1
|
Vass RA, Zhang M, Simon Sarkadi L, Üveges M, Tormási J, Benes EL, Ertl T, Vari SG. Effect of Holder Pasteurization, Mode of Delivery, and Infant's Gender on Fatty Acid Composition of Donor Breast Milk. Nutrients 2024; 16:1689. [PMID: 38892622 PMCID: PMC11174728 DOI: 10.3390/nu16111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Breast milk (BM) plays a crucial role in providing essential fatty acids (FA) and energy for the growing infant. When the mother's own BM is not available, nutritional recommendations suggest donor milk (DM) in clinical and home practices. BM was collected from a variety of donor mothers in different lactation stages. Holder pasteurization (HoP) eliminates potential contaminants to ensure safety. FA content of BM samples from the Breast Milk Collection Center of Pécs, Hungary, were analyzed before and after HoP. HoP decreases the level of C6:0, C8:0, C14:1n-5c, C18:1n-9c, C18:3n-6c, C18:3n-3c, and C20:4n-6c in BM, while C14:0, C16:0, C18:1n-9t, C22:0, C22:1n-9c, C24:0, C24:1n-9c, and C22:6n-3c were found in elevated concentration after HoP. We did not detect time-dependent concentration changes in FAs in the first year of lactation. BM produced for girl infants contains higher C20:2n-6c levels. In the BM of mothers who delivered via cesarean section, C12:0, C15:0, C16:0, C17:0, C18:0, C18:1n-9t, C22:1n-9c levels were higher, while C18:2n-6c, C22:0, C24:0, and C22:6n-3c concentrations were lower compared to mothers who gave birth spontaneously. FAs in BM are constant during the first year of lactation. Although HoP modifies the concentration of different FAs, pasteurized DM provides essential FAs to the developing infant. Current data providing information about the FA profile of BM gives origination to supplementation guidelines.
Collapse
Affiliation(s)
- Réka Anna Vass
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Obstetrics and Gynecology, Magyar Imre Hospital, 8400 Ajka, Hungary
| | - Miaomiao Zhang
- Department of Nutrition, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (L.S.S.)
| | - Livia Simon Sarkadi
- Department of Nutrition, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (L.S.S.)
| | - Márta Üveges
- Division of Chemical, Noise, Vibration, and Lighting Technology Laboratories, Department of Methodology and Public Health Laboratories, National Center for Public Health and Pharmacy, 1096 Budapest, Hungary;
| | - Judit Tormási
- Department of Food Chemistry and Analysis, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (E.L.B.)
| | - Eszter L. Benes
- Department of Food Chemistry and Analysis, Faculty of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (E.L.B.)
| | - Tibor Ertl
- Department of Obstetrics and Gynecology, Medical School University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
2
|
Hu Y, Wu X, Zhou L, Liu J. Which is the optimal choice for neonates' formula or breast milk? NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:21. [PMID: 38488905 PMCID: PMC10942964 DOI: 10.1007/s13659-024-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Yang MT, Lan QY, Tian F, Xiong XY, Li X, Wu T, Huang SY, Chen XY, Mao YY, Zhu HL. Trajectories of Human Milk Gangliosides during the First Four Hundred Days and Maternal-to-Offspring Transfer of Gangliosides: Results from a Chinese Cohort Study. J Nutr 2024; 154:940-948. [PMID: 38215939 DOI: 10.1016/j.tjnut.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Gangliosides are crucial for early-life cognition and immunity development. However, limited data exist on gangliosides within the Chinese population, and maternal-to-fetal/infant ganglioside transport remains unclear. OBJECTIVES This study aimed to investigate gangliosides concentrations and trajectories in Chinese human milk during the first 400 d of lactation, and seek to understand gangliosides transmission between mother and offspring. METHODS This study involved 921 cross-sectional participants providing human milk samples across 0-400 d of lactation and 136 longitudinal participants offering maternal plasma, cord plasma, and human milk samples within the first 45 d postpartum. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used for the quantification of gangliosides. RESULTS Human milk GM3 (Neu5Acα2-3Galβ1-4GlcβCer) concentration increased from 2.29 ± 1.87 to 13.93 ± 4.82 μg/mL, whereas GD3 (Neu5Acα2-8Neu5Acα2-3Galβ1-4GlcβCer) decreased from 17.94 ± 6.41 to 0.30 ± 0.50 μg/mL during the first 400 d postpartum (all P < 0.05). Consistent results were observed in cross-sectional and longitudinal participants. GD3 concentration gradually increased from maternal plasma (1.58 μg/mL) through cord plasma (2.05 μg/mL) to colostrum (21.35 μg/mL). Significant positive correlations were observed between maternal and cord plasma for both GM3 (r = 0.30, P < 0.001) and GD3 (r = 0.35, P < 0.001), and maternal plasma GD3 also correlated positively with colostrum concentrations (r = 0.21, P = 0.015). Additionally, in maternal and cord plasma, gangliosides were mainly linked with 16- and 18-carbon fatty acids. However, human milk GM3 showed a broad spectrum of fatty acid chain lengths, whereas GD3 was primarily tied to very long-chain fatty acids (≥20 carbon). CONCLUSIONS We identified an increase in GM3 and a decrease in GD3 concentration in human milk, with GD3 notably more concentrated in cord plasma and colostrum. Importantly, ganglioside concentrations in maternal plasma positively correlated with those in cord plasma and colostrum. Our findings contribute to the existing Chinese data on gangliosides and enhance understanding of their transmission patterns from mother to offspring. This trial was registered at chictr.org.cn as ChiCTR1800015387.
Collapse
Affiliation(s)
- Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qiu-Ye Lan
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fang Tian
- Abbott Nutrition R and D Centre, Shanghai, China
| | | | - Xiang Li
- Abbott Nutrition R and D Centre, Shanghai, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Yi Mao
- Abbott Nutrition R and D Centre, Shanghai, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Zhou X, Zhao X, Parker L, Derkach P, Correa M, Benites V, Miller R, Athanasiadis D, Doherty B, Alnozaili G, Wittenberg J, Gates D, Destaillats F, Rakitsky W, Franklin S. Development and large-scale production of human milk fat analog by fermentation of microalgae. Front Nutr 2024; 11:1341527. [PMID: 38352706 PMCID: PMC10861784 DOI: 10.3389/fnut.2024.1341527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Background Human milk contains a complex mixture of triacylglycerols (TAG), making it challenging to recreate using common ingredients. Objective The study aimed to develop an innovative fermentation technique to produce essential human milk TAG, effectively tackling a significant hurdle in infant nutrition. Method An in-depth analysis of the literature has been conducted to identify the specific TAG to be targeted. We used a microalgal oil production platform and a two-step procedure to modify its fatty acid and TAG composition. The palmitic acid (16:0) content has been increased by classical strain improvement techniques, followed by a step involving the expression of a lysophosphatidic acid acyltransferase (LPAAT) sequence capable of esterifying 16:0 specifically at the internal position (sn-2 palmitate) of TAG. Once the strain was stabilized, the fermentation was scaled up in a 50-L reactor to yield several kilograms of biomass. Subsequently, the oil was extracted and refined using standard oil processing conditions. Liquid chromatography-mass spectrometry was employed to monitor the TAG profile and the region specificity of 16:0 at the internal position (sn-2 palmitate) of TAG. Results The initial strain had a 16:0 level of 25% of total fatty acids, which was increased to 30% by classical strain improvement. Simultaneously, the oleic acid level decreased from 61% to 57% of total fatty acids. Upon expression of an exogenous LPAAT gene, the level of the 16:0 esterified in the internal position of the TAG (sn-2 palmitate) increased by a factor of 10, to reach 73% of total palmitic acid. Consequently, the concentration of oleic acid in the internal position decreased from 81% to 22% of total fatty acids, with TAG analysis confirming that the primary TAG species in the oil was 1,3-dioleoyl-2-palmitoyl-glycerol (OPO). The 50-L-scale fermentation trial confirmed the strain's ability to produce oil with a yield of >150 g of oil per liter of fermentation broth in a timeframe of 5 days, rendering the process scalable for larger-scale industrialization. Conclusion We have demonstrated the feasibility of producing a suitable TAG composition that can be effectively integrated into the formulations of infant nutrition in combination with other fats and oils to meet the infant feeding requirements.
Collapse
|
5
|
Hewelt-Belka W, Młynarczyk M, Garwolińska D, Kot-Wasik A. Characterization of GM3 Gangliosides in Human Milk throughout Lactation: Insights from the Analysis with the Use of Reversed-Phase Liquid Chromatography Coupled to Quadrupole Time-Of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17899-17908. [PMID: 37955407 PMCID: PMC10682988 DOI: 10.1021/acs.jafc.3c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Gangliosides are complex lipids found in human milk that play important structural and biological functions. In this study, we utilized reversed-phase liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to evaluate the molecular distribution of GM3 in human milk samples collected at distinct lactation stages, ranging from colostrum to advanced lactation samples. Throughout lactation, GM3 d40:1 emerged as the most abundant GM3 species, except in colostrum, where GM3 d42:2 prevailed. The relative content of GM3 species containing very long N-fatty acyl (N-FA) substituents with >22 carbon atoms decreased, while the content of GM3 species containing 14:0, 18:0, 18:1, and 20:0 N-FA substituents increased in the later months of lactation. These findings highlight the divergence of GM3 profiles across the lactation period. Moreover, considerable interindividual variance was observed among the analyzed samples. The assessment of the GM3 profiles contributes to our understanding of the dynamic composition of human milk.
Collapse
Affiliation(s)
- Weronika Hewelt-Belka
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Michał Młynarczyk
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Dorota Garwolińska
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Agata Kot-Wasik
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
González HF, Malpeli A, Fasano V, Pescio LG, Sterin-Speziale NB, Visentin S. Fatty Acid Percentage Distribution in Complex Lipids of Breast Milk From Mothers on a Low Docosahexaenoic Acid Diet. J Pediatr Gastroenterol Nutr 2023; 77:e8-e11. [PMID: 36930974 DOI: 10.1097/mpg.0000000000003775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The aim of this study was to assess the fatty acid (FA) percentage distribution in complex lipids of breast milk from mothers on a low docosahexaenoic acid (DHA) diet. We performed a descriptive, cross-sectional study of milk samples (n = 14) collected 90 days after delivery and analyzed them using gas chromatography, thin-layer chromatography, and the Fiske-Subbarow method. Complex lipid distribution was 40.70 ± 5.11% sphingomyelin (SM), 26.03 ± 5.98% phosphatidylethanolamine (PE), 21.12 ± 2.32% phosphatidylcholine, 7.94 ± 1.96% phosphatidylserine, and 4.22 ± 1.25% phosphatidylinositol. Median DHA and arachidonic acid values were 0.13% (0.12; 0.18) and 0.42% (0.33; 0.53), respectively. Mean FA percentage in SM and PE was as follows: palmitic acid, 34.45 ± 1.94% and 5.38 ± 0.94%; oleic acid, 16.50 ± 4.07% and 9.43 ± 4.05%; linoleic acid, 5.91 ± 4.69% and 9.05 ± 4.5%. DHA was not detectable in SM, but it was found in PE (55.33 ± 14.46). In conclusion, breast milk of mothers on a low DHA diet contained 55% DHA in PE, but no DHA in SM.
Collapse
Affiliation(s)
- Horacio F González
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
| | - Agustina Malpeli
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
| | - Victoria Fasano
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
- the Departamento de Matemática, Facultad Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucila G Pescio
- Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- the Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas - Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
| | - Silvana Visentin
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
| |
Collapse
|
7
|
Comparison of glycerophospholipid and sphingolipid in mature milk from different sampled regions in the Chinese human milk project (CHMP) study. Food Chem 2023; 410:135311. [PMID: 36610088 DOI: 10.1016/j.foodchem.2022.135311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Milk phospholipids (PLs) are critical components of infant growth. This study aimed to discover PL in mature human milk (HM) from China (n = 201) and mainly assessed the effect caused by sampled regions. The average total PL concentration was quantified from 3.65 to 11.25 mg per g of lipid, and the major PL class identified was sphingomyelin (SM, 38.06-47.62 %), followed by phosphatidylcholine (PC, 29.61-34.39 %), and phosphatidylethanolamine (PE, 10.54-24.46 %). In addition, the 36:2 (18:0/18:2), 38:6 (16:0/22:6), 40:1 (d18:1/22:0), and 42:2 (d18:1/24:1) were the most abundant molecular species identified in glycerophospholipid and SM molecular species respectively. Some PL molecular species were strongly related with region of sampling, like lysophosphatidylinositol 18:1 was only detected in Beijing. In conclusion, those findings showed that the PL molecular species and concentration of HM had significant regional diversity, and it will give the Chinese human milk database more accurate PL data.
Collapse
|
8
|
Marosvölgyi T, Dergez T, Szentpéteri JL, Szabó É, Decsi T. Higher Availability of Long-Chain Monounsaturated Fatty Acids in Preterm than in Full-Term Human Milk. Life (Basel) 2023; 13:life13051205. [PMID: 37240850 DOI: 10.3390/life13051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
While the role of n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs) in the maturation of the infantile nervous system is extensively studied and relatively well-characterized, data on the potential developmental importance of the n-9 long-chain monounsaturated fatty acid (LCMUFA), nervonic acid (NA, C24:1n-9) are scarce and ambiguous. Therefore, the aim of the present study was to reanalyze our available data on the contribution of NA and its LCMUFA precursors, gondoic acid (C20:1n-9) and erucic acid (EA, C22:1n-9) to the fatty acid composition of human milk (HM) during the first month of lactation in mothers of both preterm (PT) and full-term (FT) infants. HM samples were obtained daily during the first week of lactation, and then on the 14th, 21st, and 28th days. Values of the LCMUFAs, C20:1n-9, EA, and NA were significantly higher in colostrum than in transient and mature HM. Consequently, there were highly significant inverse associations between LCMUFA values and the duration of lactation. Moreover, C20:1n-9, EA, and NA values were monotonously, considerably, and at many timepoints significantly higher in PT than in FT HM samples. By the 28th day of lactation, summarized LCMUFA values in PT HM samples declined to the level measured in FT HM samples on the first day of lactation; however, EA and NA values were still significantly higher in PT than in FT HM on the 28th day. Significantly higher availability of LCMUFAs in PT than in FT HM underpins the potential biological role of this hitherto somewhat neglected group of fatty acids.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Timea Dergez
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - József L Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Decsi
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
| |
Collapse
|
9
|
Einerhand AWC, Mi W, Haandrikman A, Sheng XY, Calder PC. The Impact of Linoleic Acid on Infant Health in the Absence or Presence of DHA in Infant Formulas. Nutrients 2023; 15:2187. [PMID: 37432333 DOI: 10.3390/nu15092187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Both linoleic acid (LA) and α-linolenic acid (ALA) are essential dietary fatty acids, and a balanced dietary supply of these is of the utmost importance for health. In many countries across the globe, the LA level and LA/ALA ratio in breast milk (BM) are high. For infant formula (IF), the maximum LA level set by authorities (e.g., Codex or China) is 1400 mg LA/100 kcal ≈ 28% of total fatty acid (FA) ≈ 12.6% of energy. The aims of this study are: (1) to provide an overview of polyunsaturated fatty acid (PUFA) levels in BM across the world, and (2) to determine the health impact of different LA levels and LA/ALA ratios in IF by reviewing the published literature in the context of the current regulatory framework. The lipid composition of BM from mothers living in 31 different countries was determined based on a literature review. This review also includes data from infant studies (intervention/cohort) on nutritional needs regarding LA and ALA, safety, and biological effects. The impact of various LA/ALA ratios in IF on DHA status was assessed within the context of the current worldwide regulatory framework including China and the EU. Country averages of LA and ALA in BM range from 8.5-26.9% FA and 0.3-2.65% FA, respectively. The average BM LA level across the world, including mainland China, is below the maximum 28% FA, and no toxicological or long-term safety data are available on LA levels > 28% FA. Although recommended IF LA/ALA ratios range from 5:1 to 15:1, ratios closer to 5:1 seem to promote a higher endogenous synthesis of DHA. However, even those infants fed IF with more optimal LA/ALA ratios do not reach the DHA levels observed in breastfed infants, and the levels of DHA present are not sufficient to have positive effects on vision. Current evidence suggests that there is no benefit to going beyond the maximum LA level of 28% FA in IF. To achieve the DHA levels found in BM, the addition of DHA to IF is necessary, which is in line with regulations in China and the EU. Virtually all intervention studies investigating LA levels and safety were conducted in Western countries in the absence of added DHA. Therefore, well-designed intervention trials in infants across the globe are required to obtain clarity about optimal and safe levels of LA and LA/ALA ratios in IF.
Collapse
Affiliation(s)
| | - Wiola Mi
- Bunge Loders Croklaan Nutrition, Shanghai 200051, China
| | | | - Xiao-Yang Sheng
- Department of Developmental Behavioral Pediatric & Children Healthcare, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200051, China
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Li Z, Wang X, Deng X, Song J, Yang T, Liao Y, Gong G, Huang L, Lu Y, Wang Z. High-sensitivity qualitative and quantitative analysis of human, bovine and goat milk glycosphingolipids using HILIC-MS/MS with internal standards. Carbohydr Polym 2023; 312:120795. [PMID: 37059535 DOI: 10.1016/j.carbpol.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.
Collapse
|
11
|
Suteanu-Simulescu A, Sarbu M, Ica R, Petrica L, Zamfir AD. Ganglioside analysis in body fluids by liquid-phase separation techniques hyphenated to mass spectrometry. Electrophoresis 2023; 44:501-520. [PMID: 36416190 DOI: 10.1002/elps.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The expression of gangliosides in central nervous system is a few times higher than in the extraneural tissue, a characteristic highlighting their major role at this level. Although in very low amounts, gangliosides are ubiquitously distributed in body fluids too, where, depending on many factors, including pathological states, their composition fluctuates, thus having diagnostic value. Ganglioside investigation in biological fluids, which, except for cerebrospinal fluid (CSF), may be sampled noninvasively, was for years impeded by the limited sensitivity of the analytical instrumentation available in glycomics. However, because the last decade has witnessed significant developments in biological mass spectrometry (MS) and the hyphenated separation techniques, marked by a major increase in sensitivity, reproducibility, and data reliability, ganglioside research started to be focused on biofluid analysis by separation techniques coupled to MS. In this context, our review presents the achievements in this emerging field of gangliosidomics, with a particular emphasis on modern liquid chromatography (LC), thin-layer chromatography, hydrophilic interaction LC, and ion mobility separation coupled to high-performance MS, as well as the results generated by these systems and allied experimental procedures in profiling and structural analysis of gangliosides in healthy or diseased body fluids, such as CSF, plasma/serum, and milk.
Collapse
Affiliation(s)
- Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Neurosciences, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina Diana Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
12
|
Devaraj S, Giuffrida F, Hartweg M, Estorninos EM, Buluran KB, Lawenko RB, Thakkar SK, Samuel TM. Temporal evolution of fatty acid content in human milk of lactating mothers from the Philippines. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102543. [PMID: 36724727 DOI: 10.1016/j.plefa.2023.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Fatty acids (FA) play a key role in infant growth and development. The aim of this study was to study the temporal evolution of FA from 3 or 4 weeks to 4 months postpartum in human milk (HM) from Filipino mothers. Mid-morning HM samples (n = 41) were collected after full expression from a single breast and FA were assessed using gas-liquid chromatography coupled to flame ionization detector. The total FA content remained relatively constant over the study period. The most abundant FA in HM were oleic acid (OA), palmitic acid (PA) and linoleic acid (LA), a trend similarly reported in HM from European and Chinese mothers. The former two were unchanged over the course of lactation while there was a slight increase in LA content over time. Similarly, the saturated fatty acid (SFA) and monounsaturated FA (MUFA) contents did not vary over the first four months of lactation. The SFA content was much higher than that reported in HM from Europe and China, mainly driven by PA, lauric and myristic acids. The MUFA content on the other hand, while comparable to that reported in HM from Chinese populations was lower than that reported in Europe. There was a small increase in the polyunsaturated FA (PUFA) content over the study duration. The levels of essential FA, linoleic acid (LA) and α-linolenic acid (ALA) were found to be much lower than that reported in other populations. The concentrations of arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) remained stable over the study duration. AA and DHA in HM from Filipino mothers were comparable to global averages, however in case of the latter the concentration was found to be lower than in previous reports. DHA is of great clinical significance as it plays a key role in infant growth and development. In our study, we observed a wide inter- and intra-individual variability in the levels of DHA in HM, presumably reflecting diverse intakes of DHA rich foods and bioconversion in vivo. Personalized recommendations may help achieve recommended levels of DHA amongst population with levels below global averages. This may help achieve HM sufficiency and therefore be linked to clinical benefits for the mother and the baby. SUMMARY: This study details the temporal evolution of human milk (HM) fatty acids (FA) in Filipino mothers up to four months postpartum. The total FA content remained relatively constant over the study period. The most abundant FA were oleic, palmitic and linoleic acids. HM from Filipino mothers had relatively higher saturated FA content driven by palmitic, lauric and myristic acids, while the levels of essential FA, linoleic and α-linoleic acids were lower compared to other populations. Similarly, the concentration of monounsaturated FA were also lower than that reported in HM from European mothers. Arachidonic acid and docosahexaenoic acid (DHA) concentrations were comparable to global averages however the HM DHA levels were seen to have decreased when compared to previous reports from the Philippines. Additionally, a wide variability was seen in HM DHA levels suggesting a need for strategies such as personalized recommendations in order to ensure HM DHA sufficiency.
Collapse
Affiliation(s)
- Surabhi Devaraj
- Nestlé Research, Société des Produits Nestlé SA, Nestlé R&D Center (Pte) Ltd, 29 Quality Road, 618802 Singapore.
| | - Francesca Giuffrida
- Nestlé Research, Société des Produits Nestlé SA, Route du Jorat 57, Box Office, 1000, Lausanne, Switzerland
| | - Mickaël Hartweg
- Nestlé Research, Société des Produits Nestlé SA, Route du Jorat 57, Box Office, 1000, Lausanne, Switzerland
| | | | | | - Rachel B Lawenko
- Asian Hospital & Medical Center, Muntinlupa City 1780, Philippines
| | - Sagar K Thakkar
- Nestlé Research, Société des Produits Nestlé SA, Nestlé R&D Center (Pte) Ltd, 29 Quality Road, 618802 Singapore
| | - Tinu Mary Samuel
- Nestle Product Technology Center-Nutrition, Société des Produits Nestlé SA, 1800 Vevey, Switzerland
| |
Collapse
|
13
|
Analysis of milk with liquid chromatography–mass spectrometry: a review. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractAs a widely consumed foodstuff, milk and dairy products are increasingly studied over the years. At the present time, milk profiling is used as a benchmark to assess the properties of milk. Modern biomolecular mass spectrometers have become invaluable to fully characterize the milk composition. This review reports the analysis of milk and its components using liquid chromatography coupled with mass spectrometry (LC–MS). LC–MS analysis as a whole will be discussed subdivided into the major constituents of milk, namely, lipids, proteins, sugars and the mineral fraction.
Collapse
|
14
|
Zhang Z, Wang Y, Yang X, Cheng Y, Zhang H, Xu X, Zhou J, Chen H, Su M, Yang Y, Su Y. Human Milk Lipid Profiles around the World: A Systematic Review and Meta-Analysis. Adv Nutr 2022; 13:2519-2536. [PMID: 36083999 PMCID: PMC9776668 DOI: 10.1093/advances/nmac097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/08/2022] [Accepted: 09/01/2022] [Indexed: 01/29/2023] Open
Abstract
Reported breast milk lipid concentrations may vary with geographical region, postnatal age, and year of sample collection. In this review, we summarized data on the concentrations of total fat, total phospholipids, cholesterol, and fatty acids in human milk worldwide and their variation according to lactation stage, study area, and sample collection year. A systematic literature search was performed using the PubMed, Embase, Web of Science, and Medline databases for English-language papers and Wanfang and China National Knowledge Infrastructure databases for Chinese-language papers. A total of 186 studies evaluating the human milk lipid profiles were included. According to random-effects models based on worldwide data, the summarized means (95% CIs) as percentages of total fat were 42.2% (41.1%, 43.3%) for SFAs, 36.6% (35.6%, 37.5%) for MUFAs, and 21.0% (19.3%, 22.7%) for PUFAs. However, the study heterogeneity was high for most types of fatty acids (I2 > 99%). Human milk from Western countries had higher concentrations of MUFAs and 18:1n-9 (ω-9), but lower concentrations of PUFAs, 18:2n-6, 20:4n-6, 18:3n-3, 20:5n-3, 22:6n-3, and total n-6 PUFA compared with those from non-Western countries (P < 0.001-0.011). Significant lactation stage differences were observed for total fat and some individual fatty acids. The concentrations of SFAs and 16:0 were significantly negatively correlated with sampling year (P < 0.001-0.028). In contrast, a significant positive correlation between the concentrations of 18:2n-6 and 18:3n-3 and sampling year was observed (P < 0.001-0.035). Our results suggest that the pooling of data on human milk lipid profiles in different studies should be done with caution due to the high between-study heterogeneity. The concentration of lipids, including total fat, cholesterol, and specific fatty acids, differs in human milk according to lactation stage, geographical region, and year of sample collection.
Collapse
Affiliation(s)
- Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yingyao Wang
- Chinese Nutrition Society, Beijing, China,CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute), Beijing, China
| | - Xiaoguang Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiyong Cheng
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Jin Zhou
- CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute), Beijing, China
| | - Hengying Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengyang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | | | | |
Collapse
|
15
|
Ganeshalingam M, Enstad S, Sen S, Cheema S, Esposito F, Thomas R. Role of lipidomics in assessing the functional lipid composition in breast milk. Front Nutr 2022; 9:899401. [PMID: 36118752 PMCID: PMC9478754 DOI: 10.3389/fnut.2022.899401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Breast milk is the ideal source of nutrients for infants in early life. Lipids represent 2–5% of the total breast milk composition and are a major energy source providing 50% of an infant’s energy intake. Functional lipids are an emerging class of lipids in breast milk mediating several different biological functions, health, and developmental outcome. Lipidomics is an emerging field that studies the structure and function of lipidome. It provides the ability to identify new signaling molecules, mechanisms underlying physiological activities, and possible biomarkers for early diagnosis and prognosis of diseases, thus laying the foundation for individualized, targeted, and precise nutritional management strategies. This emerging technique can be useful to study the major role of functional lipids in breast milk in several dimensions. Functional lipids are consumed with daily food intake; however, they have physiological benefits reported to reduce the risk of disease. Functional lipids are a new area of interest in lipidomics, but very little is known of the functional lipidome in human breast milk. In this review, we focus on the role of lipidomics in assessing functional lipid composition in breast milk and how lipid bioinformatics, a newly emerging branch in this field, can help to determine the mechanisms by which breast milk affects newborn health.
Collapse
Affiliation(s)
- Moganatharsa Ganeshalingam
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- *Correspondence: Moganatharsa Ganeshalingam,
| | - Samantha Enstad
- Neonatal Intensive Care Unit, Orlando Health Winne Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sukhinder Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Bari, Italy
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Raymond Thomas,
| |
Collapse
|
16
|
Kortesniemi M, Jafari T, Zhang Y, Yang B. 1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors. Molecules 2022; 27:molecules27175526. [PMID: 36080292 PMCID: PMC9458218 DOI: 10.3390/molecules27175526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Human milk is an intricate, bioactive food promoting infant health. We studied the composition of human milk samples collected over an 8-month lactation using 1H NMR metabolomics. A total of 72 human breast milk samples were collected from ten Chinese mothers at eight different time points. The concentrations of ten human milk oligosaccharides (HMOs), fucose and lactose were quantified. Six of the mothers were classified as Lewis-positive secretors (Se+Le+) and four as Lewis-positive non-secretors (Se−Le+) based on the levels of 2′-fucosyllactose (2′-FL), lacto-N-fucopentaose (LNFP) II, lactodifucotetraose (LDFT) and lacto-N-neotetraose (LNnT). Acetate, citrate, short/medium-chain fatty acids, glutamine and urea showed a time-dependent trend in relation to the stage of lactation. The concentrations of 2′-FL, 3-FL (3-fucosyllactose), 3′-SL (3′-sialyllactose), LDFT, LNFP I, LNFP II, LNFP III, LNnT, LNT (lacto-N-tetraose), and fucose were statistically different between secretors and non-secretors. A temporal difference of approximately 1–2 months between the development of non-secretor and secretor HMO profiles was shown. The results highlighted the importance of long-term breastfeeding, especially among non-secretors.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
- Correspondence: (M.K.); (Y.Z.)
| | - Tahereh Jafari
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
- Correspondence: (M.K.); (Y.Z.)
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
17
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
18
|
Ni M, Wang Y, Yang Z, Xu X, Zhang H, Yang Y, Zhang L, Chen J. Profiles of total and sn-2 fatty acid of human mature milk and their correlated factors: A cross-sectional study in China. Front Nutr 2022; 9:926429. [PMID: 36071934 PMCID: PMC9441907 DOI: 10.3389/fnut.2022.926429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid (FA) in breast milk is beneficial to the growth and neurodevelopment of infants. However, the structure profiles of breast milk FAs and the influencing factors which are crucial for normal function have not been fully elucidated. This study aimed to characterize the profiles of total and sn-2 FAs in human mature milk based on two representative urban areas in China and explore potential sociodemographic determinants. Mothers (n = 70) at 40–100 d postpartum from Beijing and Danyang were recruited according to unified inclusion and exclusion criteria. Total and sn-2 FA compositions were examined by gas chromatography and quantified. Using the Spearman correlation and multiple regression model, we found that the location and maternal education level were the most conspicuous correlated factor. The milk of mothers from Beijing had higher levels of the n-6 series of long-chain polyunsaturated fatty acids (LCPUFA) (C20:2, C20:3n-6, C20:4n-6, n-6PUFA/n-3PUFA, LA/ALA, and ARA/DHA) than that of Danyang, while the opposite was observed in the n-3 series of LCPUFA (C18:3n-3 and Total n-3PUFA). Compared to the milk of mothers with a high school degree or below, those with a bachelor's degree or above had lower SFAs (C10:0, C12:0, C14:0, and Total SFA), n-3 series of LCPUFA (C18:3n-3 and Total n-3PUFA), C18:1n-9t, and higher n-6 series of LCPUFA (C18:2n-6c, C20:2, C20:4n-6, Total n-6PUFA, and n-6PUFA/n-3PUFA). Maternal age, infant gender, pre-conception body mass index (BMI), parity, delivery mode, and gestational weight gain were also associated with total FAs. However, fewer associations were found between the above factors and sn-2 FAs. This study will promote an understanding of human breast milk's lipid profile and help develop a formula more suitable for infants.
Collapse
Affiliation(s)
- Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yingyao Wang
- Chinese Nutrition Society, Beijing, China
- CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute) Beijing Zhongyinghui Nutrition and Health Research Institute, Beijing, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- *Correspondence: Yuexin Yang
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Lishi Zhang
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jinyao Chen
| |
Collapse
|
19
|
Giuffrida F, Fleith M, Goyer A, Samuel TM, Elmelegy-Masserey I, Fontannaz P, Cruz-Hernandez C, Thakkar SK, Monnard C, De Castro CA, Lavalle L, Rakza T, Agosti M, Al-Jashi I, Pereira AB, Costeira MJ, Marchini G, Vanpee M, Stiris T, Stoicescu S, Silva MG, Picaud JC, Martinez-Costa C, Domellöf M, Billeaud C. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr 2022; 61:2167-2182. [PMID: 35072787 PMCID: PMC9106604 DOI: 10.1007/s00394-021-02788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Human milk (HM) composition is influenced by factors, like maternal diet and body stores, among other factors. For evaluating the influence of maternal fatty acid (FA) status on milk FA composition, the correlation between FA content in HM and in maternal plasma, erythrocytes, and adipose tissue was investigated. METHODS 223 European women who delivered at term, provided HM samples over first four months of lactation. Venous blood and adipose tissue (only from mothers who consented and underwent a C-section delivery) were sampled at delivery. FAs were assessed in plasma, erythrocytes, adipose tissue, and HM. Evolution of HM FAs over lactation and correlations between FA content in milk and tissues and between mother's blood and cord blood were established. RESULTS During lactation, arachidonic acid (ARA) and docosahexaenoic acid (DHA) significantly decreased, while linoleic acid (LA), alpha-linolenic acid (ALA), and eicosapentaenoic acid (EPA) remained stable. Positive correlations were observed between HM and adipose tissue for palmitic, stearic, oleic, and polyunsaturated fatty acids (PUFAs). Correlations were found between milk and plasma for oleic, LA, ARA, ALA, DHA, monounsaturated fatty acids (MUFAs), and PUFAs. No correlation was observed between erythrocytes and HM FAs. LA and ALA were more concentrated in maternal blood than in infant blood, contrary to ARA and DHA, supporting that biomagnification of LCPUFAs may have occurred during pregnancy. CONCLUSIONS These data show that maternal adipose tissue rather than erythrocytes may serve as reservoir of PUFAs and LCPUFAs for human milk. Plasma also supplies PUFAs and LCPUFAs to maternal milk. If both, adipose tissue and plasma PUFAs, are reflection of dietary intake, it is necessary to provide PUFAs and LCPUFAs during pregnancy or even before conception and lactation to ensure availability for mothers and enough supply for the infant via HM.
Collapse
Affiliation(s)
| | - Mathilde Fleith
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Amélie Goyer
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., 1800 Vevey, Switzerland
| | | | - Patric Fontannaz
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | - Luca Lavalle
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Thameur Rakza
- Centre d’Investigation Clinique de Lille, Hôpital Jeanne de Flandre, 59777 Lille, France
| | | | | | | | | | | | | | | | | | | | - Jean-Charles Picaud
- Hospices Civils de Lyon, Neonatology, Hôpital de La Croix Rousse, Hospices civils de Lyon, 69004 Lyon, France
- Univ. Lyon, Carmen Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, 69921 Oullins, France
| | | | - Magnus Domellöf
- Department of Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | - Claude Billeaud
- Neonatology & Nutrition, CIC Pédiatrique 1401 Inserm, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Thum C, Wall C, Day L, Szeto IMY, Li F, Yan Y, Barnett MPG. Changes in Human Milk Fat Globule Composition Throughout Lactation: A Review. Front Nutr 2022; 9:835856. [PMID: 35634409 PMCID: PMC9137899 DOI: 10.3389/fnut.2022.835856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in understanding how the relative levels of human milk fat globule (MFG) components change over the course of lactation, how they differ between populations, and implications of these changes for the health of the infant. In this article, we describe studies published over the last 30 years which have investigated components of the MFG in term milk, focusing on changes over the course of lactation and highlighting infant and maternal factors that may influence these changes. We then consider how the potential health benefits of some of the milk fat globule membrane (MFGM) components and derived ingredients relate to compositional and functional aspects and how these change throughout lactation. The results show that the concentrations of phospholipids, gangliosides, cholesterol, fatty acids and proteins vary throughout lactation, and such changes are likely to reflect the changing requirements of the growing infant. There is a lack of consistent trends for changes in phospholipids and gangliosides across lactation which may reflect different methodological approaches. Other factors such as maternal diet and geographical location have been shown to influence human MFGM composition. The majority of research on the health benefits of MFGM have been conducted using MFGM ingredients derived from bovine milk, and using animal models which have clearly demonstrated the role of the MFGM in supporting cognitive and immune health of infants at different stages of growth and development.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- *Correspondence: Caroline Thum
| | - Clare Wall
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Li Day
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Ignatius M. Y. Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Fang Li
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Yalu Yan
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | | |
Collapse
|
21
|
Yang MT, Lan QY, Liang X, Mao YY, Cai XK, Tian F, Liu ZY, Li X, Zhao YR, Zhu HL. Lactational Changes of Phospholipids Content and Composition in Chinese Breast Milk. Nutrients 2022; 14:nu14081539. [PMID: 35458100 PMCID: PMC9030290 DOI: 10.3390/nu14081539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Phospholipids are pivotal polar lipids in human milk and essential for infants’ growth and development, especially in the brain and cognitive development. Its content and composition are affected by multiple factors and there exist discrepancies in different studies. In this study, we determined five major phospholipids classes (phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin) in 2270 human milk samples collected from 0 to 400 days postpartum in six regions of China. The high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD) was performed to quantify the phospholipids. Total phospholipid median (IQR) content was in a range between 170.38 ± 96.52 mg/L to 195.69 ± 81.80 mg/L during lactation and was higher concentrated in colostrum milk and later stage of lactation (after 200 days postpartum) compared with that in the samples collected between 10 to 45 days postpartum. Variations in five major sub-class phospholipids content were also observed across lactation stages (phosphatidylethanolamine: 52.61 ± 29.05 to 59.95 ± 41.74 mg/L; phosphatidylinositol: 17.65 ± 10.68 to 20.38 ± 8.55 mg/L; phosphatidylserine: 15.98 ± 9.02 to 22.77 ± 11.17 mg/L; phosphatidylcholine: 34.13 ± 25.33 to 48.64 ± 19.73 mg/L; sphingomyelin: 41.35 ± 20.31 to 54.79 ± 35.26 mg/L). Phosphatidylethanolamine (29.18–32.52%), phosphatidylcholine (19.90–25.04%) and sphingomyelin (22.39–29.17%) were the dominant sub-class phospholipids in Chinese breast milk during the whole lactation period. These results updated phospholipids data in Chinese human milk and could provide evidence for better development of secure and effective human milk surrogates for infants without access to breast milk.
Collapse
Affiliation(s)
- Meng-Tao Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Qiu-Ye Lan
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Xue Liang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Ying-Yi Mao
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Xiao-Kun Cai
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Zhao-Yan Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Yan-Rong Zhao
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
- Correspondence: (Y.-R.Z.); (H.-L.Z.); Tel.: +86-21-2082-2472 (Y.-R.Z.); +86-20-8733-1811 (H.-L.Z.)
| | - Hui-Lian Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Correspondence: (Y.-R.Z.); (H.-L.Z.); Tel.: +86-21-2082-2472 (Y.-R.Z.); +86-20-8733-1811 (H.-L.Z.)
| |
Collapse
|
22
|
Yadav M, Kapoor A, Verma A, Ambatipudi K. Functional Significance of Different Milk Constituents in Modulating the Gut Microbiome and Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3929-3947. [PMID: 35324181 DOI: 10.1021/acs.jafc.2c00335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk, the gold standard for optimal nourishment, controls the microbial composition of infants by either enhancing or limiting bacterial growth. The milk fat globule membrane has gained interest in gut-related functions and cognitive development. The membrane proteins can directly interact with probiotic bacteria, influencing their survival and adhesion through gastrointestinal transit, whereas membrane phospholipids increase the residence time of probiotic bacteria in the gut. The commensal bacteria in milk act as the initial inoculum in building up the gut colonization of an infant, whereas oligosaccharides promote proliferation of beneficial microorganisms. Interestingly, milk extracellular vesicles are also involved in influencing the microbiota composition but are not well-explored. This review highlights the contribution of different milk components in modulating the infant gut microbiota, particularly the fat globule membrane, and the complex interplay between host- and brain-gut microbiota signaling affecting infant and adult health positively.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aparna Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
23
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
25
|
Wu W, Balter A, Vodsky V, Odetallh Y, Ben-Dror G, Zhang Y, Zhao A. Chinese Breast Milk Fat Composition and Its Associated Dietary Factors: A Pilot Study on Lactating Mothers in Beijing. Front Nutr 2021; 8:606950. [PMID: 34124115 PMCID: PMC8193926 DOI: 10.3389/fnut.2021.606950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Regional differences were found in breast milk composition. This study intended to profile the composition of fatty acid (FA) and triacylglycerol (TAG) in Chinese breast milk and to explore its association with maternal diet. Breast milk samples and data of 52 lactating women at 60–90 days postpartum were collected. The FA composition was measured using gas chromatography–flame ionization detection (GC-FID), and the TAG profile was detected by an ultra-performance liquid chromatography system, coupled with accurate-mass quadrupole time-of-flight mass spectrometer. A semi-quantitative food intake frequency questionnaire and a one-time 24-h dietary recall were used to evaluate the previous month's and the short-term dietary intake, including dietary patterns, food groups, and nutrients. Oleic–palmitic–linoleic (OPL) is the most predominant TAG within the Chinese human milk, followed by oleic–palmitic–oleic (OPO), with an average OPL-to-OPO ratio of 1.35. Linoleic acid (LA) and oleic acid (OA) accounted for 23.9 and 32.0% of the total FAs, respectively. Among the food groups consumed during the preceding month, LA content was positively associated with the consumption of soybeans and soybean products (r = 0.311, p = 0.030), whereas a negative correlation was identified with seafood consumption (r = −0.302, p = 0.030). Negative correlations were found between the OA content and the consumption of soybeans and soybean products (r = −0.363, p = 0.009), livestock and poultry meat (r = −0.375, p = 0.006), nuts (r = −0.305, p = 0.028), as well as cooking oil (r = −0.445, p = 0.001). No significant associations were identified between the LA and OA contents and the dietary patterns. This study confirmed a high OPL level in Chinese breast milk and revealed associations of FAs with maternal dietary intake.
Collapse
Affiliation(s)
- Wei Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Adi Balter
- Infant Nutrition R&D, IFF Health, Migdal HaEmeq, Israel
| | | | | | - Gai Ben-Dror
- Infant Nutrition, Enzymotec Ltd., Migdal HaEmeq, Israel
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Ni M, Wang Y, Wu R, Zhang L, Xu X, Yang Y, Chen J. Total and Sn-2 Fatty Acid Profile in Human Colostrum and Mature Breast Milk of Women Living in Inland and Coastal Areas of China. ANNALS OF NUTRITION AND METABOLISM 2021; 77:29-37. [PMID: 33730729 DOI: 10.1159/000510379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Although lipid is the major energy source and exerts beneficial effects on infant growth, research on the composition of fatty acid (FA) at the sn-2 position of human milk (HM) in China and abroad is limited. OBJECTIVES This study aimed to investigate the FA positional distribution in colostrum and mature HM of women living in the inland and coastal areas of China and explore the potential influences of geographical region and lactation stage on the FA profile of Chinese women. METHODS Colostrum milk (n = 61) and mature milk (n = 56) samples were obtained longitudinally from healthy lactating women in Guangzhou and Chengdu, China. Gas chromatography was used to determine the total and sn-2 FA composition. RESULTS Significant differences were observed in the FA profile of HM between different regions and lactation stages, with differences in polyunsaturated FA levels being the most pronounced. Nearly 70% of sn-2 FAs were saturated FAs, of which C16:0 accounted for approximately 75%. C8:0, C10:0, C18:0, C20:0, C22:0, and all of the unsaturated FAs were mainly located at the sn-1 and sn-3 positions, while C14:0, C15:0, and C16:0 were mainly at the sn-2 position. The proportion of C12:0 and C17:0 at sn-2 was approximately equivalent to that at the sn-1, 3 positions. CONCLUSIONS The results indicate the variability in the FA profile of HM between regions and lactation stages. The contents of polyunsaturated FAs and sn-2 FAs, especially palmitic acid, should be paid more attention when optimizing infant formula.
Collapse
Affiliation(s)
- Mengmei Ni
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | | | - Rui Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | | | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Song S, Liu TT, Liang X, Liu ZY, Yishake D, Lu XT, Yang MT, Man QQ, Zhang J, Zhu HL. Profiling of phospholipid molecular species in human breast milk of Chinese mothers and comprehensive analysis of phospholipidomic characteristics at different lactation stages. Food Chem 2021; 348:129091. [PMID: 33508603 DOI: 10.1016/j.foodchem.2021.129091] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/30/2022]
Abstract
Phospholipids are critical for milk digestion and infant development. But the profile of phospholipid molecular species in human milk and its dynamic changes during the lactation period have never been reported. The present study elucidated precise qualitative and quantitative analysis of 258 phospholipid molecular species in 486 human milk samples. Phosphatidylcholine is the most abundant class, followed by phosphatidylserine, phosphatidylethanolamine and sphingomyelin as the second abundant class in different lactation period. The plasmalogens declined along the lactation period, and the polyunsaturated-phospholipids decreased after 10-15 days. The decrease of phosphatidylcholines and phosphatidylglycerols, and the increase of lysophosphatidylethanolamines and lysophosphatidylcholines are critical changes from 0 to 5 days to 10-15 days; increase of phosphatidylinositols, phosphatidylserines, lysophosphatidylethanolamines and lysophosphatidylcholines is the key changes from 10-15 days to 40-45 days; the decrease of most phospholipid molecular species is the characteristic change from 40-45 days to 200-240 days; and the phospholipid profile achieved stability after 200 days.
Collapse
Affiliation(s)
- Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xue Liang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhao-Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dinuerguli Yishake
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Ting Lu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
28
|
Khor GL, Tan SS, Stoutjesdijk E, Ng KWT, Khouw I, Bragt M, Schaafsma A, Dijck-Brouwer DAJ, Muskiet FAJ. Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients 2020; 13:nu13010101. [PMID: 33396781 PMCID: PMC7824650 DOI: 10.3390/nu13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
The composition of human breast milk changes in the first two months of life, adapting itself to the evolving needs of the growing new-born. Lipids in milk are a source of energy, essential fatty acids (FA), fat-soluble vitamins, and vital bioactive components. Information on breast milk FA of Malaysian lactating women is scarce. Based on convenience sampling, a total of 20 Malay breastfeeding women who fulfilled the inclusion criteria were recruited. Breast milk was collected three times from each subject at consecutive intervals of 2–3 weeks apart. A total of 60 breast milk samples were collected and classified into “transitional milk” (n = 8), “early milk” (n = 26) and “mature milk” (n = 26). All milk samples were air freighted to University of Groningen, Netherlands for analysis. The dominant breast milk FA were oleic acid, constituting 33% of total fatty acids, followed by palmitic acid (26%). Both these FA and the essential FA, linoleic acid (10%) and alpha-linolenic acid (0.4%), showed no significant changes from transitional to mature milk. Breast milk ratio of n-6:n-3 polyunsaturated fatty acids (PUFA) was comparatively high, exceeding 10 throughout the lactation period, suggesting a healthier balance of PUFA intake is needed in pregnancy and at postpartum.
Collapse
Affiliation(s)
- Geok Lin Khor
- Department of Nutrition & Dietetics, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia; (S.S.T.); (K.W.T.N.)
- Correspondence:
| | - Seok Shin Tan
- Department of Nutrition & Dietetics, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia; (S.S.T.); (K.W.T.N.)
| | - Eline Stoutjesdijk
- Laboratory Medicine, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (D.A.J.D.-B.); (F.A.J.M.)
| | - Kock Wai Tony Ng
- Department of Nutrition & Dietetics, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia; (S.S.T.); (K.W.T.N.)
| | - Ilse Khouw
- FrieslandCampina, 3800 BN Amersfoort, The Netherlands; (I.K.); (M.B.); (A.S.)
| | - Marjolijn Bragt
- FrieslandCampina, 3800 BN Amersfoort, The Netherlands; (I.K.); (M.B.); (A.S.)
| | - Anne Schaafsma
- FrieslandCampina, 3800 BN Amersfoort, The Netherlands; (I.K.); (M.B.); (A.S.)
| | - D. A. Janneke Dijck-Brouwer
- Laboratory Medicine, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (D.A.J.D.-B.); (F.A.J.M.)
| | - Frits A. J. Muskiet
- Laboratory Medicine, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (D.A.J.D.-B.); (F.A.J.M.)
| |
Collapse
|
29
|
|
30
|
Application of the similarity index to evaluate fat composition and structure in infant formulas. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Wright M, Dusemund B, Mortensen A, Turck D, Barmaz S, Tard A, Vianello G, Gundert‐Remy U. Opinion on the re-evaluation of lecithins (E 322) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as food additive for uses in foods for all population groups. EFSA J 2020; 18:e06266. [PMID: 33204307 PMCID: PMC7654424 DOI: 10.2903/j.efsa.2020.6266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lecithins (E 322) were re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of lecithins (E 322) for uses as food additive in food for infants below 16 weeks of age belonging to food categories 13.1.1 and 13.1.5.1 and as carry over in line with Annex III to Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues identified during the re-evaluation of the food additive (E 322). The process involved the publication of a call for data to allow the interested business operators to provide the requested information to complete the risk assessment. Based on the information submitted in response to the call for data, the FAF Panel considered it feasible to amend the EU specifications, in particular for the toxic elements arsenic, lead, mercury and introduce new specifications for cadmium and microbiological criteria. The safety issue identified by the ANS Panel in 2017 concerned potential neurodevelopmental effects. For the reason that choline is a precursor of the neurotransmitter acetylcholine, the Panel considered it appropriate to address the safety of lecithins (E 322) as food additive in infant formula used in infants below the age of 16 weeks by comparing the concentration of choline in human milk with that in the formula. The Panel concluded that the intake of lecithins (E 322) as a food additive in infant formula belonging to FC 13.1.1 or in food for special medical purposes belonging to FC 13.1.5.1 does not raise safety concerns up to the maximum permitted level (MPL) of lecithins (E 322).
Collapse
|
32
|
Li S, Chen Y, Han B, Xu T, Liu T, Yi H, Zhou X, Zhang L, Liu P, Ma C, Li Y, Pan J, Jiang S. Composition and variability of phospholipids in Chinese human milk samples. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Sun H, Ren Q, Zhao X, Tian Y, Pan J, Wei Q, Li Y, Chen Y, Zhang H, Zhang W, Jiang S. Regional similarities and differences in mature human milk fatty acids in Chinese population: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102184. [PMID: 33045533 DOI: 10.1016/j.plefa.2020.102184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Maternal factors such as the diet can impact human milk fatty acid profiles. We hypothesized that mature human milk fatty acid profiles differ among regions of China. To test our hypothesis, we conducted a systematic review to calculate regional average contents of fatty acids and the statistical significance of regional differences in fatty acids. We searched both Chinese and English literature databases and selected 21 articles, including 11 in Chinese and 10 in English. We categorized regions of China by 3 ways: 1) north vs. south; 2) inland vs. coastal; 3) socioeconomic development levels. The ratios of ΣSFAs:ΣMUFAs:ΣPUFAs were similar between regions and the average was 1:1:0.7. Contents of palmitic, oleic, and linoleic acids were also similar between regions and together they accounted for more than 70% of all fatty acids in mature human milk. Conversely, concentrations of ALA and DHA differed more than palmitic, oleic, and linoleic acids. We also found that it might be necessary to reduce maternal dietary contents of potentially harmful fatty acids such as erucic acid to minimize detrimental effects on infant health. To our knowledge, this study represents the first systematic review that quantitatively investigated the regional similarities and differences in mature human milk fatty acid contents and is therefore significant for academia and policy makers.
Collapse
Affiliation(s)
- Han Sun
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Qiqi Ren
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Xuejun Zhao
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yueyue Tian
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Jiancun Pan
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Qiaosi Wei
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yuanyuan Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yong Chen
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Huaqin Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Wei Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China.
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
34
|
Effect of Maternal Diet and Milk Lipid Composition on the Infant Gut and Maternal Milk Microbiomes. Nutrients 2020; 12:nu12092539. [PMID: 32825705 PMCID: PMC7551594 DOI: 10.3390/nu12092539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Inter-subject variability in human milk microbiome is well known; however, its origins and possible relationship to the mother’s diet are still debated. We investigated associations between maternal nutrition, milk fatty acids composition and microbiomes in mother–infant dyads. Breast milk and infant fecal samples were collected across three time points (one week, one month and three months postpartum) from 22 mother–infant pairs. Food frequency questionnaires for the months of pregnancy and three months postpartum were collected. Milk fatty acids were analyzed by GC–MS and the microbiome in breast milk and infant feces was determined by 16S rRNA sequencing. Statistical interactions were computed using Spearman’s method and corrected for multiple comparisons. We found significant negative correlation between Streptococcus relative abundance in maternal milk and intake of unsaturated fatty acids and folic acid at one month postpartum. At three months postpartum, vitamin B-12 consumption was significantly associated with a single operational taxonomic unit belonging to Streptococcus. Comparison between milk microbiome and lipid composition showed, one-month postpartum, significant negative correlation between Streptococcus relative abundance and the abundance of oleic acid. Additional correlations were detected between Staphylococcus hominis and two medium-chain saturated fatty acids. Our results reinforce the hypothesis that maternal nutrition may affect milk microbiome.
Collapse
|
35
|
Ding Y, Indayati W, Basnet TB, Li F, Luo H, Pan H, Wang Z. Dietary intake in lactating mothers in China 2018: report of a survey. Nutr J 2020; 19:72. [PMID: 32664937 PMCID: PMC7362564 DOI: 10.1186/s12937-020-00589-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The nutritional status of lactating mothers (LMs) is related to their own health and significantly impacts the secretion of breast-milk, and subsequently the growth and development of infants. Due to the influence of regional economy, traditional habits, and lack of nutrition knowledge, the problem of poor dietary nutrition among Chinese LMs is prominent. We aimed to evaluate and compare the dietary and nutrient intakes in LMs from urban and rural areas in China to provide baseline data for the implementation of relevant health guidance and strategies. Methods A multi-stage sampling method was used to recruit urban and rural LMs from 13 provinces and municipalities in China. An online dietary record using food photographs was employed to keep track of what the LMs had eaten in 2 days in the form of face-to-face interview. A total of 954 participants were included in the final analysis. Data expressed as quartiles P50 (P25; P75) were compared using the Mann-Whitney U-test (level of significance: p < 0.05). Results The consumption of staple food was higher in the rural (283.37 g/d) than in the urban areas (263.21 g/d). The consumption of vegetables, fruits, fish, shrimp, and shellfish, milk and dairy products was lower than the recommended amounts in both areas, and the insufficient intake of these food types was more serious in rural areas. While the energy intake of 83.8% of all LMs was lower than the estimated energy reference, it was comparable in the urban and rural areas. The intake of macronutrients (carbohydrates, protein, and fats) in rural areas was lower than in urban areas. The intake of some vitamins (VA, VB1, VB2, VB9 and VC) and minerals (calcium, magnesium, iodine and copper) was not ideal for LMs in both rural and urban areas. Conclusions Overall, the dietary intake in LMs was lower than the recommended levels. Many essential nutrients failed to meet the recommended doses, both in the urban and rural areas. The deficiencies in micronutrients were more prevalent in rural compared to urban areas. Educating LMs about women’s health and appropriate dietary intake is, therefore, essential.
Collapse
Affiliation(s)
- Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Wiwik Indayati
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Til Bahadur Basnet
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Fang Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Hongliang Luo
- Danone Open Science Research Center for Life-transforming Nutrition, Shanghai, 201204, People's Republic of China
| | - Han Pan
- Danone Open Science Research Center for Life-transforming Nutrition, Shanghai, 201204, People's Republic of China
| | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
36
|
Abstract
OBJECTIVE Dietary lipid intake is associated with serum alpha-tocopherol levels; however, its impact on human milk is unknown. The objective of this study was to evaluate the relationship between maternal intake of vitamin E, lipids, and fatty acids and the concentration of alpha-tocopherol in human milk. METHODS We conducted a longitudinal observational study, including 143 lactating women on 7, 30, and 90 days postpartum. Dietary intake was collected using 24-hour recall. On day 90, a human milk sample was collected and analyzed for alpha-tocopherol concentration. The prevalence of inadequate vitamin E intake was determined by the Estimated Average Requirement (16 mg/day), and the alpha-tocopherol concentration was analyzed by high-performance liquid chromatography. RESULTS Dietary intake of vitamin E was associated with the intake of lipids (r = 0.237, P = 0.004) and fatty acids (P < 0.05), and 100% of the participants had inadequate vitamin intake. Mean alpha-tocopherol concentration in the human milk samples was 7.11 (standard deviation 3.95) μmol/L and was correlated with lipid (r = 0.201, P = 0.042) and polyunsaturated fatty acid intake (r = 0.235, P = 0.017). Higher vitamin E levels were found in participants with the highest quartile of polyunsaturated fatty acid intake. CONCLUSIONS Alpha-tocopherol concentration was associated with the dietary intake of lipids and fatty acids, demonstrating that its bioavailability is associated with fats in the mammary gland. These results suggest development of appropriate strategies to increase the levels of vitamin E in breast milk that may help to prevent and treat vitamin E deficiency.
Collapse
|
37
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Bahreynian M, Feizi A, Kelishadi R. Is fatty acid composition of breast milk different in various populations? A systematic review and meta-analysis. Int J Food Sci Nutr 2020; 71:909-920. [PMID: 32253956 DOI: 10.1080/09637486.2020.1746958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This systematic review and meta-analysis aims to systematically review the fatty acid (FA) composition of breast milk in different populations. We systematically searched the Medline via PubMed, Scopus and Clarivate till July 2019. We initially retrieved 433 articles. Having removed duplicates, with initial searching of title and abstracts, 317 papers were excluded and 80 remained. A meta-analysis of 80 cross-sectional, cohort studies, including 8793 subjects, was conducted. Meta-regression analysis indicated that factors including maternal age (p-values of SFA: 0.03, omega-3: 0.01, trans fats:<0.001, total fatty acids: 0.02), year of conducting study (p-values of SFA: <0.001, MUFA: 0.02, omega-6: 0.04,trans fats: 0.04) and sample size (p-values of SFA: 0.03, PUFA: 0.01, omega-6: 0.01, omega-3:<0.001) contributed to the heterogeneity of meta-analysis. This study indicates the large variation of FA content in maternal milk across different populations. Special concern is necessary for both the quality and total amount of fat intake of pregnant and lactating mothers.
Collapse
Affiliation(s)
- Maryam Bahreynian
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Triacylglycerol containing medium-chain fatty acids (MCFA-TAG): The gap between human milk and infant formulas. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
41
|
McJarrow P, Radwan H, Ma L, MacGibbon AK, Hashim M, Hasan H, Obaid RS, Naja F, Mohamed HJJ, Al Ghazal H, Fong BY. Human Milk Oligosaccharide, Phospholipid, and Ganglioside Concentrations in Breast Milk from United Arab Emirates Mothers: Results from the MISC Cohort. Nutrients 2019; 11:E2400. [PMID: 31597293 PMCID: PMC6835464 DOI: 10.3390/nu11102400] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs), phospholipids (PLs), and gangliosides (GAs) are components of human breast milk that play important roles in the development of the rapidly growing infant. The differences in these components in human milk from the United Arab Emirates (UAE) were studied in a cross-sectional trial. High-performance liquid chromatography‒mass spectrometry was used to determine HMO, PL, and GA concentrations in transitional (5-15 days) and mature (at 6 months post-partum) breast milk of mothers of the United Arab Emirates (UAE). The results showed that the average HMO (12 species), PL (7 species), and GA (2 species) concentrations quantified in the UAE mothers' transitional milk samples were (in mg/L) 8204 ± 2389, 269 ± 89, and 21.18 ± 11.46, respectively, while in mature milk, the respective concentrations were (in mg/L) 3905 ± 1466, 220 ± 85, and 20.18 ± 9.75. The individual HMO concentrations measured in this study were all significantly higher in transitional milk than in mature milk, except for 3 fucosyllactose, which was higher in mature milk. In this study, secretor and non-secretor phenotype mothers showed no significant difference in the total HMO concentration. For the PL and GA components, changes in the individual PL and GA species distribution was observed between transitional milk and mature milk. However, the changes were within the ranges found in human milk from other regions.
Collapse
Affiliation(s)
- Paul McJarrow
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Lin Ma
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Alastair K.H. MacGibbon
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Reyad Shaker Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Farah Naja
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hamid Jan Jan Mohamed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | | | - Bertram Y. Fong
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| |
Collapse
|
42
|
Burianova I, Bronsky J, Pavlikova M, Janota J, Maly J. Maternal body mass index, parity and smoking are associated with human milk macronutrient content after preterm delivery. Early Hum Dev 2019; 137:104832. [PMID: 31422343 DOI: 10.1016/j.earlhumdev.2019.104832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Maternal characteristics may be associated with human milk macronutrients but no definite conclusions have been made to date. AIM This study aimed to determine the relationship of maternal-associated factors on the content of macronutrients in human milk for the first six weeks after preterm delivery. STUDY DESIGN Prospective observational cohort study. SUBJECTS Milk samples were collected from mothers after premature birth between 24 + 0-35 + 6 weeks. OUTCOME MEASURES Macronutrients and energy content were analyzed by mid-infrared transmission spectroscopy. Demographic and anthropometric data from mothers were systematically recorded. RESULTS A total 1.558 human milk samples from 192 mothers were analyzed. Colostrum: higher protein (p = 0.001) and lower carbohydrate content (p = 0.003) were present in primiparous compared to multiparous milk. Vaginal birth was associated with increased carbohydrate content (p = 0.021). Fat and energy content in colostrum was not related to any maternal characteristics. Mature human milk: similarly to colostrum, higher protein content (p = 0.001) and lower carbohydrates content (p = 0.022) were observed in primiparous compared to multiparous milk. The mode of delivery was found to be another factor possibly influencing protein and carbohydrate levels (p = 0.036, p = 0.003, respectively). Pre-pregnancy obesity was associated with increased fat (p = 0.030) and energy content (p = 0.020) in human milk. On the contrary, smoking had a negative relationship to fat and energy content (p = 0.026, p = 0.007, respectively). CONCLUSION Human milk macronutrient concentration after preterm delivery is associated with pre-pregnancy obesity, parity, mode of delivery and smoking. The impact of maternal factors on human milk composition should be taken into account in a strategy of feeding in premature infants.
Collapse
Affiliation(s)
- Iva Burianova
- Department of Neonatology, Thomayer Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jiri Bronsky
- Department of Paediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Jan Janota
- Department of Neonatology, Thomayer Hospital, Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Maly
- Department of Paediatrics, Division of Neonatology, Faculty of Medicine, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
43
|
Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. State of the art in sample preparation for human breast milk metabolomics—merits and limitations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Wei W, Jin Q, Wang X. Human milk fat substitutes: Past achievements and current trends. Prog Lipid Res 2019; 74:69-86. [DOI: 10.1016/j.plipres.2019.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
|
46
|
A new dilution-enrichment sample preparation strategy for expanded metabolome monitoring of human breast milk that overcomes the simultaneous presence of low- and high-abundance lipid species. Food Chem 2019; 288:154-161. [PMID: 30902276 DOI: 10.1016/j.foodchem.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/23/2022]
Abstract
The complex nature of human breast milk (HBM) makes samples difficult to analyze, requiring several extraction techniques and analytical platforms to obtain high metabolome coverage. In this work, we combined liquid-liquid extraction (LLE) and solid-phase extraction (SPE) techniques to prepare HBM samples to overcome the challenge of low- and high-abundance lipid species, enabling the semiquantitative analysis of total HBM lipids in one liquid chromatography-mass spectrometry (LC-MS) run. A nonorganic fraction obtained during the LLE step was used to analyze small polar metabolites. This analytical approach allows extensive metabolome coverage, especially for low-abundance glycerophospholipids and sphingolipids. The method was applied to monitor short-term metabolome changes in HBM composition within individual mothers and the results showed variable metabolite composition patterns. Simultaneous detection of high-abundance glycerolipids and low-abundance but not less significant phospholipids in one LC-MS run saves time, decreases cost, and enables comprehensive insight into the dynamics of HBM composition.
Collapse
|
47
|
Thakkar SK, De Castro CA, Beauport L, Tolsa JF, Fischer Fumeaux CJ, Affolter M, Giuffrida F. Temporal Progression of Fatty Acids in Preterm and Term Human Milk of Mothers from Switzerland. Nutrients 2019; 11:nu11010112. [PMID: 30626044 PMCID: PMC6356418 DOI: 10.3390/nu11010112] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 01/20/2023] Open
Abstract
We longitudinally compared fatty acids (FA) from human milk (HM) of mothers delivering term and preterm infants. HM was collected for 4 months postpartum at 12 time points for preterm and for 2 months postpartum at 8 time points for term group. Samples were collected from the first feed of the morning, and single breast was fully expressed. FA were analyzed by gas chromatography coupled with flame ionization detector. Oleic, palmitic and linoleic acids were the most abundant FA across lactation and in both groups. Preterm colostrum contained significantly (p < 0.05) higher 8:0, 10:0, 12:0, sum medium chain fatty acids (MCFA), 18:3 n-3 FA compared to term counterparts. Preterm mature milk contained significantly higher 12:0, 14:0, 18:2 n-6, sum saturated fatty acids (SFA), and sum MCFA. We did not observe any significant differences between the preterm and term groups for docosahexaenoic acid, arachidonic acid and eicosapentaenoic acid at any stage of lactation. Overall, preterm milk was higher for SFA with a major contribution from MCFA and higher in 18:2 n-6. These observational differences needs to be studied further for their implications on preterm developmental outcomes and on fortification strategies of either mothers’ own milk or donor human milk.
Collapse
Affiliation(s)
- Sagar K Thakkar
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne 1000, Switzerland.
| | | | - Lydie Beauport
- Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Lausanne 1011, Switzerland.
| | - Jean-François Tolsa
- Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Lausanne 1011, Switzerland.
| | - Céline J Fischer Fumeaux
- Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Lausanne 1011, Switzerland.
| | - Michael Affolter
- Nestlé Institute of Food Safety & Analytical Science, Nestlé Research, Lausanne 1000, Switzerland.
| | - Francesca Giuffrida
- Nestlé Institute of Food Safety & Analytical Science, Nestlé Research, Lausanne 1000, Switzerland.
| |
Collapse
|
48
|
Fatty acid positional distribution (sn-2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. Br J Nutr 2018; 121:65-73. [PMID: 30378505 DOI: 10.1017/s0007114518002994] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study quantified the fatty acid profile with emphasis on the stereo-specifically numbered (sn) 2 positional distribution in TAG and the composition of main phospholipids at different lactation stages. Colostrum milk (n 70), transitional milk (n 96) and mature milk (n 82) were obtained longitudinally from healthy lactating women in Shanghai. During lactation, total fatty acid content increased, with SFA dominating in fatty acid profile. A high ratio of n-6:n-3 PUFA was observed as 11:1 over lactation due to the abundance of linoleic acid in Chinese human milk. As the main SFA, palmitic acid showed absolute sn-2 selectivity, while oleic acid, linoleic acid and α-linolenic acid, the main unsaturated fatty acids, were primarily esterified at the sn-1 and sn-3 positions. Nervonic acid and C22 PUFA including DHA were more enriched in colostrum with an sn-2 positional preference. A total of three dominant phospholipids (phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM)) were analysed in the collected samples, and each showed a decline in amount over lactation. PC was the dominant compound followed by SM and PE. With prolonged breast-feeding time, percentage of PE in total phospholipids remained constant, but PC decreased, and SM increased. Results from this study indicated a lipid profile different from Western reports and may aid the development of future infant formula more suitable for Chinese babies.
Collapse
|
49
|
Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front Pediatr 2018; 6:313. [PMID: 30460213 PMCID: PMC6232911 DOI: 10.3389/fped.2018.00313] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Emily Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jules Larke
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mariana Parenti
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
50
|
Bomfim VS, Jordão AA, Alves LG, Martinez FE, Camelo JS. Human milk enriched with human milk lyophilisate for feeding very low birth weight preterm infants: A preclinical experimental study focusing on fatty acid profile. PLoS One 2018; 13:e0202794. [PMID: 30252854 PMCID: PMC6155441 DOI: 10.1371/journal.pone.0202794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Human milk, with essential nutrients and long chain polyunsaturated fatty acids (LC-PUFAs) such as the omega 3 and 6 fatty acids is important for development of the central nervous system and the retina in very low birth weight infants (<1,500 g). However, breast milk may not be sufficient to meet these needs. The possibility of supplementing breast milk with a lyophilisate of human milk was explored in this study. The objectives of this study were to determine the total lipid content and the lipid profile of the Human Milk on Baseline (HMB) and that of the Concentrates with the Human Milk + lyophilisate (with lyophilisate of milk in the immediate period (HMCI), at 3 months (HMC3m), and at 6 months (HMC6m) of storage). METHODS Fifty donors from the Human Milk Bank of Children's Hospital provided consent, and donated milk samples. Macronutrient (including total lipids) quantification was performed using the MIRIS® Human Milk Analyzer, and the fatty acid profile was determined by gas chromatography (CG-FID, SHIMADZU®). RESULTS There was a higher lipid concentration in HMCI relative to HMB. The concentrations of the main fatty acids (% of total) were as follows: palmitic acid (C16:0) HMB, 22.30%; HMCI, 21.46%; HMC3m, 21.54%; and HMC6m, 21.95% (p<0.01); oleic acid (C18:1n-9) HMB, 30.41%; HMCI, 30.47%; HMC3m, 30.55%; and HMC6m, 29.79% (p = 0.46); linoleic acid (C18:2n-6) HMB, 19.62%; HMCI, 19.88%; HMC3m, 19.49%; and HMC6m, 19.45% (p = 0.58); arachidonic acid (C20:4n-6) HMB, 0.35%; HMCI, 0.16%; HMC3m, 0.13%; and HMC6m, 0.15% (p<0.01); α-linolenic acid (C18:3n-3) HMB,1.32%; HMCI, 1.37%; HMC3m, 1.34%; and 1.34% HMC6m (p = 0.14); docosahexaenoic acid (C22:6n-3) HMB, 0.10%; HMCI, 0.06%; HMC3m, 0.05%; and HMC6m, 0.06% (p<0.01). There were no significant changes in the lipid profile when stored. There was no evidence of peroxidation during storage. CONCLUSIONS Freeze-dried human milk fortified with a human milk concentrate brings potential benefits to newborns, mainly by preserving the essential nutrients present only in breast milk; however, further clinical studies are required to evaluate the safety and efficacy of the concentrate as a standard nutritional food option for very low birth weight infants.
Collapse
Affiliation(s)
- Vanessa S. Bomfim
- Department of Pediatrics, Children´s Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alceu A. Jordão
- Department of Internal Medicine, Nutrition Laboratory, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Larissa G. Alves
- Human Milk Bank, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco E. Martinez
- Department of Pediatrics, Neonatology, Children´s Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Simon Camelo
- Department of Pediatrics, Neonatology, Children´s Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|