1
|
Mohammadi F, Alijani S, Abdollahi N, Mashoufi A, Nouri M, Soltanii M, Shateri Z, Rashidkhani B. The association between Planetary Health Diet Index and the risk of colorectal cancer: a case-control study. Sci Rep 2024; 14:26546. [PMID: 39489757 PMCID: PMC11532420 DOI: 10.1038/s41598-024-78197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Background Despite the beneficial effects of a plant-based diet on colorectal cancer (CRC), no study has yet investigated the relationship between a Planetary Health Diet Index (PHDI) and CRC in the Iranian population. Therefore, the present case-control study aimed to assess the relationship between this index and CRC. Methods The current research was conducted on 71 patients with CRC (case group) and 142 (control group) admitted to hospitals in Tehran, Iran. The PHDI (0-150 points) was calculated based on a semi-quantitative food frequency questionnaire. Conditional logistic regression was applied to evaluate the association between CRC and PHDI and its sub-scores. Results After adjusting for the role of potential confounders, lower odds of CRC were observed in the second tertile of the total ratio score (odds ratio (OR) = 0.334; 95% confidence interval (CI): 0.127-0.878, P = 0.026) and the last tertile of PHDI (OR = 0.407; 95% CI: 0.183-0.907, P = 0.028), total adequacy score (OR = 0.261; 95% CI: 0.110-0.622, P = 0.002), and total moderation score (OR = 0.380; 95% CI: 0.162-0.891, P = 0.026) in comparison to the first tertile of each index. Conclusions The current study's findings indicated a reverse relationship between PHDI, total adequacy, moderation, and ratio scores with the CRC odds. However, it is suggested that more research be performed in this field in the future to confirm the results of this study.
Collapse
Affiliation(s)
- Farzaneh Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alijani
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nooshin Abdollahi
- Nutrition and Food Security Research Center, Department of Nutrition, Health Faculty, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Health Faculty, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ava Mashoufi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mitra Soltanii
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mukkavilli V, Ramakrishnan G, Gujjula KR, S B, Chamarthy S, Mekala JR. Molecular Understanding and Pharmacological Potency of Plant-Derived Compounds in Colorectal Cancer (CRC): A Critical Analysis and Future Perspectives. Cell Biochem Biophys 2024; 82:1777-1795. [PMID: 38965179 DOI: 10.1007/s12013-024-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Colorectal cancer (CRC) is the main driver of fatality and the 3rd most often determined malignancy. Despite advances in detection and therapy, colorectal cancer (CRC) endures as the largest driver of cancer-related morbidity, and mortality. Modern habits and dietary negligence might be one of the reasons that have enhanced cancer prevalence. Thus, changes in Dietary habits will have a better impact, and help in finding a better cure for CRC. Initially, CRC was explored as a genetic event and currently, the research is focused on the epigenetic modifications of chromatin and microRNA (miRNA) in CRC cells. Natural products such as Curcumin, Resveratrol, Flavonoids, and Ellagitannins are been explored as compounds from the perspective of genetic, epigenetic, and miRNA modifications which will have future therapeutic aspects. Also, the extracts of these key players and their analogs will intervene the signaling pathway activation that involves in cancer propagation, apoptosis, cell cycle arrest, and epigenetic and miRNA modifications. Modulations of these miRNAs, and modification globally might have impact on CRC progression, and cancer tumor cell sensitivity.
Collapse
Affiliation(s)
- Vaagdevi Mukkavilli
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Gnanasekaran Ramakrishnan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| | - Koteswara Reddy Gujjula
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Balachandran S
- Dept of Chemical Engineering, Saveetha Engineering College, Saveetha Nagar Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| |
Collapse
|
3
|
Prendecka-Wróbel M, Pigoń-Zając D, Sondej D, Grzywna K, Kamińska K, Szuta M, Małecka-Massalska T. Can Dietary Actives Affect miRNAs and Alter the Course or Prevent Colorectal Cancer? Int J Mol Sci 2023; 24:10142. [PMID: 37373289 DOI: 10.3390/ijms241210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer is a diet-related cancer. There is much research into the effects of nutrients on the prevention, modulation, and treatment of colorectal cancer. Researchers are trying to find a correlation between epidemiological observations indicating certain dietary components as the originator in the process of developing colorectal cancer, such as a diet rich in saturated animal fats, and dietary components that could eliminate the impact of harmful elements of the daily nutritional routine, i.e., substances such as polyunsaturated fatty acids, curcumin, or resveratrol. Nevertheless, it is very important to understand the mechanisms underlying how food works on cancer cells. In this case, microRNA (miRNA) seems to be a very significant research target. MiRNAs participate in many biological processes connected to carcinogenesis, progression, and metastasis. However, this is a field with development prospects ahead. In this paper, we review the most significant and well-studied food ingredients and their effects on various miRNAs involved in colorectal cancer.
Collapse
Affiliation(s)
- Monika Prendecka-Wróbel
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Daria Sondej
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Grzywna
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kamińska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 31-155 Kraków, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
4
|
Curcumin: An epigenetic regulator and its application in cancer. Biomed Pharmacother 2022; 156:113956. [DOI: 10.1016/j.biopha.2022.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
5
|
Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022; 10:biomedicines10081948. [PMID: 36009495 PMCID: PMC9406120 DOI: 10.3390/biomedicines10081948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Acquired drug resistance represents a major clinical problem and one of the biggest limitations of chemotherapeutic regimens in colorectal cancer. Combination regimens using standard chemotherapeutic agents, together with bioactive natural compounds derived from diet or plants, may be one of the most valuable strategies to overcome drug resistance and re-sensitize chemoresistant cells. In this review, we highlight the effect of combined regimens based on conventional chemotherapeutics in conjunction with well-tolerated plant-derived bioactive compounds, mainly curcumin, resveratrol, and EGCG, with emphasis on the molecular mechanisms associated with the acquired drug resistance.
Collapse
|
6
|
Tarallo S, Ferrero G, De Filippis F, Francavilla A, Pasolli E, Panero V, Cordero F, Segata N, Grioni S, Pensa RG, Pardini B, Ercolini D, Naccarati A. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut 2022; 71:1302-1314. [PMID: 34315772 PMCID: PMC9185830 DOI: 10.1136/gutjnl-2021-325168] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES MicroRNA (miRNA) profiles have been evaluated in several biospecimens in relation to common diseases for which diet may have a considerable impact. We aimed at characterising how specific diets are associated with the miRNome in stool of vegans, vegetarians and omnivores and how this is reflected in the gut microbial composition, as this is still poorly explored. DESIGN We performed small RNA and shotgun metagenomic sequencing in faecal samples and dietary recording from 120 healthy volunteers, equally distributed for the different diets and matched for sex and age. RESULTS We found 49 miRNAs differentially expressed among vegans, vegetarians and omnivores (adj. p <0.05) and confirmed trends of expression levels of such miRNAs in vegans and vegetarians compared with an independent cohort of 45 omnivores. Two miRNAs related to lipid metabolism, miR-636 and miR-4739, were inversely correlated to the non-omnivorous diet duration, independently of subject age. Seventeen miRNAs correlated (|rho|>0.22, adj. p <0.05) with the estimated intake of nutrients, particularly animal proteins, phosphorus and, interestingly, lipids. In omnivores, higher Prevotella and Roseburia and lower Bacteroides abundances than in vegans and vegetarians were observed. Lipid metabolism-related miR-425-3p and miR-638 expression levels were associated with increased abundances of microbial species, such as Roseburia sp. CAG 182 and Akkermansia muciniphila, specific of different diets. An integrated analysis identified 25 miRNAs, 25 taxa and 7 dietary nutrients that clearly discriminated (area under the receiver operating characteristic curve=0.89) the three diets. CONCLUSION Stool miRNA profiles are associated with specific diets and support the role of lipids as a driver of epigenetic changes and host-microbial molecular interactions in the gut.
Collapse
Affiliation(s)
- Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Torino, Torino, Italy,Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francesca De Filippis
- Department Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Edoardo Pasolli
- Department Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Valentina Panero
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy
| | | | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Danilo Ercolini
- Department Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy .,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy .,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
7
|
Antiproliferative effects of levan polysaccharide against colorectal cancer cells mediated through oxidative stress-stimulated HOTAIR/Akt signaling pathway: In vitro. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Dostal Z, Sebera M, Srovnal J, Staffova K, Modriansky M. Dual Effect of Taxifolin on ZEB2 Cancer Signaling in HepG2 Cells. Molecules 2021; 26:1476. [PMID: 33803107 PMCID: PMC7963166 DOI: 10.3390/molecules26051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols, secondary metabolites of plants, exhibit different anti-cancer and cytoprotective properties such as anti-radical, anti-angiogenic, anti-inflammation, or cardioprotective. Some of these activities could be linked to modulation of miRNAs expression. MiRNAs play an important role in posttranscriptional regulation of their target genes that could be important within cell signalling or preservation of cell homeostasis, e.g., cell survival/apoptosis. We evaluated the influence of a non-toxic concentration of taxifolin and quercetin on the expression of majority human miRNAs via Affymetrix GeneChip™ miRNA 3.0 Array. For the evaluation we used two cell models corresponding to liver tissue, Hep G2 and primary human hepatocytes. The array analysis identified four miRNAs, miR-153, miR-204, miR-211, and miR-377-3p, with reduced expression after taxifolin treatment. All of these miRNAs are linked to modulation of ZEB2 expression in various models. Indeed, ZEB2 protein displayed upregulation after taxifolin treatment in a dose dependent manner. However, the modulation did not lead to epithelial mesenchymal transition. Our data show that taxifolin inhibits Akt phosphorylation, thereby diminishing ZEB2 signalling that could trigger carcinogenesis. We conclude that biological activity of taxifolin may have ambiguous or even contradictory outcomes because of non-specific effect on the cell.
Collapse
Affiliation(s)
- Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| | - Martin Sebera
- Faculty of Sport Studies, Masaryk University, 60177 Brno, Czech Republic;
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Martin Modriansky
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| |
Collapse
|
10
|
Caradonna F, Cruciata I, Luparello C. Nutrigenetics, nutrigenomics and phenotypic outcomes of dietary low-dose alcohol consumption in the suppression and induction of cancer development: evidence from in vitro studies. Crit Rev Food Sci Nutr 2020; 62:2122-2139. [PMID: 33287559 DOI: 10.1080/10408398.2020.1850416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is known that the intake of alcoholic beverages may impair genetic and epigenetic regulatory events with consequent crucial effects on cell phenotypes and that its association with selected genotypes can lead to a different risk of cancer in the population. The aim of this review is to pick up selected studies on this topic and recapitulate some of the biochemical and nutrigenetic/nutrigenomic aspects involved in the impact of dietary low-dose alcohol consumption on the switching-on or -off of tumorigenic pathways. These include i) the existence of predisposing or protective human genotypes and the relationship between dietary compounds and alcohol in the promotion or inhibition of carcinogenesis; ii) the effects of other components of alcoholic drinks in the modulation of the expression of oncogenes and oncosuppressors, the autophagic flux and the onset of apoptosis, with examples of their cytospecificity; and iii) the role of alcoholic beverage consumption within particular dietary regimens, including the Mediterranean diet. Taking all the data into account, several alcohol-associated bioactive dietary compounds appear capable to modulate peculiar intracellular pathways predisposing to or protecting from cancer. Advances in the nutrigenetic, nutrigenomic and nutriepigenetic knowledge complementing the biochemical and molecular approaches will help in unveiling their impact on health outcome.
Collapse
Affiliation(s)
- Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Abstract
Abstract
Background
Alpha-mangostin has potential as a chemopreventive agent but there is little information on its toxicological profile and developmental toxicity.
Objective
We evaluated the effects of α-mangostin on embryonic development and hepatogenesis in zebrafish.
Result
Exposure of embryos to 0.25–4 μM α-mangostin from 4–120 h post-fertilization (hpf) caused mortality of embryos with LC50 1.48 ± 0.29 μM. The compound also caused deformities, including head malformation, pericardial oedema, absence of swim bladder, yolk oedema, and bent tail. Exposure of zebrafish embryos to α-mangostin during early hepatogenesis (16–72 hpf) decreased the transcript expression levels of liver fatty acid-binding protein 10a (Fabp10a), but increased gene markers of inflammation, oxidative stress, and apoptosis. In Fabp10a:DsRed transgenic zebrafish, the intensity and the area of fluorescence in the liver of the treated group were decreased (non-significantly) relative to controls.
Conclusion
These effects were more marked during early hepatogenesis (16–72 hpf) than during post-hepatogenesis (72–120 hpf).
Collapse
|
12
|
Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, de Gonzalo-Calvo D. Dietary microRNAs and cancer: A new therapeutic approach? Semin Cancer Biol 2020; 73:19-29. [PMID: 33086083 DOI: 10.1016/j.semcancer.2020.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.
Collapse
Affiliation(s)
- Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Crta. de, Carr. de Canto Blanco, nº8, E, 28049 Madrid, Spain
| | - Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Crta. de, Carr. de Canto Blanco, nº8, E, 28049 Madrid, Spain
| | - Paola Pinto-Hernández
- Department of Functional Biology, Physiology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Av. Roma, s/n, 33011 Oviedo, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
13
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|
14
|
Vinayak M, Maurya AK. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer Agents Med Chem 2020; 19:1560-1576. [PMID: 31284873 DOI: 10.2174/1871520619666190705150214] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.
Collapse
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Akhilendra K Maurya
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
15
|
Stephen BJ, Pareek N, Saeed M, Kausar MA, Rahman S, Datta M. Xeno-miRNA in Maternal-Infant Immune Crosstalk: An Aid to Disease Alleviation. Front Immunol 2020; 11:404. [PMID: 32269563 PMCID: PMC7109445 DOI: 10.3389/fimmu.2020.00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk is a complex liquid that contains multifaceted compounds which provide nutrition to infants and helps to develop their immune system. The presence of secretory immunoglobulins (IgA), leucocytes, lysozyme, lactoferrin, etc., in breast milk and their role in imparting passive immunity to infants as well as modulating development of an infant's immune system is well-established. Breast milk miRNAs (microRNAs) have been found to be differentially expressed in diverse tissues and biological processes during various molecular functions. Lactation is reported to assist mothers and their offspring to adapt to an ever-changing food supply. It has been observed that certain subtypes of miRNAs exist that are codified by non-human genomes but are still present in circulation. They have been termed as xeno-miRNA (XenomiRs). XenomiRs in humans have been found from various exogenous sources. Route of entry in human systems have been mainly dietary. The possibility of miRNAs taken up into mammalian circulation through diet, and thereby effecting gene expression, is a distinct possibility. This mechanism suggests an interesting possibility that dietary foods may modulate the immune strength of infants via highly specific post-transcriptional regulatory information present in mother's milk. This serves as a major breakthrough in understanding the fundamentals of nutrition and cross-organism communication. In this review, we elaborate and understand the complex crosstalk of XenomiRs present in mother's milk and their plausible role in modulating the infant immune system against infectious and inflammatory diseases.
Collapse
Affiliation(s)
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicines, University of Ha'il, Ha'il, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
16
|
Gavrilas LI, Cruceriu D, Ionescu C, Miere D, Balacescu O. Pro-apoptotic genes as new targets for single and combinatorial treatments with resveratrol and curcumin in colorectal cancer. Food Funct 2019; 10:3717-3726. [PMID: 31169275 DOI: 10.1039/c9fo01014a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) represents the third most diagnosed type of cancer worldwide with high mortality and an increased incidence rate. Bioactive dietary components such as curcumin and resveratrol have great therapeutic potential as they can modulate a plethora of signaling pathways related to colorectal carcinogenesis. Previous data have demonstrated that curcumin and resveratrol can induce apoptosis in different types of cancer cells. Considering the lack of data on the combinatorial effect of curcumin and resveratrol associated with the induction of apoptosis in colorectal pathology, the main objective of this study is to investigate the impact of single vs. combinatorial treatment of resveratrol and curcumin on their cytotoxic effects, as well as the modulation of several essential pro-apoptotic genes, on two colorectal cancer cell lines (DLD-1 and Caco-2) different in terms of chromosomal stability (MSI and MSS). The cytotoxic effects were evaluated by the MTT assay, the nature of the interaction between curcumin and resveratrol was assessed by the combination index method and the expression levels of key genes involved in the modulation of pro-apoptotic mechanisms were evaluated by RT-qPCR. Our data indicate that the combination treatment of curcumin and resveratrol is more effective in inhibiting the proliferation in a dose-dependent manner, with a synergistic effect for the DLD-1 cell line (CI < 1) and an additive effect for the Caco-2 cell line (CI ≥ 1). The IC50 values for the combination treatment were 71.8 μM (20.5 μM curcumin + 51.3 μM resveratrol) for the DLD-1 cell line and 66.21 μM (18.9 μM curcumin + 47.3 μM resveratrol) for the Caco-2 cell line, respectively. Our data pointed out, for the first time, that several genes involved in the modulation of apoptosis, including PMAIP1, BID, ZMAT3, CASP3, CASP7, and FAS, represent new targets of both singular and combinatorial treatments with resveratrol and curcumin, and also the combinatorial approach of curcumin and resveratrol exhibits a more powerful gene regulating effect compared to single treatment. Considering the beneficial aspects of the combinatorial approach with curcumin and resveratrol on colorectal cancer cells further studies should address the possible pharmacological benefits of using a combination of both dietary agents with different chemotherapeutic drug approaches.
Collapse
Affiliation(s)
- Laura Ioana Gavrilas
- University of Medicine and Pharmacy "Iuliu Hatieganu", Department of Bromatology, Hygiene, Nutrition, 23 Marinescu Street, Cluj-Napoca 400337, Romania.
| | | | | | | | | |
Collapse
|
17
|
Andreescu N, Puiu M, Niculescu M. Effects of Dietary Nutrients on Epigenetic Changes in Cancer. Methods Mol Biol 2019; 1856:121-139. [PMID: 30178249 DOI: 10.1007/978-1-4939-8751-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor's microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.
Collapse
Affiliation(s)
- Nicoleta Andreescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | - Maria Puiu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Mihai Niculescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
- Advanced Nutrigenomics, Hillsborough, NC, USA
| |
Collapse
|
18
|
Dergacheva DI, Mashkova AA, Isakova EP, Gessler NN, Deryabina YI. Influence of Resveratrol and Dihydroquercetin on Physiological and Biochemical Parameters of the Poly-Extremophilic Yeast Yarrowia lipolytica under Temperature Stress. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kura B, Parikh M, Slezak J, Pierce GN. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019; 24:molecules24081509. [PMID: 30999630 PMCID: PMC6514571 DOI: 10.3390/molecules24081509] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Mihir Parikh
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| |
Collapse
|
20
|
Francavilla A, Tarallo S, Pardini B, Naccarati A. Fecal microRNAs as non-invasive biomarkers for the detection of colorectal cancer: a systematic review. MINERVA BIOTECNOL 2019. [DOI: 10.23736/s1120-4826.18.02495-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Bian A, Wang Y, Liu J, Wang X, Liu D, Jiang J, Ding L, Hui X. Circular RNA Complement Factor H (CFH) Promotes Glioma Progression by Sponging miR-149 and Regulating AKT1. Med Sci Monit 2018; 24:5704-5712. [PMID: 30111766 PMCID: PMC6108270 DOI: 10.12659/msm.910180] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are widely expressed in mammals and can regulate the development and progression of human tumors. has_circ_0015758 (circ-CFH) is an exon circRNA transcript from the GRCh37/hg19 fragment of chromosome 1 and is homologous to the protein-coding gene complement factor H (CFH). Currently, the function of circ-CFH in glioma remains unclear. Material/Methods In our study, circ-CFH, miR-149, and Akt1 mRNA expression levels were analyzed by qRT-PCR assays. To investigate the function of circ-CFH in cell proliferation, circ-CFH knockdown models were established by using circ-CFH siRNAs. Cell proliferation abilities were measured by CCK-8 and colony formation assays and in vivo experiments. In addition, the interaction between circ-CFH and miR-149 was assessed by luciferase reporter assays. Results Circ-CFH expression was significantly upregulated in glioma tissue and was correlated with tumor grade. Circ-CFH expression levels were also markedly higher in U251 and U373 glioma cell lines. Circ-CFH knockdown inhibited cell proliferation and colony formation abilities. Luciferase assays indicated that circ-CFH functions as a miR-149 sponge and inhibits its function in U251 and U373 cells. Subsequently, AKT1 was identified as a direct target of the circ-CFH/miR-149 axis. Conclusions Circ-CFH promotes glioma progression by sponging miR-149 and regulating the AKT1 signaling pathway. The circ-CFH/miR-149/AKT1 regulation axis may be a potential target for glioma therapy.
Collapse
Affiliation(s)
- Aimiao Bian
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yanping Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Ji Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaodong Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Dai Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jian Jiang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Lianshu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaobo Hui
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|
22
|
Teplova VV, Isakova EP, Klein OI, Dergachova DI, Gessler NN, Deryabina YI. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030146] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Liu W, Song Y, Zhang C, Gao P, Huang B, Yang J. The protective role of all-transretinoic acid (ATRA) against colorectal cancer development is achieved via increasing miR-3666 expression and decreasing E2F7 expression. Biomed Pharmacother 2018; 104:94-101. [PMID: 29772445 DOI: 10.1016/j.biopha.2018.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the most common malignancies with high morbidity and mortality rates worldwide. This study aimed to investigate whether miR-3666 was involved in inhibitory effects of all-transretinoic acid (ATRA) on the development of colorectal cancer (CRC). MATERIAL AND METHODS Surgical specimens of CRC tissues and adjacent non-tumor mucosa were collected for determining miR-3666 expression. Human CRC HCT116 cells were treated with different doses of ATRA (10, 20, 40, and 60 μM, respectively) and/or transfected with miR-3666 mimic, miR-3666 inhibitor, E2F7 siRNAs or their controls, respectively. After different treatments, cell viability, apoptosis, migration and invasion were detected. The regulatory relationship between miR-3666 and E2F7 was investigated. Furthermore, the association between MAPK/ERK pathway and ATRA or miR-3666/E2F7 was explored. RESULTS The miR-3666 was lowly expressed in CRC tissues, while E2F7 was highly expressed. ATRA decreased HCT116 cell viability, migration, and invasion, and induced apoptosis, indicating that ATRA inhibited the malignant behaviors of HCT116 cells. Moreover, ATRA increased miR-3666 expression, and effects of ATRA on the malignant behaviors of HCT116 cells were achieved by positive regulating miR-3666 expression. Furthermore, E2F7 was a target gene of miR-3666, and knockdown of E2F7 reversed the combined effects of ATRA and miR-3666 inhibitor on the malignant behaviors of HCT116 cells. Besides, ATRA inhibited the activation of MAPK/ERK signaling pathway, which was reversed by inhibition of miR-3666. CONCLUSIONS Our results reveal that ATRA protects against CRC development possible via increasing miR-3666 expression and decreasing E2F7 expression. MiR-3666/E2F7 may play a key role in regulating the inhibitory effects of ATRA on HCT116 cells via suppressing the activation of MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Weihong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China; The Libraries of Dali University, Dali, Yunnan, 671003, China
| | - Yanqiu Song
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Bisheng Huang
- Department of Agriculture and biological Science, Dali University, Dali, Yunnan, 671003, China
| | - Jianfang Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China; School of Foreign Languages, Dali University, Dali, Yunnan, 671003, China.
| |
Collapse
|
24
|
Impact of dietary compounds on cancer-related gut microbiota and microRNA. Appl Microbiol Biotechnol 2018; 102:4291-4303. [PMID: 29589094 DOI: 10.1007/s00253-018-8935-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common causes of death worldwide. Extensive research has been conducted on cancer; regardless, the link between cancer and diet remains undetermined. Recent studies have emphasized the importance of miRNAs in cancer-associated pathways from the perspective of dietary modulation. We highlighted the recent data on dietary modulation of gut microbiota and miRNAs related to cancer on the basis of recently published results. The targets of miRNAs are oncogenes or tumor suppressors that mediate the progression and initiation of carcinogenesis. Different miRNAs display complex expression profiles in response to dietary manipulation. Various dietary components, such as fatty acids, resveratrol, isothiocyanate, and curcumin, have been effectively used in cancer prevention and treatment. This potency is attributed to the capability of these components to alter miRNA expression, thereby modulating the vital pathways involved in metastasis, invasion, apoptosis, tumor growth, and cell proliferation.
Collapse
|
25
|
Cardamonin inhibits colonic neoplasia through modulation of MicroRNA expression. Sci Rep 2017; 7:13945. [PMID: 29066742 PMCID: PMC5655681 DOI: 10.1038/s41598-017-14253-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is currently the third leading cause of cancer related deaths. There is considerable interest in using dietary intervention strategies to prevent chronic diseases including cancer. Cardamonin is a spice derived nutraceutical and herein, for the first time we evaluated the therapeutic benefits of cardamonin in Azoxymethane (AOM) induced mouse model of colorectal cancer. Mice were divided into 4 groups of which three groups were given six weekly injections of AOM. One group served as untreated control and remaining groups were treated with either vehicle or Cardamonin starting from the same day or 16 weeks after the first AOM injection. Cardamonin treatment inhibited the tumor incidence, tumor multiplicity, Ki-67 and β-catenin positive cells. The activation of NF-kB signaling was also abrogated after cardamonin treatment. To elucidate the mechanism of action a global microRNA profiling of colon samples was performed. Computational analysis revealed that there is a differential expression of miRNAs between these groups. Subsequently, we extend our findings to human colorectal cancer and found that cardamonin inhibited the growth, induces cell cycle arrest and apoptosis in human colorectal cancer cell lines. Taken together, our study provides a better understanding of chemopreventive potential of cardamonin in colorectal cancer.
Collapse
|
26
|
Abstract
MicroRNAs (miRNAs or miRs) are small 19-22 nucleotide long, noncoding, single-stranded, and multifunctional RNAs that regulate a diverse assortment of gene and protein functions that impact on a vast network of pathways. Lin-4, a noncoding transcript discovered in 1993 and named miRNA, initiated the exploration of research into these intriguing molecules identified in almost all organisms. miRNAs interfere with translation or posttranscriptional regulation of their target gene and regulate multiple biological actions exerted by these target genes. In cancer, they function as both oncogenes and tumor suppressor genes displaying differential activity in various cellular contexts. Although the role of miRNAs on target gene functions has been extensively investigated, less is currently known about the upstream regulatory molecules that regulate miRNAs. This chapter focuses on the factors and processes involved in miRNA regulation.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
27
|
Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? GENES AND NUTRITION 2017; 12:15. [PMID: 28694875 PMCID: PMC5501113 DOI: 10.1186/s12263-017-0564-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
In ancient lore, a bullet cast from silver is the only effective weapon against monsters. The uptake of active diet-derived microRNAs (miRNAs) in consumers may be the silver bullet long sought after in nutrition and oral therapeutics. However, the majority of scientists consider the transfer and regulation of consumer’s gene activity by these diet-derived miRNAs to be a fantasy akin to spotting a unicorn. Nevertheless, groups like Dr. Chen-Yu Zhang’s lab in Nanjing University have stockpiled breathtaking amounts of data to shoot down these naysayers. Meanwhile, Dr. Ken Witwer at John Hopkins has steadfastly cautioned the field to beware of fallacies caused by contamination, technical artifacts, and confirmation bias. Here, Dr. Witwer and Dr. Zhang share their realities of dietary miRNAs by answering five questions related to this controversial field.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University, Baltimore, USA.,School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Del Cornò M, Donninelli G, Conti L, Gessani S. Linking Diet to Colorectal Cancer: The Emerging Role of MicroRNA in the Communication between Plant and Animal Kingdoms. Front Microbiol 2017; 8:597. [PMID: 28424679 PMCID: PMC5380760 DOI: 10.3389/fmicb.2017.00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Environmental and lifestyle factors, including diet and nutritional habits have been strongly linked to colorectal cancer (CRC). Of note, unhealthy dietary habits leading to adiposity represent a main risk factor for CRC and are associated with a chronic low-grade inflammatory status. Inflammation is a hallmark of almost every type of cancer and can be modulated by several food compounds exhibiting either protective or promoting effects. However, in spite of an extensive research, the underlying mechanisms by which dietary patterns or bioactive food components may influence tumor onset and outcome have not been fully clarified yet. Growing evidence indicates that diet, combining beneficial substances and potentially harmful ingredients, has an impact on the expression of key regulators of gene expression such as the non-coding RNA (ncRNA). Since the expression of these molecules is deranged in chronic inflammation and cancer, modulating their expression may strongly influence the cancer phenotype and outcomes. In addition, the recently acquired knowledge on the existence of intricate inter-kingdom communication networks, is opening new avenues for a deeper understanding of the intimate relationships linking diet to CRC. In this novel scenario, diet-modulated ncRNA may represent key actors in the interaction between plant and animal kingdoms, capable of influencing disease onset and outcome. In this review, we will summarize the studies demonstrating a link between bioactive food components, including food-derived, microbiota-processed, secondary metabolites, and host ncRNA. We will focus on microRNA, highlighting how this plant/animal inter-kingdom cross-talk may have an impact on CRC establishment and progression.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Lucia Conti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| |
Collapse
|