Anatomy and Embryology Division, Zoology Department, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - LO Mallasiy
- Muhayil Asir, Applied College, King Khalid UniversityAbha 61913, Saudi Arabia
| | - NS Abd EL-Gawaad
- Muhayil Asir, Applied College, King Khalid UniversityAbha 61913, Saudi Arabia
| | - Eman A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
10
|
Cheng WW, Liu BH, Hou XT, Meng H, Wang D, Zhang CH, Yuan S, Zhang QG. Natural Products on Inflammatory Bowel Disease: Role of Gut Microbes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1275-1301. [PMID: 39192679 DOI: 10.1142/s0192415x24500514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inflammatory bowel disease (IBD) refers to long-term medical conditions that involve inflammation of the digestive tract, and the global incidence and prevalence of IBD are on the rise. Gut microbes play an important role in maintaining the intestinal health of the host, and the occurrence, development, and therapeutic effects of IBD are closely related to the structural and functional changes of gut microbes. Published studies have shown that the natural products from traditional Chinese medicine have direct or indirect regulatory impacts on the composition and metabolism of the gut microbes. In this review, we summarize the research progress of several groups of natural products, i.e., flavonoids, alkaloids, saponins, polysaccharides, polyphenols, and terpenoids, for the therapeutic activities in relieving IBD symptoms. The role of gut microbes and their intestinal metabolites in managing the IBD is presented, with focusing on the mechanism of action of those natural products. Traditional Chinese medicine alleviated IBD symptoms by regulating gut microbes, providing important theoretical and practical basis for the treatment of variable inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Wen-Wen Cheng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Bao-Hong Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Xiao-Ting Hou
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Huan Meng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Dan Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University College of Medicine, Yanji, Jilin Province 133002, P. R. China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, P. R. China
| | - Qing-Gao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| |
Collapse
|
11
|
Louis-Jean S. Clinical outcomes of flavonoids for immunomodulation in inflammatory bowel disease: a narrative review. Ann Gastroenterol 2024; 37:392-402. [PMID: 38974082 PMCID: PMC11226746 DOI: 10.20524/aog.2024.0893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/04/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammatory bowel disease is a debilitating condition that undergoes a relapsing and remitting course. The pathogenesis of how this disease manifests remains to be elucidated; however, there is growing evidence that a synergism of familial predisposition and epigenetic alterations influenced by environmental factors all contribute to the development of the disease. The role of nutrition in improving the outcomes of the condition has garnered increasing interest, given the greater risks of neoplastic conversion and concerns about inappropriate remission with available pharmacotherapeutic treatments alone. Available reports, often anecdotal, have documented patient relief with employment of various dietary strategies. These have led to curiosity about nutritional assessments and nutrition therapies to ameliorate the morbidity and all-cause mortality of the disease. One group of such nutrition therapies, supported by a compendium of available articles, is flavonoids-although the greater abundance of in vitro experiments with relatively few clinical trials has limited their clinical use. Nonetheless, flavonoids have been shown to be functional foods with immunomodulatory capabilities. This article will thus delve into the role of flavonoids in altering the course of the immune response in inflammatory bowel disease, while assessing their clinical outcomes in human trials.
Collapse
Affiliation(s)
- Scarlet Louis-Jean
- Department of Internal Medicine, Anne Arundel Medical Center, Annapolis, MD, USA
| |
Collapse
|
12
|
Da Silva VC, Guerra GCB, Araújo DFDS, De Araújo ER, De Araújo AA, Dantas-Medeiros R, Zanatta AC, Da Silva ILG, De Araújo Júnior RF, Esposito D, Moncada M, Zucolotto SM. Chemopreventive and immunomodulatory effects of phenolic-rich extract of Commiphora leptophloeos against inflammatory bowel disease: Preclinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118025. [PMID: 38458342 DOI: 10.1016/j.jep.2024.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Commiphora leptophloeos (Mart.) J.B. Gillet (Burseraceae) is a medicinal plant native to Brazil, popularly known as "imburana". Homemade leaf decoction and maceration were used to treat general inflammatory problems in the Brazilian Northeast population. Our previous research confirmed the anti-inflammatory activity of the C. leptophloeos hydroalcoholic leaf extract. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal treatment to maintain the remissive status. This work aimed to characterize the phytochemical composition and physicochemical properties of the C. leptophloeos hydroalcoholic leaf extract and its efficacy in chemopreventive and immunomodulatory responses in inflammatory bowel disease in non-clinical models. MATERIALS AND METHODS Mass spectrometry and physicochemical tests determined the phytochemical profile and physicochemical characteristics of the Commiphora leptophloeos (CL) extract. The chemopreventive and immunomodulatory effects of CL extract (50 and 125 μg/mL) were evaluated in vitro in the RAW 264.7 lipopolysaccharide (LPS) induced cell assay and in vivo in the model of intestinal inflammation induced by 2,4-Dinitrobenzenesulfonic acid (DNBS) in mice when they were treated with CL extract by intragastric gavage (i.g.) at doses of 300, 400 and 500 mg/kg. RESULTS Phytochemical annotation of CL extract showed a complex phenolic composition, characterized as phenolic acids and flavonoids, and satisfactory physicochemical characteristics. In addition, CL extract maintained the viability of RAW macrophages, reduced ROS and NO production, and negatively regulated COX-2, iNOS, TNF-α, IL-1β, IL-6, and IL-17 (p < 0.05). In the intestinal inflammation model, CL extract was able to downregulate NF-κB p65/COX-2, mTOR, iNOS, IL-17, decrease levels of malondialdehyde and myeloperoxidase and cytokines TNF-α, IL-1β and IL-6 (p < 0.05). CONCLUSION Based on these findings, CL extract reduced inflammatory responses by down-regulating pro-inflammatory markers in macrophages induced by LPS and DNBS-induced colitis in mice through NF-κB p65/COX-2 signaling. CL leaf extract requires further investigation as a candidate for treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Valéria Costa Da Silva
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | | | - Edilane Rodrigues De Araújo
- Health Sciences Center, Research Group on Bioactive Natural Products, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Renato Dantas-Medeiros
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Ana Caroline Zanatta
- Research Center for Natural and Synthetic Products, São Paulo University, Ribeirão Preto, SP, Brazil.
| | - Isadora Luisa Gomes Da Silva
- Biosciences Center, Cancer and Inflammation Research Laboratory, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Silvana Maria Zucolotto
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Health Sciences Center, Research Group on Bioactive Natural Products, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
13
|
Lu SY, Dan L, Sun S, Fu T, Chen J. Dietary quercetin intake is associated with lower ulcerative colitis risk but not Crohn's disease in a prospective cohort study and in vivo experiments. Food Funct 2024; 15:6553-6564. [PMID: 38807501 DOI: 10.1039/d3fo05391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Objectives: Previous preclinical evidence indicates a protective role of quercetin against inflammatory bowel disease (IBD). However, there is no evidence from human populations, resulting in knowledge gaps regarding the role of quercetin in the IBD development. We aimed to prospectively evaluate the associations between dietary quercetin intake and IBD in humans and in vivo animal models. Methods: We included 187 709 IBD-free participants from the UK Biobank. Dietary information was collected using validated 24-hour dietary recalls and the quercetin intake was estimated based on national nutrient databases. Incident IBD was ascertained via inpatient and primary care data. Cox proportional hazard models were used to estimate the multi-variable adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). Experiments were conducted in two chemical-induced (dextran sulfate sodium salt and trinitro-benzene-sulfonic acid) mouse models orally pretreated with quercetin (CAS number: 117-39-5) solution to evaluate the effects of quercetin at physiological levels. Results: After a mean follow-up of 9.7 years, we documented 863 incident IBD. Compared to participants with the lowest quintile intake of quercetin, those in the highest quintiles were associated with a lower risk of IBD (aHR 0.76, 95% CI 0.60-0.95; P-trend = 0.004) and ulcerative colitis (aHR 0.69, 95% CI 0.53-0.91; P-trend = 0.001), but not Crohn's disease (aHR 0.95, 95% CI 0.62-1.45; P-trend = 0.765). Mouse models showed that pretreatment with quercetin could attenuate the chemically induced colitis. Conclusions: Higher quercetin intake was associated with a lower risk of IBD, especially UC. The protective role of quercetin is promising in humans and warrants further investigation into downstream mechanisms.
Collapse
Affiliation(s)
- Shi-Yuan Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of, Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| | - Lintao Dan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzibo Road, Changsha, China.
- Centre for Global Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Sishen Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Fu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzibo Road, Changsha, China.
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzibo Road, Changsha, China.
- Centre for Global Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
14
|
Zhu J, He L. The Modulatory Effects of Curcumin on the Gut Microbiota: A Potential Strategy for Disease Treatment and Health Promotion. Microorganisms 2024; 12:642. [PMID: 38674587 PMCID: PMC11052165 DOI: 10.3390/microorganisms12040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a lipophilic natural polyphenol that can be isolated from the rhizome of turmeric. Studies have proposed that CUR possesses a variety of biological activities. Due to its anti-inflammatory and antioxidant properties, CUR shows promise in the treatment of inflammatory bowel disease, while its anti-obesity effects make it a potential therapeutic agent in the management of obesity. In addition, curcumin's ability to prevent atherosclerosis and its cardiovascular benefits further expand its potential application in the treatment of cardiovascular disease. Nevertheless, owing to the limited bioavailability of CUR, it is difficult to validate its specific mechanism of action in the treatment of diseases. However, the restricted bioavailability of CUR makes it challenging to confirm its precise mode of action in disease treatment. Recent research indicates that the oral intake of curcumin may lead to elevated levels of residual curcumin in the gastrointestinal system, hinting at curcumin's potential to directly influence gut microbiota. Furthermore, the ecological dysregulation of the gut microbiota has been shown to be critical in the pathogenesis of human diseases. This review summarizes the impact of gut dysbiosis on host health and the various ways in which curcumin modulates dysbiosis and ameliorates various diseases caused by it through the administration of curcumin.
Collapse
Affiliation(s)
- Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | | |
Collapse
|
15
|
Lee HJ, Kwon YS, Lee JH, Moon YG, Choi J, Hyun M, Tak TK, Kim JH, Heo JD. Pectolinarigenin regulates the tumor-associated proteins in AGS-xenograft BALB/c nude mice. Mol Biol Rep 2024; 51:305. [PMID: 38361124 PMCID: PMC10869406 DOI: 10.1007/s11033-023-09046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Pectolinarigenin (PEC) is a flavone extracted from Cirsium, and because it has anti-inflammatory properties, anti-cancer research is also being conducted. The objective of this work was to find out if PEC is involved in tumor control and which pathways it regulates in vivo and in vitro. METHODS AGS cell lines were xenografted into BALB/c nude mice to create tumors, and PEC was administered intraperitoneally to see if it was involved in tumor control. Once animal testing was completed, tumor proteins were isolated and identified using LC-MS analysis, and gene ontology of the found proteins was performed. RESULTS Body weight and hematological measurements on the xenograft mice model demonstrated that PEC was not harmful to non-cancerous cells. We found 582 proteins in tumor tissue linked to biological reactions such as carcinogenesis and cell death signaling. PEC regulated 6 out of 582 proteins in vivo and in vitro in the same way. CONCLUSION Our findings suggested that PEC therapy may inhibit tumor development in gastric cancer (GC), and proteomic research gives fundamental information about proteins that may have great promise as new therapeutic targets in GC.
Collapse
Affiliation(s)
- Ho Jeong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Ju Hong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Yeon Gyu Moon
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Jungil Choi
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Moonjung Hyun
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Tae Kil Tak
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Je-Hein Kim
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju, 52834, Republic of Korea.
| |
Collapse
|
16
|
Hmamou A, El Khomsi M, El-Assri EM, Kara M, El Oumari FE, El Ouadrhiri F, Bendaoud A, Elmansouri I, Eloutassi N, Lahkimi A. Chemical characterization, anti-struvite crystal, anti-inflammatory, analgesic, and antidepressant activities of Papaver rhoeas L. root and leaf extracts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117208. [PMID: 37739099 DOI: 10.1016/j.jep.2023.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Papaver rhoeas L. (P. rhoeas) is used to treat a wide range of pathologies. But there is no data on the anti-struvite, anti-inflammatory, analgesic, and anti-depressant effects of root and leaf extracts from this medicinal plant. AIM OF THE STUDY This study aimed to chemically characterize and determine the antidepressant, analgesic, anti-inflammatory, and anti-struvite activities of the root extract (RE) and leaf extract (LE) of P. rhoeas, a wild plant. MATERIALS AND METHODS The extraction of secondary metabolites and phytochemical screening were carried out using standard methods. The anti-struvite effect of our samples was assessed by Fourier transform infrared spectroscopy (FT-IR) and microscopic observation. For the anti-inflammatory impact, we used the carrageenan-induced paw edema technique in rats. To assess the analgesic effect of the extracts, we recorded the resulting abdominal contraction after intraperitoneal (IP) acetic acid injection. Finally, we assessed the antidepressant effect by conducting the Forced Swimming Test (FST). RESULTS Phytochemical screening results revealed the presence of phenols, flavonoids, saponins, tannins, coumarins, terpenoids, and alkaloids. Extraction results confirmed that our extracts were rich in secondary metabolites. Both P. rhoeas extracts limited struvite crystal development by reducing the size and number of crystals, as indicated by FT-IR analysis and microscopic observation. Additionally, the anti-struvite effects of the LE sample were greater than those of the RE sample. The results of the anti-inflammatory capacity of our extracts demonstrate the maximum inhibition of carrageenan-induced edema following 6 h (T6) of injection, ranging from 72.73 ± 7.7% for LE (400 mg/kg) to 95.45 ± 6.42% for the RE sample (400 mg/kg). On the other hand, the results for analgesic activity showed that the number of abdominal contractions in rats treated with RE and LE ranged from 11 ± 1.73 for RE (400 mg/kg) to 18 ± 1.50 for LE (200 mg/kg), while that of aspirin was 10.33 ± 0.57. Furthermore, the FST results show that the immobility time in rats treated with RE and LE varied from 91.98 ± 4.24 s for LE-treated rats (300 mg/kg) to 123.54 ± 7.83 s for RE-treated rats (150 mg/kg). CONCLUSION Based on these results, the roots and leaves of the studied plant can be considered a significant source of biologically active molecules for use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anouar Hmamou
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco.
| | - Mostafa El Khomsi
- Natural Resources and Sustainable Development Laboratory, Department of Biology, Faculty of Sci-ences, Ibn Tofail University, B.P. 133, Kenitra, 14000, Morocco
| | - El-Mehdi El-Assri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco; Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Department of Biology, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco
| | - Fatima Ezzahra El Oumari
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Dental Medicine University of Sidi Mohammed Ben Abdellah, Fez, 30070, Morocco
| | - Faiçal El Ouadrhiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco
| | - Ahmed Bendaoud
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco
| | - Ibtissame Elmansouri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco; Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Noureddine Eloutassi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco
| | - Amal Lahkimi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez, 30000, Morocco
| |
Collapse
|
17
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Mohamed ME, El-Shafae AM, Fikry E, Elbaramawi SS, Elbatreek MH, Tawfeek N. Casuarina glauca branchlets' extract as a potential treatment for ulcerative colitis: chemical composition, in silico and in vivo studies. Front Pharmacol 2023; 14:1322181. [PMID: 38196993 PMCID: PMC10774231 DOI: 10.3389/fphar.2023.1322181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is often resistant to current treatment options, leading to a need for alternative therapies. Herbal products have shown promise in managing various conditions, including UC. However, the potential of Casuarina glauca branchlets ethanolic extract (CGBRE) in treating UC has not been explored. This study aimed to analyze the chemical composition of CGBRE and evaluate its efficacy in UC treatment through in silico and in vivo experiments. LC-ESI-MS/MS was used to identify 86 compounds in CGBRE, with 21 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 171 potential UC targets for the bioactive compounds, including EGFR, LRRK2, and HSP90 as top targets, which were found to bind to key CGBRE compounds through molecular docking. Molecular docking findings suggested that CGBRE may be effective in the prevention or treatment of ulcerative colitis mediated by these proteins, where key CGBRE compounds exhibited good binding affinities through formation of numerous interactions. In vivo studies in rats with acetic acid-induced UC demonstrated that oral administration of 300 mg/kg CGBRE for 6 days reduced UC symptoms and colonic expression of EGFR, LRRK2, and HSP90. These findings supported the therapeutic potential of CGBRE in UC and suggested the need for further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Vezza T, Molina-Tijeras JA, Rodríguez-Nogales A, Garrido-Mesa J, Cádiz-Gurrea MDLL, Segura-Carretero A, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Algieri F. The Antioxidant Properties of Salvia verbenaca Extract Contribute to Its Intestinal Antiinflammatory Effects in Experimental Colitis in Rats. Antioxidants (Basel) 2023; 12:2071. [PMID: 38136191 PMCID: PMC10741154 DOI: 10.3390/antiox12122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammation with unpredictable symptom fluctuations. While there is no effective cure for IBD, various treatments aim to manage symptoms and improve the quality of life for affected individuals. In recent years, there has been growing interest in the potential benefits of certain natural plants and herbs in the management of IBD. In this regard, this study aimed to evaluate the immunomodulatory and anti-inflammatory effects of a well-characterized extract of Salvia verbenaca (S. verbenaca) in an experimental model of colitis in rats. Interestingly, the daily administration of S. verbenaca (10 and 25 mg/kg) effectively alleviated colitis symptoms, as evidenced by reduced weight/length ratio and colonic damage. Moreover, it reduced oxidative stress markers (MPO and GSH), decreased pro-inflammatory cytokine expression (Il-6, Il-12a, Il-1β, Il-23, Icam-1, Mcp-1, Cinc-1), and preserved the integrity of the intestinal barrier (Villin, Muc-2, Muc-3). These effects suggest S. verbenaca extract could represent a potential complementary candidate to treat gastrointestinal disorders. Its beneficial actions can be related to its antioxidant properties as well as the downregulation of the immune response, which can result in the improvement in the intestine epithelial barrier.
Collapse
Affiliation(s)
- Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Jose Garrido-Mesa
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.d.l.L.C.-G.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.d.l.L.C.-G.); (A.S.-C.)
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
20
|
Lian Y, Li Y, Liu A, Ghosh S, Shi Y, Huang H. Dietary antioxidants and vascular calcification: From pharmacological mechanisms to challenges. Biomed Pharmacother 2023; 168:115693. [PMID: 37844356 DOI: 10.1016/j.biopha.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Vascular calcification (VC), an actively regulated process, has been recognized as an independent and strong predictor of cardiovascular disease (CVD) and mortality worldwide. Diet has been shown to have a major role in the progression of VC. Oxidative stress (OS), a common pro-calcification factor, is closely related to VC, and evidence strongly suggests that dietary antioxidants directly prevent VC. Herein, we provided an overview of OS and its key role in VC and underlined the mechanisms of harmful effects of OS on VC. Furthermore, we introduced dietary antioxidants, and discussed about surrounding the challenges of dietary antioxidants in VC management. This review will benefit future research about the effects of dietary antioxidants on cardiovascular health.
Collapse
Affiliation(s)
- Yaxin Lian
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Yue Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Aiting Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Sounak Ghosh
- Department of Internal Medicine, AMRI Hospital, Kolkata, India
| | - Yuncong Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Hui Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China.
| |
Collapse
|
21
|
Li M, Weigmann B. Effect of a Flavonoid Combination of Apigenin and Epigallocatechin-3-Gallate on Alleviating Intestinal Inflammation in Experimental Colitis Models. Int J Mol Sci 2023; 24:16031. [PMID: 38003220 PMCID: PMC10671077 DOI: 10.3390/ijms242216031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease that leads to severe bowel symptoms and complications. Currently, there is no effective treatment, and the exact cause of IBD remains unclear. In the last decades, numerous studies have confirmed that flavonoids can have a positive impact on the treatment of IBD. Therefore, this study investigated the protective effect of a flavonoid combination of apigenin and epigallocatechin-3-gallate (EGCG) on IBD. In vitro studies in which Caco-2 cell monolayers were incubated with different concentrations of flavonoids found that the flavonoid-treated group exhibited increased transepithelial electrical resistance (TEER) at high concentrations, indicating a protective effect on the barrier function of the intestinal epithelium. In vivo studies showed that flavonoids significantly attenuated inflammatory levels in both chronic and acute hapten-mediated experimental colitis models in a time- and dose-dependent manner. In addition, the activity of myeloperoxidase (MPO) and the level of proinflammatory cytokines in the colon tissue were significantly reduced. Interestingly, the levels of anti-inflammatory cytokines were also dramatically increased. Finally, flavonoids were found to positively modulate the composition of the gut microbiota in the colon. Therefore, a combination of flavonoids could be a promising therapeutic agent for the future adjunctive treatment of IBD.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany;
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany;
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
22
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
23
|
Junita AR, Hamid F, Budu B, Natzir R, Hala Y, Alam G, Agus R, Bahar B, Syukri A, Primaguna MR, Dwiyanti R, Febrianti A, Sabir M, Azhar A, Hatta M. A potential mechanism of miana ( Coleus scutellariodes) and quercetin via NF-κB in Salmonella typhi infection. Heliyon 2023; 9:e22327. [PMID: 38058621 PMCID: PMC10696054 DOI: 10.1016/j.heliyon.2023.e22327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Purpose To prove the effect of Miana (M), Quercetin (Q), and the combination as an anti-inflammatory agent and Cefixime (C) as an antibiotic in Balb/c mice infected with Salmonella enterica serovar Typhi (S. Typhi) and related to the dynamics of NF-κB mRNA expression and NF-κB protein levels. Methods A cohort study on male Balb/c mice with subjects consisted of 8 groups with 5 each group by administration of M, Q, M + Q, M + C, Q + C, M + Q + C, C only and sterile distilled water group as negative control. The statistical significance of the difference group was defined as P values less than 0.05. Results Decreased mRNA expression of NF-κB, NF-κB protein levels, and bacterial load after administration of M + C, Q + C, or M + Q + C showed significant differences when compared to the negative control. The decline in NF-κB was stronger when M + Q + C was given compared to M, Q, M + Q, or C only. Conclusion The effects of NF-κB suppression appear to be the same between the administration of M, Q and the M + Q when C added. However, the suppression of NF-κB was not significant without adding C.
Collapse
Affiliation(s)
- Ade Rifka Junita
- Postgraduate School, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdaus Hamid
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Budu Budu
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rosdiana Natzir
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yusmina Hala
- Department of Biology, Faculty of Sciences, State University of Makassar, Makassar, Indonesia
| | - Gemini Alam
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Rosana Agus
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Burhanuddin Bahar
- Department of Biostatistic, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ahmad Syukri
- Postgraduate School, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Reza Primaguna
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ressy Dwiyanti
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
- Department of Forensic and Medicolegal, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andini Febrianti
- Department of Forensic and Medicolegal, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Sabir
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Azhar Azhar
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mochammad Hatta
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
24
|
Wu B, Cox AD, Chang H, Kennett M, Rosa C, Chopra S, Li S, Reddivari L. Maize near-isogenic lines with enhanced flavonoids alleviated dextran sodium sulfate-induced murine colitis via modulation of the gut microbiota. Food Funct 2023; 14:9606-9616. [PMID: 37814601 DOI: 10.1039/d3fo02953k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The rising incidence of inflammatory bowel disease (IBD) has necessitated the search for safe and effective novel therapeutic strategies. Dietary flavonoids exhibited antioxidant, antiproliferative, and anticarcinogenic activities in several model systems with proven abilities to reduce inflammation and oxidative stress, thus they could be promising therapeutic agents for IBD prevention/treatment. However, understanding the role of a specific class of compounds in foods that promote health is difficult because of the chemically complex food matrices. This study aimed to utilize four maize near-isogenic lines to determine the anti-colitis effects of specific classes of flavonoids, anthocyanins and/or phlobaphenes, in a whole-food matrix. Results showed that the intake of anthocyanin and phlobaphene-enriched maize diets effectively alleviated dextran sodium sulfate (DSS)-induced colitis in mice via reducing the intestinal permeability and restoring the barrier function. Anthocyanin diets were more effective in maintaining the crypt structure and muc2 protein levels and reducing inflammation. Bacterial communities of mice consuming diets enriched with anthocyanins and phlobaphenes were more similar to the healthy control compared to the DSS control group, suggesting the role of flavonoids in modulating the gut microbiota to retrieve intestinal homeostasis. Microbiota depletion rendered these compounds ineffective against colitis. Lower serum concentrations of several phenolic acids were detected in the microbiota-depleted mice, indicating that gut microbiota plays a role in flavonoid metabolism and bioavailability.
Collapse
Affiliation(s)
- Binning Wu
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Haotian Chang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cristina Rosa
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
25
|
Kostikova VA, Petrova NV, Shaldaeva TM, Koval VV, Chernonosov AA. Non-Targeted Screening of Metabolites in Aqueous-Ethanol Extract from Spiraea hypericifolia (Rosaceae) Using LC-HRMS. Int J Mol Sci 2023; 24:13872. [PMID: 37762175 PMCID: PMC10530674 DOI: 10.3390/ijms241813872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
By means of liquid chromatography combined with high-resolution mass spectrometry, metabolite profiling was performed on an aqueous-ethanol extract from Spiraea hypericifolia (Rosaceae) collected in Siberia (Russia). Up to 140 compounds were found in the extract, of which 47 were tentatively identified. The identified compounds were amino acids, sugars, phenylpropanoids, fatty acids and their derivatives, triterpenoids, flavonoids, and others. A quantitative analysis showed the predominance of phenolcarboxylic acids and flavonoids in the studied extract, but a qualitative analysis revealed the higher structural diversity of flavonoids. Of the 23 identified flavonoids, 13 were flavonols: quercetin, hyperoside, isoquercitrin, reynoutrin, avicularin, rutin, quercetin-3-O-(6″-O-malonyl)-β-D-glucoside, 3-O-methylquercetin-3'-O-β-D-glucopyranoside, isorhamnetin, rhamnetin-3-O-β-D-xylopyranosyl-β-D-glucopyranoside, kaempferol, tiliroside, and trifolin; six were catechins: catechin, (-)-epicatechin, (+)-epicatechin, (+)-catechin-7-O-β-D-xyloside, (2S,3R)-3,5-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-chromen-7-yl-β-D-glucopyranoside, and catechin 7-O-apiofuranoside; two are isoflavones: genistin and genistein; and one was a flavone (luteolin-4'-O-β-D-glucopyranoside) and another was an anthocyanidin (pelargonidin). The aqueous-ethanol extract from S. hypericifolia showed antioxidant activity (half-maximal inhibitory concentration 102.95 μg/mL), which was likely related to the high concentrations of phenolcarboxylic acids (229.6 mg/g), flavonoids (118.3 mg/g), and tannins (62.9 mg/g).
Collapse
Affiliation(s)
- Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| | - Natalia V. Petrova
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Tatiana M. Shaldaeva
- Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (V.V.K.); (A.A.C.)
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (V.V.K.); (A.A.C.)
| |
Collapse
|
26
|
Kölbel B, Hamacher S, Hellmich M, Kruis W. Low Dietary Flavonoid Consumption Is Associated to Severe Inflammatory Bowel Disease. GASTRO HEP ADVANCES 2023; 3:31-37. [PMID: 39132188 PMCID: PMC11308811 DOI: 10.1016/j.gastha.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/30/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Associations between diet habits and inflammatory bowel disease (IBD) have been widely described. Flavonoids are taken with vegetables, fruits, and green tea. Because of barrier-protective and anti-inflammatory effects, flavonoid consumption (FC) may influence the severity of IBD. The aim of this study was to reveal the role of FC in the course and severity of IBD. Methods A prospective cohort study including 204 IBD patients (Crohn's disease n = 126, ulcerative colitis n = 78) was conducted between 2016 and 2021. FC was calculated using questionnaires. In addition to standard activity scores and different treatments, a "severity index" was related to individual FC. Differences between groups and odds ratios were analyzed. Results Inverse correlation (r = -0.0549; P = .01) between FC and severity of IBD was found. Patients were assigned to 3 different severity index ranges: mild, moderate, and severe disease. FC of patients with severe disease (331 ± 330 mg/week) was less than FC of patients with mild (1404 ± 1086 mg/ week) disease (P < .001). The risk of IBD patients with low FC (1000 mg/week) experiencing overall severe disease was 17 times increased (P < .001) compared to patients with high FC (>1000 mg/week). Patients with UC and low FC had a 9.6-times higher risk for disease progression (P < .001). Conclusion Consumption of dietary flavonoids and the overall severity of IBD are inversely correlated. Patients with mild diseases consume higher amounts of flavonoids than patients with severe diseases. Low dietary flavonoids were related to a considerable risk of severe IBD.
Collapse
Affiliation(s)
- Beatrice Kölbel
- Department of Internal Medicine and Gastroenterology, Evangelisches Krankenhaus Kalk, University of Cologne, Cologne, Germany
| | - Stefanie Hamacher
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
| | - Wolfgang Kruis
- Department of Internal Medicine and Gastroenterology, Evangelisches Krankenhaus Kalk, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Wu W, Liu L, Zhu Y, Ni J, Lu J, Wang X, Ma L, Jiang Y. Zinc-Rutin Particles Ameliorate DSS-Induced Acute and Chronic Colitis via Anti-inflammatory and Antioxidant Protection of the Intestinal Epithelial Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12715-12729. [PMID: 37581468 DOI: 10.1021/acs.jafc.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In patients suffering from inflammatory bowel diseases (IBDs), the immune system is disrupted and the intestinal barrier function is compromised. Here, six zinc-flavonoid particles were produced by one-step reaction via changing flavonoids (myricetin, quercetin, and rutin) and solvent (water and ethanol), and then their cytocompatibility and ability to scavenge H2O2, free radicals, and LPS-induced ROS were compared. Zinc-rutin particles (W-ZnRT) composed of rutin (78.92 wt %), Na12[ZnPO4]12·12H2O (6.76 wt %), and crystal water were screened out because W-ZnRT exhibited 80.8 ± 15% cell viability against RAW264.7, could rapidly scavenge 78.1 ± 1% of H2O2 and 71.6 ± 2% of DPPH within 30 min, and reduced LPS-increased intracellular ROS to normal levels. In addition, the therapeutic effects of rutin and W-ZnRT were also compared in dextran sulfate sodium (DSS)-induced acute and chronic colitis in mice. W-ZnRT was superior to rutin alone in chronic colitis (n = 9), although they were equally effective in acute colitis (n = 7). Compared to rutin, 11 oral doses of W-ZnRT (40 mg kg-1) significantly improved intestinal permeability (p = 0.0299) and colon length (p = 0.0025), reduced intestinal proinflammatory factors (IL-6, IL-1β, and TNF-α), and upregulated tight junction proteins to maintain intestinal barrier function. Taken together, these results identified W-ZnRT as an efficient and safe therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Weisong Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Limei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingwei Zhu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Jingbin Ni
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Jian Lu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Xiaoli Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
28
|
Hmamou A, El-Assri EM, El Khomsi M, Kara M, Zuhair Alshawwa S, Al Kamaly O, El oumari FE, Eloutassi N, Lahkimi A. Papaver rhoeas L. stem and flower extracts: Anti-struvite, anti-inflammatory, analgesic, and antidepressant activities. Saudi Pharm J 2023; 31:101686. [PMID: 37448842 PMCID: PMC10336831 DOI: 10.1016/j.jsps.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The Papaver rhoeas L. (P. rhoeas) plant, which belongs to the Papaveraceae family, is also used as food and is exploited to treat several health problems. The purpose of this research is to determine the anti-struvite, anti-inflammatory, analgesic, and antidepressant effects of the stem extract (SE) and flower extract (FE) of the plant P. rhoeas. We used polarizing microscopy and Fourier transform infrared spectrometry (FT-IR) to evaluate the anti-struvite effect of our plant. The edema approach induced by the carrageenan molecule was used to study the anti-inflammatory impact of our extracts. The analgesic test was determined by calculating the number of abdominal contractions induced by the intraperitoneal (IP) administration of acetic acid. To evaluate the antidepressant effect of our extracts, we used the forced swimming test (FST). According to the results of the secondary metabolite extraction, both extracts contained high contents of secondary metabolites, while the results of the screening test showed that flavonoids, alkaloids, phenols, tannins, coumarins, saponins, and terpenoids were present. The result of struvite crystallization inhibition observed by polarizing microscopy and FT-IR shows the inhibition of struvite crystal aggregation by SE by decreasing the amount and size of crystals in a manner similar to cystone. The results of anti-inflammatory activity show maximum inhibition of edema after six hours of carrageenan injection in rats (T6) for all extracts, with a maximum value of 86.36% for SE at the dose of 200 mg/kg. Regarding the analgesic effect of our plant, the lowest number of abdominal contractions was observed in rats treated with SE at a dose of 400 mg/kg. The FST results show that the lowest immobilization time was observed in rats treated with FE at a dose of 400 mg/kg. The results obtained show that the flowers and stems of P. rhoeas can constitute a rich source of bioactive molecules with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Anouar Hmamou
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - El-Mehdi El-Assri
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mostafa El Khomsi
- Natural Resources and Sustainable Development Laboratory, Department of Biology, Faculty of Sci-ences, Ibn Tofail University, P.O. Box 133, Kenitra 14000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Department of Biology, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fez 30000, Morocco
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fatima Ezzahra El oumari
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Dental Medicine University of Sidi Mohammed Ben Abdellah, Fez 30070, Morocco
| | - Noureddine Eloutassi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Amal Lahkimi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| |
Collapse
|
29
|
Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, Alexandra FD, Rahman S, Masyeni S, Harapan H, Mamada SS, Bin Emran T, Nainu F. Anti-inflammatory activities of flavonoid derivates. ADMET AND DMPK 2023; 11:331-359. [PMID: 37829324 PMCID: PMC10567070 DOI: 10.5599/admet.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Background and purpose Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges. Review approach This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug. Key results Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds. Conclusion In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.
Collapse
Affiliation(s)
- Ysrafil Ysrafil
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Zulfiayu Sapiun
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Nangsih Sulastri Slamet
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Fihrina Mohamad
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Hartati Hartati
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Sukmawati A Damiti
- Department of Midwivery, Politeknik Kesehatan Kementerian Kesehatan Palangka Raya 73111, Palangka Raya, Indonesia
| | - Francisca Diana Alexandra
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sudarman Rahman
- Faculty of mathematics and natural sciences, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali 80235, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Denpasar, Bali 80235, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
30
|
Tian Y, Shi Z, Ma H. Research progress on the preparation and application of flavonoid nanocrystals. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:338-348. [PMID: 37476945 PMCID: PMC10409920 DOI: 10.3724/zdxbyxb-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Flavonoids have been reported to possess significant pharmacological activities,such as antioxidant, anti-inflammatory and anticancer effects. However, the low solubility and low bioavailability limits their clinical application. Nanocrystal technology can solve the delivery problems of flavonoids by reducing particle size, increasing the solubility of insoluble drugs and improving their bioavailability. This article summaries nanosuspension preparation methods and the stabilizers for flavonoid nanocrystals, and reviews the drug delivery routes including oral, Injection and transdermal of flavonoid nanocrystals, to provide information for further research on nanocrystal delivery system of flavonoids.
Collapse
Affiliation(s)
- Yiting Tian
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China.
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Zhiqun Shi
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China.
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
31
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
32
|
Tavares EDA, Guerra GCB, da Costa Melo NM, Dantas-Medeiros R, da Silva ECS, Andrade AWL, de Souza Araújo DF, da Silva VC, Zanatta AC, de Carvalho TG, de Araújo AA, de Araújo-Júnior RF, Zucolotto SM. Toxicity and Anti-Inflammatory Activity of Phenolic-Rich Extract from Nopalea cochenillifera (Cactaceae): A Preclinical Study on the Prevention of Inflammatory Bowel Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:594. [PMID: 36771677 PMCID: PMC9921826 DOI: 10.3390/plants12030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds have been scientifically recognized as beneficial to intestinal health. The cactus Nopalea cochenillifera, used as anti-inflammatory in traditional medicine, is a rich source of these bioactive compounds. The present study aimed to investigate the phytochemical profile of N. cochenillifera extract and evaluate its acute toxicity and anti-inflammatory effect on 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis in rats. The total phenolic content per gram of dry extract was 67.85 mg. Through HPLC-IES-MSn, a total of 25 compounds such as saccharides, organic acids, phenolic acids and flavonoids were characterized. The dose of 2000 mg/kg of extract by an oral route showed no signs of toxicity, mortality or significant changes in biochemical and hematological parameters. Regarding intestinal anti-inflammatory effects, animals were treated with three different doses of extract or sulfasalazine. Macroscopic analysis of the colon indicated that the extract decreased the disease activity index. Levels of IL-1β and TNF-α decreased, IL-10 increased and MDA and MPO enzyme levels decreased when compared with the control group. In addition, a down-regulation of MAPK1/ERK2 and NF-κB p65 pathway markers in colon tissue was observed. The epithelial integrity was improved according to histopathological and immunohistological analysis. Thus, the extract provided strong preclinical evidence of being effective in maintaining the remission of colitis.
Collapse
Affiliation(s)
- Emanuella de Aragão Tavares
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gerlane Coelho Bernardo Guerra
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| | - Nadja Maria da Costa Melo
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Renato Dantas-Medeiros
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Anderson Wilbur Lopes Andrade
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Valéria Costa da Silva
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Ana Caroline Zanatta
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo University, São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Thaís Gomes de Carvalho
- Program Degree in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
- Program Degree in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| | - Raimundo Fernandes de Araújo-Júnior
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Program Degree in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
- Cancer and Inflammation Research Laboratory, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Silvana Maria Zucolotto
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| |
Collapse
|
33
|
Huo J, Pei W, Liu G, Sun W, Wu J, Huang M, Lu W, Sun J, Sun B. Huangshui Polysaccharide Exerts Intestinal Barrier Protective Effects through the TLR4/MyD88/NF- κB and MAPK Signaling Pathways in Caco-2 Cells. Foods 2023; 12:foods12030450. [PMID: 36765977 PMCID: PMC9914309 DOI: 10.3390/foods12030450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Several reports have demonstrated that natural polysaccharides exert protective effects on intestinal barrier function. In our previous study, we isolated a polysaccharide named HSP-W from Huangshui (HS). In the present study, the protective role of HSP-W in LPS-induced intestinal barrier dysfunction was determined by several molecular biological techniques. The results showed that HSP-W treatment alleviated the deduced TEER and increased the permeability of intestinal epithelial cells induced by LPS through inhibiting the release of inflammatory cytokines and enhancing the expression of tight junction (TJ) proteins. The underlying molecular mechanisms were elucidated by RNA-seq technique, which indicated that the differentially expressed genes (DEGs) between the LPS-treated and LPS+HSP-W-treated groups were enriched in the "MAPK" signaling pathway. Notably, the overlapping DEGs reversed by HSP-W intervention highlighted the pathways of the "Toll-like receptor" and "NF-κB" signaling pathways. The suppression of p38 and NF-κB were mediated by the inhibition of MyD88. Furthermore, HSP-W treatment prevented the translocation of NF-κB to nucleus, thus inhibiting the release of TNF-α, IL-6, and IL-1β. Overall, HSP-W has beneficial effects on LPS-induced inflammation; it protects the intestinal barrier from injury in Caco-2 cells through inhibiting the TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhao Pei
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guoying Liu
- Anhui Gujing Distillery Co. Ltd., Bozhou 236820, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-156-5271-2036
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Lu
- Anhui Gujing Distillery Co. Ltd., Bozhou 236820, China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
34
|
Structural characterization of peach gum polysaccharide and its effects on the regulation of DSS-induced acute colitis. Int J Biol Macromol 2023; 225:1224-1234. [PMID: 36427612 DOI: 10.1016/j.ijbiomac.2022.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
The structure and the effect of polysaccharide from peach gum (DPG2) on ameliorating DSS-induced acute colitis in mice were investigated in the present study. The results showed that DPG2 was identified as an AG II arabinogalactan with the backbone of β-D-(1 → 6)-galactan, which consisted of mannose, glucuronic acid, galactose, xylose and arabinose with a molar ratio of 4.64:1.02:2.61:39.82:3.89:48.02. Moreover, DPG2 behaved as a flexible chain conformation with a coil-like structure with a molecular weight (Mw) of 5.21 × 105 g/mol. Furthermore, the worm-like chain model parameters for DPG2 were estimated as follows: ML = 379 nm-1, q = 0.74 nm and d = 0.82 nm. The results of the animal assay showed that the intake of DPG2 not only effectively improved the phenotypes of DSS-induced colitis in mice, but also significantly improved the oxidative stress status of mice, such as regulating NO content and T-SOD and MPO levels and repairing oxidative damage to the colonic mucosa. Moreover, DPG2 improved the inflammation of DSS-induced colitis in mice by inhibiting the secretion of the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-6 and IL-17. Therefore, these results suggested that peach gum polysaccharide showed protective effects against colitis, and has great potential for the application of functional components in the food industry.
Collapse
|
35
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
36
|
Fonseca Machado APD, do Nascimento RDP, Marostica Junior MR. Conclusion: Future directions. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:443-445. [DOI: 10.1016/b978-0-323-99111-7.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Araujo FO, Felício MB, Lima CF, Piccolo MS, Pizziolo VR, Diaz-Muñoz G, Bastos DSS, Oliveira LL, Peluzio MDOCG, Diaz MAN. Antioxidant and anti-inflammatory activity of curcumin transdermal gel in an IL-10 knockout mouse model of inflammatory bowel disease. AN ACAD BRAS CIENC 2022; 94:e20201378. [PMID: 36477991 DOI: 10.1590/0001-3765202220201378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel diseases are a group of inflammatory disorders of the gastrointestinal tract. Their prevalence is still low in Brazil, but the incidence is increasing annually. A variety of compounds present in Curcuma longa L., particularly curcumin, have been shown to reduce oxidative stress and aid in the prevention of associated diseases. This study aimed to assess the effect of curcumin transdermal gel on oxidative stress and intestinal inflammation in IL-10 knockout mice. Female mice were divided into four groups: a control group (C0) treated with vehicle and three experimental groups treated with transdermal gel containing 50 (C50), 75 (C75), and 100 (C100) mg curcumin kg-1 body weight. Colon malondialdehyde concentrations were lower in C50 and C75 groups. C100 treatment led to reduced catalase activity in the small intestine, whereas C50, C75, and C100 treatments resulted in decreased catalase activity in the colon. In contrast, superoxide dismutase activity increased in the small intestine of C50 and C75 mice and decreased in the colon of C50, C75, and C100 mice. Glutathione S-transferase activity increased in the small intestine and decreased in the colon of C75 animals. These findings suggest that curcumin transdermal gel exerts a protective effect against oxidative stress.
Collapse
Affiliation(s)
- Fernanda O Araujo
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Matheus B Felício
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Cássio F Lima
- Instituto Federal de Educação do Pará, Campus Óbidos, Avenida Nelson Souza, s/n, Distrito Industrial, 68250-000 Óbidos, PA, Brazil
| | - Mayra S Piccolo
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Virgínia R Pizziolo
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Gaspar Diaz-Muñoz
- Universidade Federal de Minas Gerais, Departmento de Química, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Daniel S S Bastos
- Universidade Federal de Viçosa, Departmento de Biologia Geral, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Leandro L Oliveira
- Universidade Federal de Viçosa, Departmento de Biologia Geral, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Maria DO C G Peluzio
- Universidade Federal de Viçosa, Departmento de Nutrição e Saúde, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Marisa A N Diaz
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
38
|
Zhang P, Lu G, Sun Y, Zhang J, Liu J, Yan Z. Aged microplastics change the toxicological mechanism of roxithromycin on Carassius auratus: Size-dependent interaction and potential long-term effects. ENVIRONMENT INTERNATIONAL 2022; 169:107540. [PMID: 36166955 DOI: 10.1016/j.envint.2022.107540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Size effects of microplastics have received extensive attention for their influence on other pollutants and harm to organisms. In this study, we investigated the uptake, elimination, tissue distribution and potential toxicity mechanism of roxithromycin (ROX) in the presence of 0.5, 5 and 50 μm of aged microplastics (AMPs) in Carassius auratus. The results showed that AMPs promoted the ROX bioaccumulation of various tissues in a size-dependent manner. AMPs and ROX significantly induced superoxide dismutase and catalase activities of liver and gut, and inhibited acetylcholinesterase activities of brain. The coexistence of smaller AMPs exacerbated pathological abnormalities in liver, gill and brain induced by ROX, while larger AMPs caused more intestinal damage. Moreover, high-throughput 16S rRNA gene sequencing indicated that the abundance of Proteobacteria in 0.5 μm AMPs and ROX joint treatments and Firmicutes and Bacteroidota in 50 μm AMPs and ROX joint treatments were significantly raised (p < 0.05). Metabolomics revealed that AMPs and ROX had a size-dependent long-term effect on gut microbial metabolites, which was mainly related to galactose metabolism, amino acid metabolism and primary bile acid biosynthesis pathways after a 7-day elimination, respectively. These results provide important insights into the relationship between the size effect of AMPs and interaction mechanism of AMPs and coexisting pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
39
|
Dietary polyphenols in the treatment of inflammatory bowel diseases. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ulcerative colitis and Crohn's disease, caused by chronic inflammation in the digestive tract, are inflammatory bowel diseases and have similar symptoms. Abnormal immune responses play a pretty important role in the pathogenesis of the disease. Proinflammatory mediators trigger inflammation, stimulate cell signaling molecules, and induce disease onset. Corticosteroids, anti-tumor necrosis factor-α antibodies, and immunosuppressants are some drugs used to treat the disease. However, these drugs have some side effects. In addition, surgical methods might be used in the treatment, but these methods may have some complications. Due to the negative impact on treatment options, alternative methods for reliable, inexpensive, and effective treatment are being sought. Secondary plant compounds with an aromatic or phenolic ring structure, so-called polyphenols or phenolic compounds, may modulate cellular signaling pathways and reduce intestinal inflammation due to their antioxidant and anti-inflammatory effects. Polyphenols may be evaluated as alternative methods for inflammatory bowel disease based on these properties. This review aims to investigate the effect of some polyphenols on inflammatory bowel disease.
Collapse
|
40
|
Sanachai K, Mahalapbutr P, Hengphasatporn K, Shigeta Y, Seetaha S, Tabtimmai L, Langer T, Wolschann P, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. Pharmacophore-Based Virtual Screening and Experimental Validation of Pyrazolone-Derived Inhibitors toward Janus Kinases. ACS OMEGA 2022; 7:33548-33559. [PMID: 36157769 PMCID: PMC9494641 DOI: 10.1021/acsomega.2c04535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Janus kinases (JAKs) are nonreceptor protein tyrosine kinases that play a role in a broad range of cell signaling. JAK2 and JAK3 have been involved in the pathogenesis of common lymphoid-derived diseases and leukemia cancer. Thus, inhibition of both JAK2 and JAK3 can be a potent strategy to reduce the risk of these diseases. In the present study, the pharmacophore models built based on the commercial drug tofacitinib and the JAK2/3 proteins derived from molecular dynamics (MD) trajectories were employed to search for a dual potent JAK2/3 inhibitor by a pharmacophore-based virtual screening of 54 synthesized pyrazolone derivatives from an in-house data set. Twelve selected compounds from the virtual screening procedure were then tested for their inhibitory potency against both JAKs in the kinase assay. The in vitro kinase inhibition experiment indicated that compounds 3h, TK4g, and TK4b can inhibit both JAKs in the low nanomolar range. Among them, the compound TK4g showed the highest protein kinase inhibition with the half-maximal inhibitory concentration (IC50) value of 12.61 nM for JAK2 and 15.80 nM for JAK3. From the MD simulations study, it could be found that the sulfonamide group of TK4g can form hydrogen bonds in the hinge region at residues E930 and L932 of JAK2 and E903 and L905 of JAK3, while van der Waals interaction also plays a dominant role in ligand binding. Altogether, TK4g, found by virtual screening and biological tests, could serve as a novel therapeutical lead candidate.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen40002, Thailand
| | - Kowit Hengphasatporn
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Supaphorn Seetaha
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Lueacha Tabtimmai
- Department
of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok10800, Thailand
| | - Thierry Langer
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, ViennaA-1090, Austria
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna1090, Austria
| | - Tanakorn Kittikool
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Sirilata Yotphan
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
41
|
Khater SI, Lotfy MM, Alandiyjany MN, Alqahtani LS, Zaglool AW, Althobaiti F, Ismail TA, Soliman MM, Saad S, Ibrahim D. Therapeutic Potential of Quercetin Loaded Nanoparticles: Novel Insights in Alleviating Colitis in an Experimental DSS Induced Colitis Model. Biomedicines 2022; 10:1654. [PMID: 35884960 PMCID: PMC9313390 DOI: 10.3390/biomedicines10071654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is considered the main etiologic factor involved in inflammatory bowel disease (IBD). Integration of nanocarriers for natural therapeutic agents with antioxidant and anti-inflammatory potential is a novel promising candidate for curing IBD. Herein, the colonic antioxidant and anti-inflammatory effects of different concentrations of quercetin nanoparticles (QT-NPs) were evaluated using a dextran sulfate sodium (DSS)-induced colitis model. Following colitis induction, the efficacy and mechanistic actions of QT-NPs were evaluated by assessing lesion severity, molecular aids controlling oxidative stress and inflammatory response, and histopathological and immunohistochemistry examination of colonic tissues. Administration of QT-NPs, especially at higher concentrations, significantly reduced the disease activity index and values of fecal calprotectin marker compared to the colitic group. Colonic oxidant/antioxidant status (ROS, H2O2, MDA, SOD, CAT, GPX and TAC) was restored after treatment with higher concentrations of QT-NPs. Moreover, QT-NPs at levels of 20 mg/kg and, to a lesser extent, 15 mg/kg reduced Nrf2 and HO-1 gene expression, which was in line with decreasing the expression of iNOS and COX2 in colonic tissues. Higher concentrations of QT-NPs greatly downregulated pro-inflammatory cytokines; upregulated genes encoding occludin, MUC-2 and JAM; and restored the healthy architectures of colonic tissues. Taken together, these data suggest that QT-NPs could be a promising alternative to current IBD treatments.
Collapse
Affiliation(s)
- Safaa I. Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (S.I.K.); (S.S.)
| | - Marwa M. Lotfy
- Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt;
| | - Maher N. Alandiyjany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Quality and Development Affair, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia;
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.A.I.); (M.M.S.)
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.A.I.); (M.M.S.)
| | - Saydat Saad
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (S.I.K.); (S.S.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
42
|
Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109:109101. [PMID: 35777588 DOI: 10.1016/j.jnutbio.2022.109101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder associated with the inflammation in the digestive tract. The exact cause of IBD is unknown; nevertheless, in IBD, the homeostasis of key regulatory factors involved in intestinal immunity has been documented to be disrupted. Despite the lack of a viable treatment for IBD, synthetic drugs and monoclonal antibodies are currently used to treat it. However, these treatments have side effects, and the high relapse rate limits their usage. Dietary polyphenols constitute a great variety of compounds and have shown an array of biological properties. Resveratrol is a natural polyphenol found in grapevines and berries. The therapeutic ability of resveratrol against IBD is amply demonstrated in many in vivo studies. Resveratrol can interact with several molecular targets (Nf-kB, SIRT1, mTOR, HIF-1α, miRNAs, and TNF-α) and effectively prevent/ alleviate IBD symptoms with promising results. Although resveratrol has profound anti-inflammatory properties against IBD, its therapeutic employment is limited due to its low water solubility, less chemical stability, less bioavailability, and rapid metabolism in vivo. Hence, resveratrol encapsulation using different carries and its controlled release has become a promising strategy to overcome limitations. Herein, we meticulously review, talk-over the anti-inflammatory effect and mechanisms of resveratrol in IBD. We further provide the latest information on resveratrol formulations and nano-delivery systems used in oral delivery of resveratrol for the treatment of IBD and offer our view on future research on resveratrol in IBD treatment.
Collapse
|
43
|
Shin YK, Kwon S, Hsieh YS, Han AY, Seol GH. Linalyl acetate restores colon contractility and blood pressure in repeatedly stressed-ulcerative colitis rats. Environ Health Prev Med 2022; 27:27. [PMID: 35753805 PMCID: PMC9283910 DOI: 10.1265/ehpm.22-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Ulcerative colitis (UC) is related to stress, but few studies have evaluated the influence of stress on factors affecting colon contractility in rats with UC. Also, there have been no studies investigating beneficial effects of linalyl acetate (LA), the major component of lavender essential oil, in repeatedly stressed-ulcerative colitis rats. Therefore, we investigated the differences in factors affecting colon contractility of UC rats with or without repeated restraint stress (RRS) and the effects of LA on these parameters in repeatedly stressed-UC rats. Methods Rats were assigned to following groups: control, RRS, UC, RRS+UC, and RRS+UC treated with LA or sulfasalazine. To induce UC, rats were administered 2% dextran sodium sulfate (DSS) water on days 1–5, followed by tap water on days 6–15 and DSS water on days 16–20. RRS was induced by immobilizing rats for 2 hr/day on days 1–20. LA or sulfasalazine were daily administered on days 16–20. Results Disease activity index (DAI) was markedly increased in RRS+UC. Serum interleukin-6 levels and acetylcholine-induced colon contraction were higher in RRS+UC than in control, RRS and UC. Colon nitrite levels also significantly increased in RRS+UC compared to the control and RRS. Blood pressure (BP) was higher in RRS+UC than in the control and UC. Both LA and sulfasalazine was effective in decreasing DAI, colon nitrite levels, acetylcholine-induced colon contraction in RRS+UC. Sulfasalazine significantly reduced serum IL-6 levels in RRS+UC with decreasing tendency in RRS+UC treated by LA. Only LA significantly reduced BP in RRS+UC. Conclusions Our findings emphasize the importance of stress management in UC patients. Also, LA may be beneficially used in repeatedly stressed-UC patients with high BP.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University
| | - Soonho Kwon
- Department of Basic Nursing Science, School of Nursing, Korea University
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University.,Department of Nursing, School of Nursing, National Taipei University of Nursing and Health Sciences
| | - A Young Han
- Department of Basic Nursing Science, School of Nursing, Korea University.,Department of Nursing, School of Nursing, Sunchon National University
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University.,BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University
| |
Collapse
|
44
|
Shahid M, Raish M, Ahmad A, Bin Jardan YA, Ansari MA, Ahad A, Alkharfy KM, Alaofi AL, Al-Jenoobi FI. Sinapic Acid Ameliorates Acetic Acid-Induced Ulcerative Colitis in Rats by Suppressing Inflammation, Oxidative Stress, and Apoptosis. Molecules 2022; 27:4139. [PMID: 35807383 PMCID: PMC9268465 DOI: 10.3390/molecules27134139] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a long-term condition which results in inflammation and ulcers of the colon and rectum. The key indications of active disease are abdominal pain and diarrhea mixed with blood. Aims: We explore the underlying colon protective mechanism of sinapic acid (SA) against acetic acid (AA) induced ulcerative colitis in rats. The implications of inflammation, oxidative stress, and apoptosis are studied. Methodology: Twenty-four rats were distributed into four categories, normal control (NC), ulcerative colitis (UC), ulcerative Colitis with SA 40 mg/kg (SA 40 mg/kg + AA), and ulcerative colitis with prednisolone (PRDL 10 mg/kg + AA), and were pretreated orally with saline, saline and SA (40 mg/kg/day) or PRDL (10 mg/kg/day) respectively, for 7 days. UC was prompted by trans-rectal administration of 4% AA on the 5th day, colon tissues were surgically removed for gross morphology and histological inspection, oxidative stress, and inflammatory markers and immunoblot analysis of Bax, caspase-3, and Bcl-2. Results: Macroscopic and histological inspection demonstrated that both SA 40 mg/kg and PRDL (10 mg/kg/day) significantly ameliorates colonic injuries. In addition, both pretreatments significantly ameliorates AA-induced UC, oxidative stress, as indicated by suppressed malondialdehyde (MDA), nitric oxide (NO) levels and restoring antioxidant/oxidant balance as indicated by catalase and glutathione levels, suppressed inflammation via inhibiting cytokines TNF-α, IL-6, inflammatory markers MPO, PGE2, COX-2 and NF-κB and inhibiting the protein expression of Bax and caspase-3 apoptotic protein and increasing the anti-apoptotic protein, Bcl-2 thereby inhibiting apoptosis. Conclusion: Sinapic acid significantly ameliorates AA induced UC in rats by suppressing inflammation, oxidative stress, and apoptosis in colonic tissues which exhibits its potential for the management of UC.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| |
Collapse
|
45
|
Huang JQ, Wei SY, Cheng N, Zhong YB, Yu FH, Li MD, Liu DY, Li SS, Zhao HM. Chimonanthus nitens Oliv. Leaf Granule Ameliorates DSS-Induced Acute Colitis Through Treg Cell Improvement, Oxidative Stress Reduction, and Gut Microflora Modulation. Front Cell Infect Microbiol 2022; 12:907813. [PMID: 35832382 PMCID: PMC9272890 DOI: 10.3389/fcimb.2022.907813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
The rising incidence of ulcerative colitis has become a new challenge for public health. Chimonanthus nitens Oliv. leaf granule (COG) is a natural medicine used for the treatment of respiratory diseases, which has excellent anti-inflammatory and antioxidant effects. However, the therapeutic effect of COG in ulcerative colitis (UC) has not been reported. Here, the experimental colitis was treated with dextran sodium sulfate (DSS) and COG. After treatment with high (30 g/kg), medium (15 g/kg), and low (7.5 g/kg) doses of COG for 11 consecutive days, the body weight, disease activity index (DAI) score, colon length, colon weight index, and the pathological score of mice were effectively improved. COG significantly reduced the levels of inflammatory cytokines in UC mice in vitro and in vivo and restored the secretion levels of IL-6 and IL-10 in the colon. Meanwhile, compared to mice with colitis, COG-treated mice showed lower levels of MDA, MPO, NO, and eNOS and higher levels of GSH-Px and MAO, which indicated that oxidative stress damage in colitic mice was alleviated by COG. Moreover, less Th17 and more Tregs were observed in the COG-treated groups. In addition, COG improved the diversity and relative abundance of gut microflora in the colon of colitic mice, and Lachnospiraceae_NK4A136_group and Lachnospiraceae_UCG-006 were obviously regulated at the genus level. In summary, COG has a protective effect on DSS-induced experimental colitis, mainly through inhibition of immune-inflammatory responses and oxidative stress and regulation of mTreg cell responses and intestinal flora composition.
Collapse
Affiliation(s)
- Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Si-Yi Wei
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Nian Cheng
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
- Key Laboratory of Animal Model of Traditional Chinese Medicine (TCM) Syndromes of Depression, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Fei-Hao Yu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Ming-Da Li
- College of Traditional Chinese Medicine, Nanchang Medical College (TCM), Nanchang, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Shan-Shan Li
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Hai-Mei Zhao
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| |
Collapse
|
46
|
Antidiarrheal Effect of 80% Methanol Extract and Fractions of the Leaves of Ocimum lamiifolium in Swiss Albino Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6838295. [PMID: 35664936 PMCID: PMC9162844 DOI: 10.1155/2022/6838295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Introduction Worldwide, in children of under five years of age, diarrhea is responsible for more than 760,000 annual deaths. It is treated with both modern drugs and traditional medicinal plants, including O. lamiifolium. But the use of this plant as an antidiarrheal agent is not scientifically validated. Therefore, this study was aimed to evaluate antidiarrheal efficacy of the plant. Method The leaf powder was macerated by 80% methanol and then fractionated using n-hexane, n-butanol, and distilled water. Antidiarrheal activity was evaluated through different models (castor oil-induced diarrhea, enteropooling, and motility) using onset, number of wet feces, fluid content, weight and volume of intestinal content, and motility as test parameters by administering treatment doses to groups of mice. Group I received 10 mL/kg of the dissolving vehicle, Group II received either loperamide or atropine, and Groups III-V received extract doses of 100, 200, and 400 mg/kg, respectively. One-way ANOVA was used to analyze the data, followed by Tukey's post-hoc test. Results The crude extract exhibited a significant effect on the fluid content of feces at all tested doses. Additionally, the n-butanol and distilled water fractions revealed significant effects on onset of diarrhea at 400 mg/kg (p < 0.05), while the n-hexane fraction showed significant effects on number of wet feces, onset, and fluid content of feces at all tried doses. The crude extract and all the fractions (at 200 and 400 mg/kg) decreased the weight and volume of intestinal content significantly. Similarly, both the crude extract and distilled water fraction at 400 mg/kg as well as n-butanol and n-hexane fractions at 200 and 400 mg/kg showed meaningful differences on peristaltic index as compared to the negative control. Conclusion The results revealed that the leaf extract of O. lamiifolium has an antidiarrheal activity, which supports the traditional medical practice.
Collapse
|
47
|
Improving the Antioxidant Activity and Flavor of Faba ( Vicia faba L.) Leaves by Domestic Cooking Methods. Antioxidants (Basel) 2022; 11:antiox11050931. [PMID: 35624795 PMCID: PMC9137704 DOI: 10.3390/antiox11050931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022] Open
Abstract
Faba leaves are an unusual vegetable which contain not only a range of functional phytochemicals, but also certain undesirable flavors, which limit their consumption. In this study, several cooking methods (microwaving, roasting, steaming, and boiling), which are expected to reduce the odd flavors, were evaluated in terms of both health benefit effects and odd flavor factors, including antioxidant activities and the content of non-volatile and volatile organic compounds (VOCs). A cooking time of 5 min was selected because of the high content of l-dopa (l-3,4-dihydroxyphenylalanine) and aim of reducing the undesirable flavors of the cooked faba leaves. Microwaving and steaming significantly increased the l-dopa content by 24% and 19%, respectively. Roasting specifically increased the content of flavonols, exhibiting a 28% increase of kaempferol-3-O-arabinoside-7-O-rhamnoside, representatively, whereas boiling decreased about 50% of most phytochemicals evaluated. Microwaving and steaming treatments significantly increased the antioxidant activities. The l-dopa content and antioxidant activities of the processed faba leaves were strongly positively correlated with either an R2 = 0.863 of DPPH radical scavenging activity or an R2 = 0.856 value of ABTS radical scavenging activity, showing that l-dopa was a key antioxidant. All cooking methods potentially improved the flavor of the cooked faba leaves compared with that of the fresh leaves, because they significantly reduced the contents of VOCs such as alcohols, aldehydes, and ketones. These VOCs were the main components (>90%) in the fresh leaves. Adverse aromatic hydrocarbons were newly formed by the microwaving treatment, typically producing p-xylene, which is known to be a harmful dose-dependent compound, but they were not detected in leaves processed by the other cooking methods; therefore, although microwaving efficiently increased antioxidant activity, the chemical safety of the aromatic hydrocarbons produced need further study.
Collapse
|
48
|
Yang K, Deng X, Jian S, Zhang M, Wen C, Xin Z, Zhang L, Tong A, Ye S, Liao P, Xiao Z, He S, Zhang F, Deng J, Zhang L, Deng B. Gallic Acid Alleviates Gut Dysfunction and Boosts Immune and Antioxidant Activities in Puppies Under Environmental Stress Based on Microbiome-Metabolomics Analysis. Front Immunol 2022; 12:813890. [PMID: 35095912 PMCID: PMC8795593 DOI: 10.3389/fimmu.2021.813890] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life exposure to environmental stress disrupts the gut barrier and leads to inflammatory responses and changes in gut microbiota composition. Gallic acid (GA), a natural plant polyphenol, has received significant interest for its antioxidant, anti-inflammatory, and antimicrobial properties that support the maintenance of intestinal health. To assess whether dietary supplementation of GA alleviates environmental stress, a total of 19 puppies were randomly allocated to the following three dietary treatments for 2 weeks: 1) basal diet (control (CON)); 2) basal diet + transportation (TS); and 3) basal diet with the addition of 500 mg/kg of GA + transportation (TS+GA). After a 1-week supplementation period, puppies in the TS and TS+GA groups were transported from a stressful environment to another livable location, and puppies in the CON group were then left in the stressful environment. Results indicated that GA markedly reduced the diarrhea rate in puppies throughout the trial period and caused a moderate decline of serum cortisol and HSP-70 levels after transportation. Also, GA alleviated the oxidative stress and inflammatory response caused by multiple environmental stressors. Meanwhile, puppies fed GA had a higher abundance of fecal Firmicutes and Lactobacillus and lower Proteobacteria, Escherichia–Shigella, and Clostridium_sensu_stricto_1 after transportation. As a result, the TS+GA group had the highest total short-chain fatty acids and acetic acid. Also, the fecal and serum metabolomics analyses revealed that GA markedly reversed the abnormalities of amino acid metabolism, lipid metabolism, carbohydrate metabolism, and nucleotide metabolism caused by stresses. Finally, Spearman’s correlation analysis was carried out to explore the comprehensive microbiota and metabolite relationships. Overall, dietary supplementation of GA alleviates oxidative stress and inflammatory response in stressed puppies by causing beneficial shifts on gut microbiota and metabolites that may support gut and host health.
Collapse
Affiliation(s)
- Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, China
| | - Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aorigeile Tong
- Research Center of Pet Nutrition, Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, China
| | - Shibin Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pinfeng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zaili Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Ameliorative effects of standardized extract of Tamarix stricta Boiss. on acetic acid-induced colitis via modulating nitrergic pathways. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022; 10:biomedicines10020289. [PMID: 35203499 PMCID: PMC8869546 DOI: 10.3390/biomedicines10020289] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between gut microbes (both commensals and pathogens) and the host immune system. Highly specialized epithelial cells constantly cope with several protective and harmful agents to maintain the multiple physiological functions of the barrier as well as its integrity. However, both genetic defects and environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated immune-inflammatory responses, and even the development of chronic pathological conditions. Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier structural and functional homeostasis, focusing on potential alterations that may undermine this fine balance.
Collapse
|