1
|
Soliman Wadan AH, Abdelsattar Ahmed M, Hussein Ahmed A, El-Sayed Ellakwa D, Hamed Elmoghazy N, Gawish A. The Interplay of Mitochondrial Dysfunction in Oral Diseases: Recent Updates in Pathogenesis and Therapeutic Implications. Mitochondrion 2024; 78:101942. [PMID: 39111357 DOI: 10.1016/j.mito.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction is linked to various systemic and localized diseases, including oral diseases like periodontitis, oral cancer, and temporomandibular joint disorders. This paper explores the intricate mechanisms underlying mitochondrial dysfunction in oral pathologies, encompassing oxidative stress, inflammation, and impaired energy metabolism. Furthermore, it elucidates the bidirectional relationship between mitochondrial dysfunction and oral diseases, wherein the compromised mitochondrial function exacerbates disease progression, while oral pathologies, in turn, exacerbate mitochondrial dysfunction. Understanding these intricate interactions offers insights into novel therapeutic strategies targeting mitochondrial function for managing oral diseases. This paper pertains to the mechanisms underlying mitochondrial dysfunction, its implications in various oral pathological and inflammatory conditions, and emerging versatile treatment approaches. It reviews current therapeutic strategies to mitigate mitochondrial dysfunction, including antioxidants, mitochondrial-targeted agents, and metabolic modulators.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt.
| | - Mohamed Abdelsattar Ahmed
- Faculty of Dentistry, Sinai University, Kantra Branch, Ismailia, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abdelnaser Hussein Ahmed
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| | - Nourhan Hamed Elmoghazy
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abeer Gawish
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt; Faculty of Graduate Studies, Sinai University, Arish Branche, North Sinai, Egypt; Oral Medicine, Periodontology, Diagnosis and Radiology Department, Al Azhar University, Egypt
| |
Collapse
|
2
|
Wang Y, Liu S, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Yu M, Wang H, Wu X, Liu Y, Gao W, Li L. The metabolic signature of blood lipids: a causal inference study using twins. J Lipid Res 2024; 65:100625. [PMID: 39303494 PMCID: PMC11437770 DOI: 10.1016/j.jlr.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Dyslipidemia is one of the cardiometabolic risk factors that influences mortality globally. Unraveling the causality between blood lipids and metabolites and the complex networks connecting lipids, metabolites, and other cardiometabolic traits can help to more accurately reflect the body's metabolic disorders and even cardiometabolic diseases. We conducted targeted metabolomics of 248 metabolites in 437 twins from the Chinese National Twin Registry. Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) analysis was used for causal inference between metabolites and lipid parameters. Bidirectional mediation analysis was performed to explore the linkages between blood lipids, metabolites, and other seven cardiometabolic traits. We identified 44, 1, and 31 metabolites associated with triglyceride (TG), total cholesterol (TC), and high-density lipoprotein-cholesterol (HDL-C), most of which were gut microbiota-derived metabolites. There were 9, 1, and 14 metabolites that showed novel associations with TG, TC, and HDL-C, respectively. ICE FALCON analysis found that TG and HDL-C may have a predicted causal effect on 23 and six metabolites, respectively, and one metabolite may have a predicted causal effect on TG. Mediation analysis discovered 14 linkages connecting blood lipids, metabolites, and other cardiometabolic traits. Our study highlights the significance of gut microbiota-derived metabolites in lipid metabolism. Most of the identified cross-sectional associations may be due to the lipids having a predicted causal effect on metabolites, but not vice versa, nor are they due to family confounding. These findings shed new light on lipid metabolism and personalized management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shunkai Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Min Yu
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| |
Collapse
|
3
|
Alwahsh M, Alejel R, Hasan A, Abuzaid H, Al-Qirim T. The Application of Metabolomics in Hyperlipidemia: Insights into Biomarker Discovery and Treatment Efficacy Assessment. Metabolites 2024; 14:438. [PMID: 39195534 DOI: 10.3390/metabo14080438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperlipidemia is a lipid metabolism disorder that refers to increased levels of total triglycerides (TGs), cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and decreased levels of high-density lipoprotein-cholesterol (HDL-C). It is a major public health issue with increased prevalence and incidence worldwide. The ability to identify individuals at risk of this disorder before symptoms manifest will facilitate timely intervention and management to avert potential complications. This can be achieved by employing metabolomics as an early detection method for the diagnostic biomarkers of hyperlipidemia. Metabolomics is an analytical approach used to detect and quantify metabolites. This provides the ability to explain the metabolic processes involved in the development and progression of certain diseases. In recent years, interest in the use of metabolomics to identify disease biomarkers has increased, and several biomarkers have been discovered, such as docosahexaenoic acid, glycocholic acid, citric acid, betaine, and carnitine. This review discusses the primary metabolic alterations in the context of hyperlipidemia. Furthermore, we provide an overview of recent studies on the application of metabolomics to the assessment of the efficacy of traditional herbal products and common lipid-lowering medications.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Rahaf Alejel
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Aya Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Haneen Abuzaid
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Tariq Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| |
Collapse
|
4
|
Liu Y, Liu X, He Q, Huang X, Ren Y, Dong Z. Changes in Isoleucine, Sarcosine, and Dimethylglycine During OGTT as Risk Factors for Diabetes. J Clin Endocrinol Metab 2024; 109:1793-1802. [PMID: 38214112 DOI: 10.1210/clinem/dgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
CONTEXT Current metabolomics studies in diabetes have focused on the fasting state, while only a few have addressed the satiated state. OBJECTIVE We combined the oral glucose tolerance test (OGTT) and metabolomics to examine metabolite-level changes in populations with different glucose tolerance statuses and to evaluate the potential risk of these changes for diabetes. METHODS We grouped participants into those with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and newly diagnosed type 2 diabetes (NDM). During the OGTT, serum was collected at 0, 30, 60, 120, and 180 minutes. We evaluated the changes in metabolite levels during the OGTT and compared metabolic profiles among the 3 groups. The relationship between metabolite levels during the OGTT and risk of diabetes and prediabetes was analyzed using a generalized estimating equation (GEE). The regression results were adjusted for sex, body mass index, fasting insulin levels, heart rate, smoking status, and blood pressure. RESULTS Glucose intake altered metabolic profile and induced an increase in glycolytic intermediates and a decrease in amino acids, glycerol, ketone bodies, and triglycerides. Isoleucine levels differed between the NGT and NDM groups and between the NGT and IGR groups. Changes in sarcosine levels during the OGTT in the diabetes groups were opposite to those in glycine levels. GEE analysis revealed that during OGTT, isoleucine, sarcosine, and acetic acid levels were associated with NDM risks, and isoleucine and acetate levels with IGR risks. CONCLUSION Metabolic profiles differ after glucose induction in individuals with different glucose tolerance statuses. Changes in metabolite levels during OGTT are potential risk factors for diabetes development.
Collapse
Affiliation(s)
- Yixian Liu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China
| | - Xiaoxuan Liu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China
| | - Qian He
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China
| | - Xu Huang
- School of Medical Imaging, Tianjin Medical University, No.1 Guangdong Road, Hexi District, Tianjin, 300204, China
| | - Yanv Ren
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China
| | - Zuoliang Dong
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China
| |
Collapse
|
5
|
Guo X, Ou T, Yang X, Song Q, Zhu L, Mi S, Zhang J, Zhang Y, Chen W, Guo J. Untargeted metabolomics based on ultra-high performance liquid chromatography-mass spectrometry/MS reveals the lipid-lowering mechanism of taurine in hyperlipidemia mice. Front Nutr 2024; 11:1367589. [PMID: 38706565 PMCID: PMC11066166 DOI: 10.3389/fnut.2024.1367589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Taurine has a prominent lipid-lowering effect on hyperlipidemia. However, a comprehensive analysis of the effects of taurine on endogenous metabolites in hyperlipidemia has not been documented. This study aimed to explore the impact of taurine on multiple metabolites associated with hyperlipidemia. Methods The hyperlipidemic mouse model was induced by high-fat diet (HFD). Taurine was administered via oral gavage at doses of 700 mg/kg/day for 14 weeks. Evaluation of body weight, serum lipid levels, and histopathology of the liver and adipose tissue was performed to confirm the lipid-lowering effect of taurine. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics analyses of serum, urine, feces, and liver, coupled with multivariate data analysis, were conducted to assess changes in the endogenous metabolites. Results and discussion Biochemical and histological examinations demonstrated that taurine administration prevented weight gain and dyslipidemia, and alleviated lipid deposition in the liver and adipose tissue in hyperlipidemic mice. A total of 76 differential metabolites were identified by UPLC-MS-based metabolomics approach, mainly involving BAs, GPs, SMs, DGs, TGs, PUFAs and amino acids. Taurine was found to partially prevent HFDinduced abnormalities in the aforementioned metabolites. Using KEGG database and MetaboAnalyst software, it was determined that taurine effectively alleviates metabolic abnormalities caused by HFD, including fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, diacylglycerol metabolism, amino acid metabolism, bile acid and taurine metabolism, taurine and hypotaurine metabolism. Moreover, DGs, GPs and SMs, and taurine itself may serve as active metabolites in facilitating various anti-hyperlipidemia signal pathways associated with taurine. This study provides new evidence for taurine to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Xinzhe Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Tong Ou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xinyu Yang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Qi Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Lin Zhu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Shengquan Mi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Yanzhen Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Wen Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Junxia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| |
Collapse
|
6
|
Li Y, Zhang L, Liu J, Wu M, Li C, Yang J, Wang L. Environmental concentrations of cadmium and zinc and associating metabolomics profile alternations in urine of pregnant women in the first trimester: A prospective cohort study in Taiyuan, North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115611. [PMID: 37897977 DOI: 10.1016/j.ecoenv.2023.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
especially to pregnant women. In recent years, zinc (Zn) supplementation has attracted increasing attention among pregnant women. Thus, understanding the effects and interactions of Cd and Zn in pregnant women is critical. This study aimed to assess the urinary levels of Cd and Zn in pregnant women during early pregnancy, examine associated alterations in urine metabolomics, and identify potential metabolic biomarkers among distinct Cd and Zn groups. Urine samples from 185 pregnant women were collected, and inductively coupled plasma mass spectrometry (ICP-MS) was used to detect Cd and Zn contents. The women were then divided into four groups according to median contents of Cd and Zn. Alterations in the metabolite profile were assessed using a liquid chromatograph mass spectrometer (LC-MS). The results showed that the gravidity of pregnant women was closely related to urinary Cd levels and that the urinary Zn contents of pregnant women with morning sickness in the first trimester were lower than that of non-morning-sick pregnant women. A total of 51 metabolites exhibited significant differential expression in the high level of Cd and Zn (HCdHZn) compared with low level of Cd and Zn (LCdLZn), the diagnostic performance of these 51 metabolites were assessed using receiver operating characteristic curve analysis and revealed that octadecylamine was a promising diagnostic indicator for evaluating the combined effects of Zn and Cd. Metabolomics analysis showed that the arginine and proline pathways were upregulated in HCdHZn compared with that in LCdLZn, suggesting a potential risk of obesity. Although higer levels of bovinic acid in HCdHZn vs. HCdLZn (high level of Cd and low level of Zn) indicated that Zn has antioxidant and anti-inflammatory properties, excessive Zn may still cause harmful effect to the human health and should be supplemented with caution. The study findings may be valuable for potential risk ahissessment of the combined effects of Cd-Zn and their interactions in pregnant women.
Collapse
Affiliation(s)
- Yingjun Li
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Liuyuan Zhang
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Liu
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Meiqiong Wu
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Changqing Li
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030000, China
| | - Jia Yang
- Department of prevention and health care, Shanxi Provincial Children's Hospital, Taiyuan 030013, China
| | - Li Wang
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
7
|
Durainayagam B, Mitchell CJ, Milan AM, Kruger MC, Roy NC, Fraser K, Cameron-Smith D. Plasma metabolomic response to high-carbohydrate meals of differing glycaemic load in overweight women. Eur J Nutr 2023:10.1007/s00394-023-03151-7. [PMID: 37085625 DOI: 10.1007/s00394-023-03151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Metabolomic dysregulation following a meal in overweight individuals with the Metabolic Syndrome (MetS) involves multiple pathways of nutrient storage and oxidation. OBJECTIVE The aim of the current study was to perform an acute cross-over intervention to examine the interactive actions of meal glycaemic load (GL) on the dynamic responses of the plasma metabolome in overweight females. METHODS Postmenopausal women [63 ± 1.23y; Healthy (n = 20) and MetS (n = 20)] ingested two differing high-carbohydrate test meals (73 g carbohydrate; 51% energy) composed of either low glycemic index (LGI) or high (HGI) foods in a randomised sequence. Plasma metabolome was analysed using liquid chromatography-mass spectrometry (LC-MS). RESULTS In the overweight women with MetS, there were suppressed postprandial responses for several amino acids (AAs), including phenylalanine, leucine, valine, and tryptophan, p < 0.05), irrespective of the meal type. Meal GL exerted a limited impact on the overall metabolomic response, although the postprandial levels of alanine were higher with the low GL meal and uric acid was greater following the high GL meal (p < 0.05). CONCLUSIONS MetS participants exhibited reduced differences in the concentrations of a small set of AAs and a limited group of metabolites implicated in energy metabolism following the meals. However, the manipulation of meal GL had minimal impact on the postprandial metabolome. This study suggests that the GL of a meal is not a major determinant of postprandial response, with a greater impact exerted by the metabolic health of the individual. Trial registration Australia New Zealand Clinical Trials Registry: ACTRN12615001108505 (21/10/2015).
Collapse
Affiliation(s)
- Brenan Durainayagam
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
| | - Cameron J Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Food & Bio-Based Products Group, AgResearch, Palmerston North, New Zealand
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Karl Fraser
- Food & Bio-Based Products Group, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
- Colleges of Health, Medicine and Wellbeing, and Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
8
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Weinisch P, Fiamoncini J, Schranner D, Raffler J, Skurk T, Rist MJ, Römisch-Margl W, Prehn C, Adamski J, Hauner H, Daniel H, Suhre K, Kastenmüller G. Dynamic patterns of postprandial metabolic responses to three dietary challenges. Front Nutr 2022; 9:933526. [PMID: 36211489 PMCID: PMC9540193 DOI: 10.3389/fnut.2022.933526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake triggers extensive changes in the blood metabolome. The kinetics of these changes depend on meal composition and on intrinsic, health-related characteristics of each individual, making the assessment of changes in the postprandial metabolome an opportunity to assess someone's metabolic status. To enable the usage of dietary challenges as diagnostic tools, profound knowledge about changes that occur in the postprandial period in healthy individuals is needed. In this study, we characterize the time-resolved changes in plasma levels of 634 metabolites in response to an oral glucose tolerance test (OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy young males (n = 15). Metabolite levels for samples taken at different time points (20 per individual) during the challenges were available from targeted (132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost half of the profiled metabolites (n = 308) showed a significant change in at least one challenge, thereof 111 metabolites responded exclusively to one particular challenge. Examples include azelate, which is linked to ω-oxidation and increased only in OLTT, and a fibrinogen cleavage peptide that has been linked to a higher risk of cardiovascular events in diabetes patients and increased only in OGTT, making its postprandial dynamics a potential target for risk management. A pool of 89 metabolites changed their plasma levels during all three challenges and represents the core postprandial response to food intake regardless of macronutrient composition. We used fuzzy c-means clustering to group these metabolites into eight clusters based on commonalities of their dynamic response patterns, with each cluster following one of four primary response patterns: (i) “decrease-increase” (valley-like) with fatty acids and acylcarnitines indicating the suppression of lipolysis, (ii) “increase-decrease” (mountain-like) including a cluster of conjugated bile acids and the glucose/insulin cluster, (iii) “steady decrease” with metabolites reflecting a carryover from meals prior to the study, and (iv) “mixed” decreasing after the glucose challenge and increasing otherwise. Despite the small number of subjects, the diversity of the challenges and the wealth of metabolomic data make this study an important step toward the characterization of postprandial responses and the identification of markers of metabolic processes regulated by food intake.
Collapse
Affiliation(s)
- Patrick Weinisch
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jarlei Fiamoncini
- Food Research Center – FoRC, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
| | - Thomas Skurk
- Core Facility Human Studies, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Werner Römisch-Margl
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hannelore Daniel
- Department of Food and Nutrition, Technical University of Munich, Freising, Germany
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- *Correspondence: Gabi Kastenmüller
| |
Collapse
|
10
|
Wang H, Dong P, Liu X, Zhang Z, Li H, Li Y, Zhang J, Dai L, Wang S. Active Peptide AR-9 From Eupolyphaga sinensis Reduces Blood Lipid and Hepatic Lipid Accumulation by Restoring Gut Flora and Its Metabolites in a High Fat Diet–Induced Hyperlipidemia Rat. Front Pharmacol 2022; 13:918505. [PMID: 36176455 PMCID: PMC9514323 DOI: 10.3389/fphar.2022.918505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The dysbiosis of gut flora and its metabolites plays important roles in the progression of hyperlipidemia (HL), and some bioactive peptides are available for HL treatment. In this study, we aimed to isolate an active peptide (AR-9) from active peptides of E. sinensis (APE) and determine whether AR-9 could improve many symptoms of a HL rat induced by a high-fat diet (HFD) by modulating gut flora and its metabolites. Above all, AR-9 was derived from APE using ion-exchange chromatography, and its structure was deconstructed by Fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectroscopy, and UHPLC-Q-Exactive-Orbitrap MS. Then, an HFD-induced HL model in SD rats was established and used to clarify the regulatory effects of AR-9 (dose of 3 mg/kg) on HL. Normal diet–fed rats were taken as the control. The plasma samples and liver were harvested for biochemical and histopathological examinations. 16S rRNA gene sequencing and untargeted metabolomics were sequenced to assess changes in gut flora and its metabolites from rat fecal samples. Finally, Spearman’s correlation analysis was used to assess the relationship between lipid-related factors, gut flora, and its metabolites so as to evaluate the mechanism of AR-9 against HL. The results of the separation experiments showed that the amino acid sequence of AR-9 was AVFPSIVGR, which was a fragment of the actin protein from Blattaria insects. Moreover, HFD rats developed exaltation of index factors, liver lipid accumulation, and simple fibrosis for 8 weeks, and the profiles of gut flora and its metabolites were significantly altered. After treatment, AR-9 decreased the levels of lipid factors in plasma and the extent of liver damage. 16S rRNA gene sequencing results indicated that AR-9 significantly increased the relative abundance of beneficial bacteria Bacteroidetes and reduced the relative abundance of the obesity-associated bacteria Firmicutes. Furthermore, AR-9 changed gut microbiota composition and increased the relative abundance of beneficial bacteria: Lactobacillus, Clostridium, Dehalobacterium, and Candidatus arthromitus. Fecal metabolomics showed that the pathway regulated by AR-9 was “arginine biosynthesis”, in which the contents were citrulline and ornithine. Spearman’s correlation analysis revealed that two metabolites (ornithine and citrulline) showed significantly negative correlations with obesity-related parameters and positive correlations with the gut genera (Clostridium) enriched by AR-9. Overall, our results suggested interactions between gut microbial shifts and fecal amino acid/lipid metabolism and revealed the mechanisms underlying the anti-HL effect of AR-9. The abovementioned results not only reveal the initial anti-HL mechanism of AR-9 but also provide a theoretical basis for the continued development of AR-9.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Macao SAR, China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhen Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Huajian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang, ; Long Dai, ; Shaoping Wang,
| |
Collapse
|
11
|
Peplinska-Miaskowska J, Wichowicz H, Smoleński R, Jablonska P, Kaska L. The comparison of nucleotide metabolites and amino acids patterns in patients with eating disorders, with and without symptoms of depression. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:333-341. [PMID: 35076345 DOI: 10.1080/15257770.2022.2028827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purines, pyrimidines, and amino acid level have gained attention recently as potential determinants of mental disorders. However, eating disorders patients (ED) have not been yet appropriately studied, especially subjects with coexisting mood disorders. This paper examines the serum level of nucleotide catabolites and plasma amino acids in eating disorders with hyperphagia, with and without Major Depressive Disorder (MDD). Samples were taken from adult persons suffering from eating disorders (two forms: simple obesity and binge eating disorder) with MDD (n = 20) and without (n = 17). Serum nucleotides and plasma amino acids concentrations were analyzed with high-performance liquid chromatography-mass spectrometry. The nucleotides metabolite in MDD patients had a significantly (p < 0.05) lower uridine. Among MDD patients with ED significantly (p < 0.05) higher levels of asparagine, glutamine, proline, and arginine were found as compared to the control group. This study demonstrated differences in nucleotide metabolite and amino acid pattern in depression patients with eating disorders. This may be relevant to the mechanisms and may help identify biomarkers.
Collapse
Affiliation(s)
| | - Hubert Wichowicz
- Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland.,Institute of Health Sciences, Pomeranian University of Slupsk, Poland
| | - Ryszard Smoleński
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Yu L, Li Y, Ma R, Guo H, Zhang X, Yan Y, He J, Wang X, Niu Q, Guo S. Construction of a Personalized Insulin Resistance Risk Assessment Tool in Xinjiang Kazakhs Based on Lipid- and Obesity-Related Indices. Risk Manag Healthc Policy 2022; 15:631-641. [PMID: 35444477 PMCID: PMC9013923 DOI: 10.2147/rmhp.s352401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to explore the relationship between obesity- and lipid-related indices and insulin resistance (IR) and construct a personalized IR risk model for Xinjiang Kazakhs based on representative indices. Methods This cross-sectional study was performed from 2010 to 2012. A total of 2170 Kazakhs from Xinyuan County were selected as research subjects. IR was estimated using the homeostasis model assessment of insulin resistance. Multivariable logistic regression analysis, least absolute shrinkage and selection operator penalized regression analysis, and restricted cubic spline were applied to evaluate the association between lipid- and obesity-related indices and IR. The risk model was developed based on selected representative variables and presented using a nomogram. The model performance was assessed using the area under the ROC curve (AUC), the Hosmer–Lemeshow goodness-of-fit test, and decision curve analysis (DCA). Results After screening out 25 of the variables, the final risk model included four independent risk factors: smoking, sex, triglyceride-glucose (TyG) index, and body mass index (BMI). A linear dose–response relationship was observed for the BMI and TyG indices against IR risk. The AUC of the risk model was 0.720 based on an independent test and 0.716 based on a 10-fold cross-validation. Calibration curves showed good consistency between actual and predicted IR risks. The DCA demonstrated that the risk model was clinically effective. Conclusion The TyG index and BMI had the strongest association with IR among all obesity- and lipid-related indices, and the developed model was useful for predicting IR risk among Kazakh individuals.
Collapse
Affiliation(s)
- Linzhi Yu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Rulin Ma
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Heng Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Xianghui Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Yizhong Yan
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Xinping Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Qiang Niu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
| | - Shuxia Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, People’s Republic of China
- Department of NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, Xinjiang, People’s Republic of China
- Correspondence: Shuxia Guo; Qiang Niu, Tel +86-1800-9932-625; 86-993-2057153, Fax +86-993-2057-153, Email ;
| |
Collapse
|
13
|
Four features of temporal patterns characterize similarity among individuals and molecules by glucose ingestion in humans. NPJ Syst Biol Appl 2022; 8:6. [PMID: 35136093 PMCID: PMC8826934 DOI: 10.1038/s41540-022-00213-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Oral glucose ingestion induces systemic changes of many blood metabolites related not only to glucose, but also other metabolites such as amino acids and lipids through many blood hormones. However, the detailed temporal changes in the concentrations of comprehensive metabolites and hormones over a long time by oral glucose ingestion are uncharacterized. We measured 83 metabolites and 7 hormones in 20 healthy human subjects in response to glucose ingestion. We characterized temporal patterns of blood molecules by four features: (i) the decomposability into “amplitude” and “rate” components, (ii) the similarity of temporal patterns among individuals, (iii) the relation of molecules over time among individuals, and (iv) the similarity of temporal patterns among molecules. Glucose and glucose metabolism-related hormones indicated a rapid increase, and citrulline and lipids, which indicated a rapid decrease, returned to fasting levels faster than amino acids. Compared to glucose metabolism-related molecules and lipids, amino acids showed similar temporal patterns among individuals. The four features of temporal patterns of blood molecules by oral glucose ingestion characterize the differences among individuals and among molecules.
Collapse
|
14
|
Lépine G, Tremblay-Franco M, Bouder S, Dimina L, Fouillet H, Mariotti F, Polakof S. Investigating the Postprandial Metabolome after Challenge Tests to Assess Metabolic Flexibility and Dysregulations Associated with Cardiometabolic Diseases. Nutrients 2022; 14:nu14030472. [PMID: 35276829 PMCID: PMC8840206 DOI: 10.3390/nu14030472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.
Collapse
Affiliation(s)
- Gaïa Lépine
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France;
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Sabrine Bouder
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
| | - Laurianne Dimina
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Sergio Polakof
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Correspondence:
| |
Collapse
|
15
|
Xu G, Lin M, Dai X, Hu J. Comparing the effectiveness of Chinese patent medicines containing red yeast rice on hyperlipidaemia: A network meta-analysis of randomized controlled trials. Endocrinol Diabetes Metab 2022; 5:e00314. [PMID: 34762365 PMCID: PMC8754237 DOI: 10.1002/edm2.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The purpose of this study was to evaluate the therapeutic effectiveness of Chinese patent medicines containing red yeast rice for the treatment of hyperlipidaemia. METHODS Relevant literature published until 13 August 2021, was retrieved from six electronic databases. Randomized clinical trials of Chinese patent medicines containing red yeast rice in patients with hyperlipidaemia were included in the review. Network meta-analysis was performed using Stata 13.1 software. Methodological quality was assessed using the Cochrane risk of bias tool. The surface under the cumulative ranking (SUCRA) curve probability values were used to rank the treatments. RESULTS This study included 47 trials involving 4824 subjects. In terms of reduced total cholesterol levels, Xuezhikang (SUCRA: 84.5%) had the highest probability of being the most effective formulation, with Simvastatin (66.4%) and Zhibitai (65.4%) ranked second and third, respectively. Xuezhikang also had the highest probability of reducing low-density lipoprotein cholesterol levels to the greatest extent (SUCRA: 82.6%) with Simvastatin (SUCRA: 74.9%) and Zhibituo (SUCRA: 52.8%) being the second and third choices, respectively. For reduced triglyceride levels, Zhibituo (SUCRA: 80.2%) exhibited the highest probability of being the most effective, with Xuezhikang (SUCRA: 63.4%) and Simvastatin (SUCRA: 57.6%) in second and third places, respectively. Finally, in terms of improving high-density lipoprotein cholesterol levels, Zhibituo (SUCRA: 90.1%) had the highest probability of being the most effective, with Simvastatin (SUCRA: 82.1%) and Xuezhikang (SUCRA: 51.1%) ranked second and third, respectively. CONCLUSIONS Xuezhikang was found to have the highest probability of being the most effective formulation for reducing total cholesterol and low-density lipoprotein cholesterol levels, while Zhibituo had the highest probability of being the most effective for controlling triglyceride and high-density lipoprotein cholesterol levels. The studies included in the review exhibited certain limitations and, therefore, more rigorously designed studies should be performed. TRIAL REGISTRATION INPLASY registration number: INPLASY202130017.
Collapse
Affiliation(s)
- Guiqin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Institute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Department of Scientific Research ManagementThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Mingxin Lin
- Institute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueli Dai
- The First Affiliated HospitalAnhui University of Chinese MedicineHefeiChina
| | - Jingqing Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Institute of Basic Theory for Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
16
|
Changes in Plasma Metabolome Profiles Following Oral Glucose Challenge among Adult Chinese. Nutrients 2021; 13:nu13051474. [PMID: 33925473 PMCID: PMC8146292 DOI: 10.3390/nu13051474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
Little is known about changes in plasma metabolome profiles during the oral glucose tolerance test (OGTT) in Chinese. We aimed to characterize plasma metabolomic profiles at 0 and 2 h of OGTT and their changes in individuals of different glycemic statuses. A total of 544 metabolites were detected at 0 and 2 h of OGTT by a nontarget strategy in subjects with normal glucose (n = 234), prediabetes (n = 281), and newly diagnosed type 2 diabetes (T2D) (n = 66). Regression model, mixed model, and partial least squares discrimination analysis were applied. Compared with subjects of normal glucose, T2D cases had significantly higher levels of glycerone at 0 h and 22 metabolites at 2 h of OGTT (false discovery rate (FDR) < 0.05, variable importance in projection (VIP) > 1). Seven of the twenty-two metabolites were also significantly higher in T2D than in prediabetes subjects at 2 h of OGTT (FDR < 0.05, VIP > 1). Two hours after glucose challenge, concentrations of 35 metabolites (normal: 18; prediabetes: 23; T2D: 13) significantly increased (FDR < 0.05, VIP > 1, fold change (FC) > 1.2), whereas those of 45 metabolites (normal: 36; prediabetes: 29; T2D: 18) significantly decreased (FDR < 0.05, VIP > 1, FC < 0.8). Distinct responses between cases and noncases were detected in metabolites including 4-imidazolone-5-acetate and 4-methylene-L-glutamine. More varieties of distinct metabolites across glycemic statuses were observed at 2 h of OGTT compared with fasting state. Whether the different patterns and responsiveness of certain metabolites in T2D reflect a poor resilience of specific metabolic pathways in regaining glucose homeostasis merits further study.
Collapse
|
17
|
Zhang J, Yi C, Han J, Ming T, Zhou J, Lu C, Li Y, Su X. Novel high-docosahexaenoic-acid tuna oil supplementation modulates gut microbiota and alleviates obesity in high-fat diet mice. Food Sci Nutr 2020; 8:6513-6527. [PMID: 33312536 PMCID: PMC7723182 DOI: 10.1002/fsn3.1941] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Studies have documented the benefits of fish oil in different diseases because of its high n-3 polyunsaturated fatty acid content. However, these studies mostly used commercially available fish oil supplements with a ratio of 18/12 for eicosapentaenoic acid and docosahexaenoic acid (DHA). However, increasing DHA content for this commonly used ratio might bring out a varied metabolic effect, which have remained unclear. Thus, in this study, a novel tuna oil (TO) was applied to investigate the effect of high-DHA content on the alteration of the gut microbiota and obesity in high-fat diet mice. The results suggest that high-DHA TO (HDTO) supplementation notably ameliorates obesity and related lipid parameters and restores the expression of lipid metabolism-related genes. The benefits of TOs were derived from their modification of the gut microbiota composition and structure in mice. A high-fat diet triggered an increased Firmicutes/Bacteroidetes ratio that was remarkably restored by TOs. The number of obesity-promoting bacteria-Desulfovibrio, Paraeggerthella, Terrisporobacter, Millionella, Lachnoclostridium, Anaerobacterium, and Ruminiclostridium-was dramatically reduced. Desulfovibrio desulfuricans, Alistipes putredinis, and Millionella massiliensis, three dysbiosis-related species, were especially regulated by HDTO. Regarding the prevention of obesity, HDTO outperforms the normal TO. Intriguingly, HDTO feeding to HFD-fed mice might alter the arginine and proline metabolism of intestinal microbiota.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
- Faculty of Food ScienceZhejiang Pharmaceutical CollegeNingboChina
| | - Congmin Yi
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| |
Collapse
|
18
|
Liu X, Yu J, Zhao J, Guo J, Zhang M, Liu L. Glucose challenge metabolomics implicates the change of organic acid profiles in hyperlipidemic subjects. Biomed Chromatogr 2020; 34:e4815. [PMID: 32115742 DOI: 10.1002/bmc.4815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/02/2020] [Accepted: 02/26/2020] [Indexed: 01/17/2023]
Abstract
Hyperlipidemia (HLP) is a major risk factor of diabetes and cardiovascular disease. Here, we applied gas chromatography-mass spectrometry to study differences in postprandial organic acid profiles in healthy and HLP subjects. In fasting status, six intermediates of the tricarboxylic acid cycle showed significant differences in HLP and healthy controls (P < 0.05). The percentage changes of 17 metabolites including three intermediates of the tricarboxylic acid cycle were significantly different during the oral glucose tolerance test. Postprandial changes in ethylmalonic acid and pimelic acid were negatively associated with HOMA-IR (homeostasis model assessment of insulin resistance; all P < 0.05) in the HLP group. Postprandial metabolism of organic acid profiles revealed energy metabolism perturbations in HLP. Our findings provide new insights into the complex physiological regulation of HLP postprandial metabolism.
Collapse
Affiliation(s)
- Xiaowei Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jiaying Yu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jinhui Zhao
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jing Guo
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Mingjia Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Liyan Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
19
|
Wang Q, Jokelainen J, Auvinen J, Puukka K, Keinänen-Kiukaanniemi S, Järvelin MR, Kettunen J, Mäkinen VP, Ala-Korpela M. Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: an interventional study. BMC Med 2019; 17:217. [PMID: 31779625 PMCID: PMC6883544 DOI: 10.1186/s12916-019-1440-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is predictive for type 2 diabetes and associated with various metabolic abnormalities in fasting conditions. However, limited data are available on how IR affects metabolic responses in a non-fasting setting, yet this is the state people are mostly exposed to during waking hours in the modern society. Here, we aim to comprehensively characterise the metabolic changes in response to an oral glucose test (OGTT) and assess the associations of these changes with IR. METHODS Blood samples were obtained at 0 (fasting baseline, right before glucose ingestion), 30, 60, and 120 min during the OGTT. Seventy-eight metabolic measures were analysed at each time point for a discovery cohort of 4745 middle-aged Finnish individuals and a replication cohort of 595 senior Finnish participants. We assessed the metabolic changes in response to glucose ingestion (percentage change in relative to fasting baseline) across the four time points and further compared the response profile between five groups with different levels of IR and glucose intolerance. Further, the differences were tested for covariate adjustment, including gender, body mass index, systolic blood pressure, fasting, and 2-h glucose levels. The groups were defined as insulin sensitive with normal glucose (IS-NGT), insulin resistant with normal glucose (IR-NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and new diabetes (NDM). IS-NGT and IR-NGT were defined as the first and fourth quartile of fasting insulin in NGT individuals. RESULTS Glucose ingestion induced multiple metabolic responses, including increased glycolysis intermediates and decreased branched-chain amino acids, ketone bodies, glycerol, and triglycerides. The IR-NGT subgroup showed smaller responses for these measures (mean + 23%, interquartile 9-34% at 120 min) compared to IS-NGT (34%, 23-44%, P < 0.0006 for difference, corrected for multiple testing). Notably, the three groups with glucose abnormality (IFG, IGT, and NDM) showed similar metabolic dysregulations as those of IR-NGT. The difference between the IS-NGT and the other subgroups was largely explained by fasting insulin, but not fasting or 2 h glucose. The findings were consistent after covariate adjustment and between the discovery and replication cohort. CONCLUSIONS Insulin-resistant non-diabetic individuals are exposed to a similar adverse postprandial metabolic milieu, and analogous cardiometabolic risk, as those with type 2 diabetes. The wide range of metabolic abnormalities associated with IR highlights the necessity of diabetes diagnostics and clinical care beyond glucose management.
Collapse
Affiliation(s)
- Qin Wang
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Jari Jokelainen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Care and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Oulunkaari Health Center, Ii, Finland
| | - Katri Puukka
- NordLab Oulu, Oulu University Hospital and Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Care and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Health and Wellfare Center, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Ville-Petteri Mäkinen
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland. .,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. .,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK. .,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland. .,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Yang L, Li Z, Song Y, Liu Y, Zhao H, Liu Y, Zhang T, Yuan Y, Cai X, Wang S, Wang P, Gao S, Li L, Li Y, Yu C. Study on urine metabolic profiling and pathogenesis of hyperlipidemia. Clin Chim Acta 2019; 495:365-373. [PMID: 31059703 DOI: 10.1016/j.cca.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND As a recognized risk factor for cardiovascular disease (CVD), hyperlipidemia (HLP) has developed into a high incidence disease that seriously threatens human health. Finding a new target for effective treatment of HLP will be a powerful way to reduce the incidence of CVD. The purpose of this study was to find potential biomarkers in urine of HLP patients and analyze their metabolic pathways to study the pathogenesis of HLP. METHODS An UPLC-Q-TOF/MS technology was used to detect the metabolites in urine of 60 HLP patients and 60 normal controls. Based on PLS-DA pattern recognition, potential biomarkers related to HLP were screened out. RESULTS 22 potential biomarkers related to HLP were identified, which involved amino acid metabolism, fatty acid metabolism, nucleotide metabolism, steroid hormone metabolism and intestinal flora metabolism, and their possible pathogenesis was found to be related to inflammatory reaction and oxidative stress. CONCLUSION The non-targeted metabolomic method based on UPLC-Q-TOF/MS technology can effectively identify potential biomarkers in the urine of HLP patients and explore the possible pathogenesis. Our research will lay a foundation for finding new targets for the treatment of HLP and provide a basis for clinical research on the treatment of HLP.
Collapse
Affiliation(s)
- Liu Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yanqi Song
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Huan Zhao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yuechen Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Tianpu Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yu Yuan
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xuemeng Cai
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Shuo Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Pengwei Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
21
|
Xia B, Zhu Q, Zhao Y, Ge W, Zhao Y, Song Q, Zhou Y, Shi H, Zhang Y. Phthalate exposure and childhood overweight and obesity: Urinary metabolomic evidence. ENVIRONMENT INTERNATIONAL 2018; 121:159-168. [PMID: 30208345 DOI: 10.1016/j.envint.2018.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Metabolomics may unravel global metabolic changes in response to environmental exposures and identify important biological pathways involved in the pathophysiology of childhood obesity. Phthalate has been considered an obesogen and contributing to overweight and obesity in children. The purpose of this study is to evaluate changes in urine metabolites in response to the environmental phthalate exposure among overweight or obese children, and to investigate the metabolic mechanisms involved in the obesogenic effect of phthalate on children at puberty. METHODS Within the national Puberty Timing and Health Effects in Chinese Children (PTHEC) study, 69 overweight/obese children and 80 normal weight children were selected into the current study according to their puberty timing and WGOC (The Working Group for obesity in China) references. Urinary concentrations of six phthalate monoesters (MMP, MEP, MnBP, MEHP, MEOHP and MEHHP) were measured using API 2000 electrospray triple quadrupole mass spectrometer (ESIMS/MS). Metabolomic profiling of spot urine was performed using gas chromatography-mass spectrometry. Differentially expressed urinary metabolites associated with phthalate monoesters exposure were examined using orthogonal partial least square-discriminant analysis and multiple linear regression models. In addition, the candidate metabolites were regressed to obesity indices with multiple linear regression models and logistic regression models in all subjects. RESULTS Compared with normal weight children, higher levels of MnBP were detected in urinary samples of children with overweight and obesity. After adjusting for confounders including chronological age, gender, puberty onset, daily energy intake and physical activity and socio-economic level, positive association remained between urinary MnBP concentration and childhood overweight/obesity [OR = 1.586, 95% CI:1.043,2.412]. We observed elevated MnBP concentration was significantly correlated with increased levels of monostearin, 1-monopalmitin, stearic acid, itaconic acid, glycerol 3-phosphate, 5-methoxytryptamine, kyotorphin, 1-methylhydantoin, d-alanyl-d-alanine, pyrrole-2-carboxylic acid, 3,4-Dihydroxyphenylglycol, and butyraldehyde. Meanwhile, increased MnBP concentration was also significantly correlated with decreased levels of lactate, glucose 6-phosphate, d-fructose 6-phosphate, palmitic acid, 4-acetamidobutyric acid, l-glutamic acid, n-acetyl-l-phenylalanine, iminodiacetic acid, hydroxyproline, pipecolinic acid, l-ornithine, n-acetyl-l-glutamic acid, guanosine, cytosin, and (s)-mandelic acid in the normal weight subjects. The observations indicated that MnBP exposure was related to global urine metabolic abnormalities characterized by disrupting arginine and proline metabolism and increasing oxidative stress and fatty acid reesterification. Among the metabolic markers related to MnBP exposure, 1-methylhydantoin, pyrrole-2-carboxylic acid and monostearin were found to be positively correlated with obesity indices, while hydroxyproline, l-ornithine, and lactate were negatively associated with overweight/obesity in children. CONCLUSIONS Our results suggested that the disrupted arginine and proline metabolism associated with phthalate exposure might contribute to the development of overweight and obesity in school-age children, providing insights into the pathophysiological changes and molecular mechanisms involved in childhood obesity.
Collapse
Affiliation(s)
- Bin Xia
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qingyang Zhu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc., New York, NY, USA
| | - Yan Zhao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Song
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Li T, Sun S, Zhang J, Qu K, Yang L, Ma C, Jin X, Zhu H, Wang Y. Beneficial Metabolic Effects of 2?,3?,5?-Triacetyl-N6-(3-hydroxylaniline) adenosine in Multiple Biological Matrices and Intestinal Flora of Hyperlipidemic Hamsters. J Proteome Res 2018; 17:2870-2879. [DOI: 10.1021/acs.jproteome.8b00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tianqi Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shanshan Sun
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinyue Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kai Qu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Changlu Ma
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 100012, China
| | - Xiangju Jin
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Chen R, Han S, Liu X, Wang K, Zhou Y, Yang C, Zhang X. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:54-62. [DOI: 10.1016/j.jchromb.2018.03.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
|
24
|
Moriya T, Satomi Y, Kobayashi H. Metabolomics of postprandial plasma alterations: a comprehensive Japanese study. J Biochem 2018; 163:113-121. [PMID: 29040577 DOI: 10.1093/jb/mvx066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023] Open
Abstract
While endogenous metabolites in plasma can be used as clinical biomarkers, intra-day variations should be carefully considered. The postprandial effect is a large contributing factor and is dependent on regional features (e.g. meals, ethnicity). Thus, for clinical application, regional-specific postprandial baseline data are required. In this study, 10 healthy Japanese volunteers of different ages and genders ate the same meal, and blood samples were taken 30 min before and 1 h after the meal challenge. Plasma metabolomics was conducted and metabolites that significantly changed with the meal challenge were extracted. Principal component analysis of the data from 1101 metabolites showed a postprandial shift with a common direction despite marked individual variation. Pathway enrichment analysis demonstrated known postprandial effects, including the energy utilization shift from lipolysis to glycolysis and the elevation of bile acids for lipid absorption. Other postprandial metabolic changes were observed, including decreases in orexigenic signals and increases of food-derived components. The postprandial alteration accumulated in this study will be used for the understanding of Japanese clinical metabolomics for health promotion in Japan.
Collapse
Affiliation(s)
- Takeo Moriya
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyuki Kobayashi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
25
|
Moran-Ramos S, Ocampo-Medina E, Gutierrez-Aguilar R, Macías-Kauffer L, Villamil-Ramírez H, López-Contreras BE, León-Mimila P, Vega-Badillo J, Gutierrez-Vidal R, Villarruel-Vazquez R, Serrano-Carbajal E, Del-Río-Navarro BE, Huertas-Vázquez A, Villarreal-Molina T, Ibarra-Gonzalez I, Vela-Amieva M, Aguilar-Salinas CA, Canizales-Quinteros S. An Amino Acid Signature Associated with Obesity Predicts 2-Year Risk of Hypertriglyceridemia in School-Age Children. Sci Rep 2017; 7:5607. [PMID: 28717206 PMCID: PMC5514079 DOI: 10.1038/s41598-017-05765-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 01/21/2023] Open
Abstract
Childhood obesity is associated with a number of metabolic abnormalities leading to increased cardiovascular risk. Metabolites can be useful as early biomarkers and new targets to promote early intervention beginning in school age. Thus, we aimed to identify metabolomic profiles associated with obesity and obesity-related metabolic traits. We used data from the Obesity Research Study for Mexican children (ORSMEC) in Mexico City and included a case control (n = 1120), cross-sectional (n = 554) and a longitudinal study (n = 301) of 6-12-year-old children. Forty-two metabolites were measured using electrospray MS/MS and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical and biochemical parameters. Principal component analysis showed a serum amino acid signature composed of arginine, leucine/isoleucine, phenylalanine, tyrosine, valine and proline significantly associated with obesity (OR = 1.57; 95%CI 1.45-1.69, P = 3.84 × 10-31) and serum triglycerides (TG) (β = 0.067, P = 4.5 × 10-21). These associations were validated in the cross-sectional study (P < 0.0001). In the longitudinal cohort, the amino acid signature was associated with serum TG and with the risk of hypertriglyceridemia after 2 years (OR = 1.19; 95%CI 1.03-1.39, P = 0.016). This study shows that an amino acid signature significantly associated with childhood obesity, is an independent risk factor of future hypertriglyceridemia in children.
Collapse
Affiliation(s)
- Sofia Moran-Ramos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico.
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Elvira Ocampo-Medina
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ruth Gutierrez-Aguilar
- Hospital Infantil México Federico Gómez, Mexico City, Mexico
- Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Blanca E López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Paola León-Mimila
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Joel Vega-Badillo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Roxana Gutierrez-Vidal
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ricardo Villarruel-Vazquez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Erandi Serrano-Carbajal
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | | | - Isabel Ibarra-Gonzalez
- Instituto de Investigaciones Biomédicas, UNAM - Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
26
|
González-Domínguez R, Mateos RM, Lechuga-Sancho AM, González-Cortés JJ, Corrales-Cuevas M, Rojas-Cots JA, Segundo C, Schwarz M. Synergic effects of sugar and caffeine on insulin-mediated metabolomic alterations after an acute consumption of soft drinks. Electrophoresis 2017; 38:2313-2322. [DOI: 10.1002/elps.201700044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Raúl González-Domínguez
- Department of Chemistry, Faculty of Experimental Sciences; University of Huelva; Spain
- International Campus of Excellence CeiA3; University of Huelva; Spain
| | - Rosa María Mateos
- Department of Pediatrics; Hospital Universitario Puerta del Mar, Cádiz; Spain
- Research Unit, Hospital Universitario Puerta del Mar, Cadiz; Spain
- Department of Biotechnology, Biomedicine and Public Health, Faculty of Medicine; University of Cádiz; Cádiz Spain
| | - Alfonso María Lechuga-Sancho
- Department of Pediatrics; Hospital Universitario Puerta del Mar, Cádiz; Spain
- Research Unit, Hospital Universitario Puerta del Mar, Cadiz; Spain
- Department of Mother and Child Health and Radiology, Faculty of Medicine; University of Cádiz; Cádiz Spain
| | - José Joaquín González-Cortés
- Research Unit, Hospital Universitario Puerta del Mar, Cadiz; Spain
- Department of Mother and Child Health and Radiology, Faculty of Medicine; University of Cádiz; Cádiz Spain
| | - Manuel Corrales-Cuevas
- Department of Mother and Child Health and Radiology, Faculty of Medicine; University of Cádiz; Cádiz Spain
| | - Juan Alberto Rojas-Cots
- Department of Mother and Child Health and Radiology, Faculty of Medicine; University of Cádiz; Cádiz Spain
| | - Carmen Segundo
- “Salus Infirmorum” Faculty of Nursing; University of Cádiz; Cádiz Spain
| | - Mónica Schwarz
- “Salus Infirmorum” Faculty of Nursing; University of Cádiz; Cádiz Spain
- Instituto de Investigación Vitivinícola y Agroalimentario (IVAGRO), Puerto Real Campus; University of Cádiz, Puerto Real; Cádiz Spain
| |
Collapse
|
27
|
Liao HW, Chen GY, Wu MS, Liao WC, Lin CH, Kuo CH. Development of a Postcolumn Infused-Internal Standard Liquid Chromatography Mass Spectrometry Method for Quantitative Metabolomics Studies. J Proteome Res 2017; 16:1097-1104. [PMID: 28067522 DOI: 10.1021/acs.jproteome.6b01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quantitative metabolomics has become much more important in clinical research in recent years. Individual differences in matrix effects (MEs) and the injection order effect are two major factors that reduce the quantification accuracy in liquid chromatography-electrospray ionization-mass spectrometry-based (LC-ESI-MS) metabolomics studies. This study proposed a postcolumn infused-internal standard (PCI-IS) combined with a matrix normalization factor (MNF) strategy to improve the analytical accuracy of quantitative metabolomics. The PCI-IS combined with the MNF method was applied for a targeted metabolomics study of amino acids (AAs). D8-Phenylalanine was used as the PCI-IS, and it was postcolumn-infused into the ESI interface for calibration purposes. The MNF was used to bridge the AA response in a standard solution with the plasma samples. The MEs caused signal changes that were corrected by dividing the AA signal intensities by the PCI-IS intensities after adjustment with the MNF. After the method validation, we evaluated the method applicability for breast cancer research using 100 plasma samples. The quantification results revealed that the 11 tested AAs exhibit an accuracy between 88.2 and 110.7%. The principal component analysis score plot revealed that the injection order effect can be successfully removed, and most of the within-group variation of the tested AAs decreased after the PCI-IS correction. Finally, targeted metabolomics studies on the AAs showed that tryptophan was expressed more in malignant patients than in the benign group. We anticipate that a similar approach can be applied to other endogenous metabolites to facilitate quantitative metabolomics studies.
Collapse
Affiliation(s)
- Hsiao-Wei Liao
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei 10051, Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University , Taipei 10055, Taiwan
| | - Guan-Yuan Chen
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei 10051, Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University , Taipei 10055, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital , Taipei 10051, Taiwan
| | - Wei-Chih Liao
- Department of Internal Medicine, National Taiwan University Hospital , Taipei 10051, Taiwan
| | - Ching-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital , Taipei 10051, Taiwan.,Department of Oncology, National Taiwan University Hospital , Taipei 10051, Taiwan.,Oncology Center, National Taiwan University Hospital Hsin-Chu Branch , Hsinchu City 300, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University , Taipei 10051, Taiwan.,The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University , Taipei 10055, Taiwan.,Department of Pharmacy, National Taiwan University Hospital , Taipei 10051, Taiwan
| |
Collapse
|