1
|
Niaz M, Iftikhar K, Shahid M, Faizi S, Usman Simjee S. Quinic acid contributes to neurogenesis: Targeting Notch pathway a key player in hippocampus. Brain Res 2024; 1846:149291. [PMID: 39442647 DOI: 10.1016/j.brainres.2024.149291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Coordinated proliferation and differentiation of neural stem cells (NSCs) results in continuous neurogenesis. The present study provides novel insights into the Notch intracellular signaling in neuronal cell proliferation, maintenance, migration, and differentiation regulated by naturally based Quinic acid (QA) in primary hippocampal cell culture. Further, this study might help in the discovery and development of lead molecules that can overcome the challenges in the treatment of neurodegenerative diseases. The growth supporting effect of QA was studied using Alamar Blue assay. The migratory potential of QA was evaluated using scratch assay. The in vitro H2O2-induced oxidative stress model was used to upregulate neuronal survival after QA treatment. The RT-qPCR and immunocytochemical analysis were performed for selected markers of Notch signaling to determine the proliferation, differentiation, and maintenance of NSCs at gene and molecular levels. The Mash1 and Ngn2 are the upstream proneural genes of the Notch pathway which were included to evaluate the differentiation of NSCs into mature neurons after treatment with QA. Furthermore, regarding the role of QA in maintaining the pool of NPCs, we used Notch1 and Hes1 markers for proliferation analysis. Also, secondary neuronal markers i.e. Pax6, PCNA, and Mcm2 were included in this study and their gene expression analysis was analyzed following treatment with QA. Based on the study's results, we suggest that naturally based QA can promote the growth and differentiation of neonatal NSCs residing in hippocampal regions into neuronal lineage. Therefore, we propose that the neurogenic potential of QA can be employed to prevent and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Maryam Niaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Iftikhar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maha Shahid
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shabana Usman Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Liang S, Zhao Z, Liu L, Zhang Y, Liu X. Research Progress on the Mechanisms of Protocatechuic Acid in the Treatment of Cognitive Impairment. Molecules 2024; 29:4724. [PMID: 39407652 PMCID: PMC11478363 DOI: 10.3390/molecules29194724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment (CI) is a type of mental health disorder that mainly affects cognitive abilities, such as learning, memory, perception, and problem-solving. Currently, in clinical practice, the treatment of cognitive impairment mainly focuses on the application of cholinesterase inhibitors and NMDA receptor antagonists; however, there is no specific and effective drug yet. Procatechuic acid (PCA) possesses various functions, including antibacterial, antiasthmatic, and expectorant effects. In recent years, it has received growing attention in the cognitive domain. Therefore, by summarizing the mechanisms of action of procatechuic acid in the treatment of cognitive impairment in this paper, it is found that procatechuic acid has multiple effects, such as regulating the expression of neuroprotective factors, inhibiting cell apoptosis, promoting the autophagy-lysosome pathway, suppressing oxidative stress damage, inhibiting inflammatory responses, improving synaptic plasticity dysfunction, inhibiting Aβ deposition, reducing APP hydrolysis, enhancing the cholinergic system, and inhibiting the excitotoxicity of neuronal cells. The involved signaling pathways include activating Pi3K-akt-mTor and inhibiting JNK, P38 MAPK, P38-ERK-JNK, SIRT1, and NF-κB/p53, etc. This paper aims to present the latest progress in research on procatechuic acid, including aspects such as its chemical properties, sources, pharmacokinetics, mechanisms for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuzhi Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Zhongmin Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Leilei Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Yan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
- The Youth Research and Innovation Team of TCM for the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xijian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| |
Collapse
|
3
|
Ibrahim RM, Abdel-Baki PM, Mohamed OG, Al-Karmalawy AA, Tripathi A, El-Shiekh RA. Metabolites profiling, in-vitro and molecular docking studies of five legume seeds for Alzheimer's disease. Sci Rep 2024; 14:19637. [PMID: 39179586 PMCID: PMC11344142 DOI: 10.1038/s41598-024-68743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
Even though legumes are valuable medicinal plants with edible seeds that are extensively consumed worldwide, there is little information available on the metabolic variations between different dietary beans and their influence as potential anti-cholinesterase agents. High-resolution liquid chromatography coupled with mass spectrometry in positive and negative ionization modes combined with multivariate analysis were used to explore differences in the metabolic profiles of five commonly edible seeds, fava bean, black-eyed pea, kidney bean, red lentil, and chickpea. A total of 139 metabolites from various classes were identified including saponins, alkaloids, phenolic acids, iridoids, and terpenes. Chickpea showed the highest antioxidant and anti-cholinesterase effects, followed by kidney beans. Supervised and unsupervised chemometric analysis determined that species could be distinguished by their different discriminatory metabolites. The major metabolic pathways in legumes were also studied. Glycerophospholipid metabolism was the most significantly enriched KEGG pathway. Pearson's correlation analysis pinpointed 18 metabolites that were positively correlated with the anti-cholinesterase activity. Molecular docking of the biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes revealed promising binding scores, validating the correlation results. The present study will add to the metabolomic analysis of legumes and their nutritional value and advocate their inclusion in anti-Alzheimer's formulations.
Collapse
Affiliation(s)
- Rana M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Passent M Abdel-Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Ibrahim RM, El-Shiekh RA, Mohamed OG, Al-Karmalawy AA, Tripathi A, Abdel-Baki PM. LC/MS-Based Metabolomics Reveals Chemical Variations of Two Broccoli Varieties in Relation to Their Anticholinesterase Activity: In vitro and In silico Studies. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:359-366. [PMID: 38607508 PMCID: PMC11178554 DOI: 10.1007/s11130-024-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Broccoli is commonly consumed as food and as medicine. However, comprehensive metabolic profiling of two broccoli varieties, Romanesco broccoli (RB) and purple broccoli (PB), in relation to their anticholinergic activity has not been fully disclosed. A total of 110 compounds were tentatively identified using UPLC-Q-TOF-MS metabolomics. Distinctively different metabolomic profiles of the two varieties were revealed by principal component analysis (PCA). Furthermore, by volcano diagram analysis, it was found that PB had a significantly higher content of phenolic acids, flavonoids, and glucosinolates, indicating the different beneficial health potentials of PB that demonstrated higher antioxidant and anticholinergic activities. Moreover, Pearson's correlation analysis revealed 18 metabolites, mainly phenolic and sulfur compounds, as the main bioactive. The binding affinity of these biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes was further validated using molecular docking studies. Results emphasize the broccoli significance as a functional food and nutraceutical source and highlight its beneficial effects against Alzheimer's disease.
Collapse
Affiliation(s)
- Rana M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, 34518, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Passent M Abdel-Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Vaziri-Amjad S, Rahgosha R, Taherkhani A. Potential JAK2 Inhibitors from Selected Natural Compounds: A Promising Approach for Complementary Therapy in Cancer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:1114928. [PMID: 38706884 PMCID: PMC11068457 DOI: 10.1155/2024/1114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Background Janus-activated kinase 2 (JAK2) plays a pivotal role in numerous essential biological processes, including proliferation, apoptosis, and metastasis in human cells. Prior studies have indicated that inhibiting JAK2 could be a promising strategy to mitigate cell proliferation and induce apoptosis in tumor cells. Objectives This study aimed to estimate the binding affinity of 79 herbal compounds, comprising 46 flavonoids, 21 anthraquinones, and 12 cinnamic acids, to the ATP-binding cleft of JAK2 to identify potential herbal inhibitors of JAK2. Methods The binding affinities between ligands and JAK2 were calculated utilizing AutoDock 4.0 software in conjunction with the Cygwin environment. Cross-validation was conducted using the Schrödinger tool. Molecular dynamics simulations were employed to evaluate the stability of docked poses for the most significant JAK2 inhibitors. Furthermore, the Discovery Studio Visualizer tool was utilized to elucidate interactions between the top-ranked JAK2 inhibitors and residues within the JAK2 ATP-binding site. Results Twelve flavonoids, two anthraquinones, and three cinnamic acids demonstrated substantial binding affinities to the protein kinase domain of the receptor, with a criterion of ΔGbinding < -10 kcal/mol. Among the studied flavonoids, anthraquinones, and cinnamic acid derivatives, orientin, chlorogenic acid, and pulmatin emerged as the most potent JAK2 inhibitors, exhibiting ΔGbinding scores of -14.49, -11.87, and -10.76 kcal/mol, respectively. Furthermore, the docked poses of orientin, pulmatin, and chlorogenic acid remained stable throughout 60 ns computer simulations. The average root mean square deviation values calculated for JAK2 when complexed with orientin, chlorogenic acid, and pulmatin were 2.04 Å, 2.06 Å, and 1.95 Å, respectively. Conclusion This study underscores the robust inhibitory potential of orientin, pulmatin, and chlorogenic acid against JAK2. The findings hold promise for the development of novel and effective drugs for cancer treatment.
Collapse
Affiliation(s)
- Samaneh Vaziri-Amjad
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Rahgosha
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Ali SO, Ghaiad HR, Elmasry GF, Mehana NA. Sinapic Acid Mitigates Pentylenetetrazol-induced Acute Seizures By Modulating the NLRP3 Inflammasome and Regulating Calcium/calcineurin Signaling: In Vivo and In Silico Approaches. Inflammation 2024:10.1007/s10753-024-02019-0. [PMID: 38662166 DOI: 10.1007/s10753-024-02019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sinapic acid (SA) is a naturally occurring carboxylic acid found in citrus fruits and cereals. Recent studies have shown that SA has potential anti-seizure properties due to its anti-inflammatory, antioxidant, and anti-apoptotic effects. The present study investigated the neuroprotective role of SA at two different dosages in a pentylenetetrazol (PTZ)-induced acute seizure model. Mice were divided into six groups: normal control, PTZ, SA (20 mg/kg), SA (20 mg/kg) + PTZ, SA (40 mg/kg), and SA (40 mg/kg) + PTZ. SA was orally administered for 21 days, followed by a convulsive dose of intraperitoneal PTZ (50 mg/kg). Seizures were estimated via the Racine scale, and animals were behaviorally tested using the Y-maze. Brain tissues were used to assess the levels of GABA, glutamate, oxidative stress markers, calcium, calcineurin, (Nod)-like receptor protein-3 (NLRP3), interleukin (IL)-1β, apoptosis-associated speck-like protein (ASC), Bcl-2-associated death protein (Bad) and Bcl-2. Molecular docking of SA using a multistep in silico protocol was also performed. The results showed that SA alleviated oxidative stress, restored the GABA/glutamate balance and calcium/calcineurin signaling, downregulated NLRP3 and apoptosis, and improved recognition and ambulatory activity in PTZ-treated mice. In silico results also revealed that SA strongly interacts with the target proteins NLRP3 and ASC. Overall, the results suggest that SA is a promising antiseizure agent and that both doses of SA are comparable, with 40 mg/kg SA being superior in normalizing glutathione, calcium and IL-1β, in addition to calcineurin, NLRP3, ASC and Bad.
Collapse
Affiliation(s)
- Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Noha A Mehana
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
7
|
Habashy NH, Abu-Serie MM. Attenuation of carbon tetrachloride-induced nephrotoxicity by gum Arabic extract via modulating cellular redox state, NF-κB pathway, and KIM-1. Biomed Pharmacother 2024; 173:116340. [PMID: 38428308 DOI: 10.1016/j.biopha.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
The current study investigated the ameliorating impact of GA water extract (GAE) on CCl4-induced nephrotoxicity in renal cells and tissue by comparing its effectiveness with the Ketosteril (Ks) drug in restoring oxidative stress and necroinflammation. The cell morphology, necrosis, and redox state were evaluated in Vero cells. The influence of GAE on CCl4-induced oxidative stress, inflammation, and necrosis was examined in rats. The predicted inhibitory mechanism of GAE phenolic constituents against COX-2 and iNOS was also studied. The results revealed that GAE contains crucial types of phenolic acids, which are associated with its antiradical activities. GAE improved CCl4-induced Vero cell damage and restored renal architecture damage, total antioxidant capacity, ROS, TBARS, NO, GSH, GPX, SOD, and MPO in rats. GAE downregulated the gene expression of renal NF-κB, TNF-α, iNOS, and COX-2, as well as kidney injury molecule-1 (KIM-1) in rats. The GAE improved blood urea, creatinine, cholesterol, and reducing power. The computational analysis revealed the competitive inhibitory mechanism of selected phenolic composites of GAE on COX-2 and iNOS activities. The GAE exhibited higher potency than Ks in most of the studied parameters, as observed by the heatmap plots. Thus, GAE is a promising extract for the treatment of kidney toxicity.
Collapse
Affiliation(s)
- Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
8
|
Hu Y, Wu X, Zhou L, Liu J. Which is the optimal choice for neonates' formula or breast milk? NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:21. [PMID: 38488905 PMCID: PMC10942964 DOI: 10.1007/s13659-024-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
10
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
11
|
Wang ZP, Zhang W, Xing LZ, Zhao YD, Xu J, Zhang YX. Therapeutic potential of Coumarin-polyphenolic acid hybrids in PD: Inhibition of α-Syn aggregation and disaggregation of preformed fibrils, leading to reduced neuronal inclusion formation. Bioorg Med Chem Lett 2024; 99:129618. [PMID: 38219887 DOI: 10.1016/j.bmcl.2024.129618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 μM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of β-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.
Collapse
Affiliation(s)
- Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ji Xu
- Deparment of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| |
Collapse
|
12
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
13
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
14
|
Fotopoulos I, Pontiki E, Hadjipavlou-Litina D. Pharmacochemical Study of Multitarget Amino Acids' Hybrids: Design, Synthesis, In vitro, and In silico Studies. Med Chem 2024; 20:709-720. [PMID: 38347768 PMCID: PMC11348465 DOI: 10.2174/0115734064279653240125081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Neuro-inflammation is a complex phenomenon resulting in several disorders. ALOX-5, COX-2, pro-inflammatory enzymes, and amino acid neurotransmitters are tightly correlated to neuro-inflammatory pathologies. Developing drugs that interfere with these targets will offer treatment for various diseases. OBJECTIVE Herein, we extend our previous research by synthesizing a series of multitarget hybrids of cinnamic acids with amino acids recognized as neurotransmitters. METHODS The synthesis was based on an In silico study of a library of cinnamic amide hybrids with glycine, γ- aminobutyric, and L - glutamic acids. Drug-likeness and ADMET properties were subjected to In silico analysis. Cinnamic acids were derived from the corresponding aldehydes by Knoevenagel condensation. The synthesis of the amides followed a two-step reaction with 1- hydroxybenzotriazole monohydrate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in dry dichloromethane and the corresponding amino acid ester hydrochloride salt in the presence of N,N,-diisopropyl-Nethylamine. RESULTS The structure of the synthesized compounds was confirmed spectrophotometrically. The new compounds, such as lipoxygenase, cyclooxygenase-2, lipid peroxidation inhibitors, and antiinflammatories, were tested in vitro. The compounds exhibited LOX inhibition with IC50 values in the low μM region). CONCLUSION Compounds 18a, 23b, and 11c are strong lipid peroxidation inhibitors (99%, 78%, and 92%). Compound 28c inhibits SLOX-1 with IC50 =8.5 μM whereas 11a and 22a highly inhibit COX-2 (IC50 6 and 5 μM Hybrids 14c and 17c inhibit both enzymes. Compound 29c showed the highest anti-inflammatory activity (75%). The In silico ADMET properties of 14c and 11a support their drug-likeness.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
15
|
Sood P, Singh V, Shri R. Morus Alba Fruit Extract and its Fractions Ameliorate Streptozotocin Induced Cognitive Deficit in Mice via Modulating Oxidative and Cholinergic Systems. Neurochem Res 2024; 49:52-65. [PMID: 37597050 DOI: 10.1007/s11064-023-04009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Increased oxidative stress and acetylcholinesterase (AChE) activity are key pathological characters contributing to the memory disorders. Thus, drugs targeting both oxidative stress and AChE are being explored for the management of cognitive dysfunction. Morus alba fruits (commonly consumed for its high nutritious value) are known to have antioxidant and AChE inhibitory effects. However, the role of Morus alba fruits in the management of memory disorders has not reported yet. This investigation was conducted to assess the antioxidant and AChE inhibitory potential of Morus alba fruit extracts in-vitro and to identify the components responsible for such effects. Further, the obtained bioactive component was studied for possible memory improvement effects against streptozotocin (STZ) induced dementia. To isolate the bioactive component in-vitro DPPH and AChE assays guided fractionation was performed. Memory functions in mice were determined using Morris Water Maze test while brain biochemical parameters were measured to understand the mechanism of action. In-vitro assays revealed strong AChE and DPPH inhibitory potential of methanol extract (ME), therefore, it was further fractionated. Among various fractions obtained, ethyl-acetate fraction (EAF) was found to possess marked AChE and DPPH inhibitory activities. On subsequent fractionation of EAF, bioactivity of obtained sub-fractions was found to be inferior to EAF. Further, both ME and EAF improved STZ (intracerebroventricular) induced cognitive dysfunction in animals by restoring endogenous antioxidant status (superoxide dismutase and reduced glutathione) and reducing thiobarbituric acid reactive species and nitric oxide levels along with brain AChE and myeloperoxidase activity. TLC densitometric studies showed appreciable levels of phenolic acids and quercetin in both EAF and ME. It can be concluded that Morus alba fruit extract has the ability to modulate cholinergic and oxidative system due to presence of phenolic and flavonoid compounds and hence, could aid in the management of memory disorders.
Collapse
Affiliation(s)
- Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Solan, Himachal Pradesh, India
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
16
|
Chen J, Yu S, He Z, Zhu D, Cai X, Ruan Z, Jin N. Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid: In Vitro and In Vivo Investigations and Docking Simulations. Curr Pharm Biotechnol 2024; 25:477-487. [PMID: 37345239 DOI: 10.2174/1389201024666230621141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Background: Cinnamic acid and its derivatives have gained significant attention in recent medicinal research due to their broad spectrum of pharmacological properties. However, the effects of these compounds on xanthine oxidase (XO) have not been systematically investigated, and the inhibitory mechanism remains unclear. Objectives: The objective of this study was to screen 18 compounds and identify the XO inhibitor with the strongest inhibitory effect. Furthermore, we aimed to study the inhibitory mechanism of the identified compound. Methods: The effects of the inhibitors on XO were evaluated using kinetic analysis, docking simulations, and in vivo study. Among the compounds tested, 4-NA was discovered as the first XO inhibitor and exhibited the most potent inhibitory effects, with an IC50 value of 23.02 ± 0.12 μmol/L. The presence of the nitro group in 4-NA was found to be essential for enhancing XO inhibition. The kinetic study revealed that 4-NA inhibited XO in a reversible and noncompetitive manner. Moreover, fluorescence spectra analysis demonstrated that 4-NA could spontaneously form complexes with XO, referred to as 4-NA-XO complexes, with the negative values of △H and ΔS. Results: This suggests that hydrogen bonds and van der Waals forces play crucial roles in the binding process. Molecular docking studies further supported the kinetic analysis and provided insight into the optimal binding conformation, indicating that 4-NA is located at the bottom outside the catalytic center through the formation of three hydrogen bonds. Furthermore, animal studies confirmed that the inhibitory effects of 4-NA on XO resulted in a significant reduction of serum uric acid level in hyperuricemia mice. Conclusion: This work elucidates the mechanism of 4-NA inhibiting XO, paving the way for the development of new XO inhibitors. .
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Sijin Yu
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zemin He
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Danhong Zhu
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| |
Collapse
|
17
|
Pinto D, Lozano-Castellón J, Margarida Silva A, de la Luz Cádiz-Gurrea M, Segura-Carretero A, Lamuela-Raventós R, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Novel insights into enzymes inhibitory responses and metabolomic profile of supercritical fluid extract from chestnut shells upon intestinal permeability. Food Res Int 2024; 175:113807. [PMID: 38129012 DOI: 10.1016/j.foodres.2023.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The health benefits of chestnut (Castanea sativa) shells (CSs) have been ascribed to phytochemicals, mainly phenolic compounds. Nevertheless, an exhaustive assessment of their intestinal absorption is vital considering a possible nutraceutical application. This study evaluated the bioactivity of CSs extract prepared by Supercritical Fluid Extraction and untargeted metabolomic profile upon in-vitro intestinal permeation across a Caco-2/HT29-MTX co-culture model. The results demonstrated the neuroprotective, hypoglycemic, and hypolipidemic properties of CSs extract by inhibition of acetylcholinesterase, α-amylase, and lipase activities. The untargeted metabolic profiling by LC-ESI-LTQ-Orbitrap-MS unveiled almost 60 % of lipids and 30 % of phenolic compounds, with 29 metabolic pathways indicated by enrichment analysis. Among phenolics, mostly phenolic acids, flavonoids, and coumarins permeated the intestinal barrier with most metabolites arising from phase I reactions (reduction, hydrolysis, and hydrogenation) and a minor fraction from phase II reactions (methylation). The permeation rates enhanced in the following order: ellagic acid < o-coumaric acid < p-coumaric acid < ferulaldehyde ≤ hydroxyferulic acid ≤ dihydroferulic acid < ferulic acid < trans-caffeic acid < trans-cinnamic acid < dihydrocaffeic acid, with better outcomes for 1000 µg/mL of extract concentration and after 4 h of permeation. Taken together, these findings sustained a considerable in-vitro intestinal absorption of phenolic compounds from CSs extract, enabling them to reach target sites and exert their biological effects.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Rosa Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
18
|
Kheyrollah M, Farhadpour M, Sabouni F, Haghbeen K. Neuroprotective Effect of Lithospermum officinale Callus Extract on Inflamed Primary Microglial Cells. Curr Pharm Biotechnol 2024; 25:637-644. [PMID: 37587806 DOI: 10.2174/1389201024666230816154639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Plants that have therapeutic features for humans or animals are commonly referred to as "medicinal plants". They produce secondary metabolites with antioxidant, antimicrobial and/or anti-cancer effects. Lithospermum officinale, known as European stone seed, is a famous medicinal herb. However, due to the pyrrolizidine alkaloids (PzAl) in the root extract of L.officinal, there are therapeutic limitations to this herb. OBJECTIVE This research was devoted to the evaluation of the anti-inflammatory capacity of methanolic extracts of L. officinale callus (LoE) (fresh cells) on rat microglial cells, the immune cells of the Central Nervous System, which play an essential role in the responses to neuroinflammation. METHODS Primary microglia were obtained from neonatal Wistar rats (1 to 3-days old), and then treated with various concentration of CfA and methanolic extracts of 17 and 31-day-old L. officinale callus before LPS-stimulation. In addition to HPLC analysis of the extracts, viability, nitric oxide production, and evaluation of pro-inflammatory genes and cytokines in the inflamed microglia were investigated by MTT, Griess methos, qrt-PCR, and ELISA. RESULTS Methanolic extract of the 17-day-old callus of L. officinale exhibited anti-inflammatory effects on LPS-stimulated microglial cells much higher than observed for CfA. The data were further supported by the decreased expression of Nos2, Tnf-α, and Cox-2 mRNA and the suppression of TNF-α and IL-1β release in the activated microglial cells pretreated with the effective dose of LoE (0.8 mg mL-1). CONCLUSION It was assumed that the better anti-neuroinflammatory performance of LoE than CfA in LPS-activated primary microglia could be a result of the synergism of the components of the extract and the lipophilic nature of RsA as the main phenolic acid of LoE. Considering that LoE shows a high antioxidant capacity and lacks PzAl, it is anticipated that LoE extract might be considered a reliable substitute to play a key role in the preparation of neuroprotective pharmaceutical formulas, which require in vivo research and further experiments.
Collapse
Affiliation(s)
- Maryam Kheyrollah
- Department of Molecular Medicine, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Farhadpour
- Department of Plant Bioproducts, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Molecular Medicine, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kamahldin Haghbeen
- Department of Plant Bioproducts, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
19
|
Zeng J, Shi D, Chen Y, Bao X, Zong Y. FvbHLH1 Regulates the Accumulation of Phenolic Compounds in the Yellow Cap of Flammulina velutipes. J Fungi (Basel) 2023; 9:1063. [PMID: 37998869 PMCID: PMC10672597 DOI: 10.3390/jof9111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Flammulina velutipes is a renowned edible and medicinal fungus. Commercially cultivated F. velutipes occurs in two distinct phenotypes: white and yellow. However, the underlying mechanism contributing to the yellow phenotype and high nutritional value remain uncertain. We reconfirmed that the browning process in F. velutipes is attributable to melanin accumulation, although the initial yellow cap seemed unrelated to melanin. A transcriptomic and metabolomic joint analysis revealed that 477 chemical compounds categorized into 11 classes, among which 191 exhibited significantly different levels of accumulation between different phenotypes. Specifically, 12 compounds were unique to the yellow F. velutipes, including ferulic acid, and 3-Aminosalicylic acid. Free fatty acids and xanthine were identified as the primary compounds correlating with the yellow and oily cap. A total of 44,087 genes were identified, which were more homologous to Pleurotus ostreatus PC15. Structural genes such as PAL (phenylalanine ammonialyase), C4H (cinnamate 4-hydroxylase), C3H (Coumarin-3-hydroxylase), AoMT (caffeoyl coenzyme A-O-methyltransferase), and 4CL (4-coumarate: CoA ligase) were up-regulated, thereby activating the lignin biosynthesis and metabolism pathway. Additionally, FvbHLH1 can lead to the consumption of a huge amount of phenylalanine while generating flavonoids and organic acid compounds. Meanwhile, ferulic acid biosynthesis was activated. Therefore, this study clarifies the chemical and molecular bases for the yellow phenotype and nutritional value of F. velutipes.
Collapse
Affiliation(s)
- Jiangyi Zeng
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Xining 810008, China;
- South China Botanical Garden, Guangzhou 510650, China;
| | - Dingding Shi
- South China Botanical Garden, Guangzhou 510650, China;
| | - Ying Chen
- College of Education, Qinghai Normal University, Xining 810008, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xuemei Bao
- College of Education, Qinghai Normal University, Xining 810008, China;
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Xining 810008, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
20
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
21
|
Melo NDOR, De Sousa Silva M, Ribeiro JPN, Lima WP, Francisco Vagnaldo FV, Cavalcanti BC, De Sousa Silva AA, Dornelas CA. Synergistic Antigenotoxic and Antioxidant Action of Gum Arabic and Eugenol in Rat Liver Following Induction of Colorectal Carcinogenesis. Asian Pac J Cancer Prev 2023; 24:3447-3457. [PMID: 37898850 PMCID: PMC10770658 DOI: 10.31557/apjcp.2023.24.10.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE Much research has been conducted to identify natural antioxidant and antimutagenic compounds capable of preventing, reverting or treating conditions caused by oxidative stress and genotoxicity. In this study we evaluated the effects of 10% gum arabic (GA) and eugenol (EUG) on hepatic oxidative stress and genotoxicity induced by dimethylhydrazine (DMH) in rats. METHODS The prevention arm of the study included 4 control groups and 4 experimental groups. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA , EUG or 10% GA + EUG by gavage. The treatment arm of the study included 4 control groups and 4 experimental groups. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. Finally, the livers were harvested for histopathological study with HE, measurement of genotoxicity and oxidative stress. RESULT Genotoxicity and oxidative stress were found to be significantly lower in Group XII (animals treated concomitantly with GA and EUG). This is the first study to observe the synergistic action of GA and EUG administered concomitantly in this scenario. CONCLUSION Indicating a synergistic antigenotoxic and antioxidant effect on liver cells in rats with DMH-induced colorectal carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Vagnaldo Francisco Vagnaldo
- Researcher at NRDM (Nucleus of Research and Development of Medicines), Laboratory of Pharmacology and Preclinical Research, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
| | - Bruno Coêlho Cavalcanti
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Brazill.
| | - Antônio Adailson De Sousa Silva
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Brazill.
| | - Conceição Aparecida Dornelas
- Permanent Professor of the Postgraduate Program stricto sensu in Pathology and Medical-Surgical Sciences, School of Medicine, Federal University of Ceara Fortaleza, Brazil.
| |
Collapse
|
22
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
23
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2023:1-26. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
24
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
25
|
Boulebd H, Carmena-Bargueño M, Pérez-Sánchez H. Exploring the Antioxidant Properties of Caffeoylquinic and Feruloylquinic Acids: A Computational Study on Hydroperoxyl Radical Scavenging and Xanthine Oxidase Inhibition. Antioxidants (Basel) 2023; 12:1669. [PMID: 37759973 PMCID: PMC10526077 DOI: 10.3390/antiox12091669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Caffeoylquinic (5-CQA) and feruloylquinic (5-FQA) acids, found in coffee and other plant sources, are known to exhibit diverse biological activities, including potential antioxidant effects. However, the underlying mechanisms of these phenolic compounds remain elusive. This paper investigates the capacity and mode of action of 5-CQA and 5-FQA as natural antioxidants acting as hydroperoxyl radical scavengers and xanthine oxidase (XO) inhibitors. The hydroperoxyl radical scavenging potential was investigated using thermodynamic and kinetic calculations based on the DFT method, taking into account the influence of physiological conditions. Blind docking and molecular dynamics simulations were used to investigate the inhibition capacity toward the XO enzyme. The results showed that 5-CQA and 5-FQA exhibit potent hydroperoxyl radical scavenging capacity in both polar and lipidic physiological media, with rate constants higher than those of common antioxidants, such as Trolox and BHT. 5-CQA carrying catechol moiety was found to be more potent than 5-FQA in both physiological environments. Furthermore, both compounds show good affinity with the active site of the XO enzyme and form stable complexes. The hydrogen atom transfer (HAT) mechanism was found to be exclusive in lipid media, while both HAT and SET (single electron transfer) mechanisms are possible in water. 5-CQA and 5-FQA may, therefore, be considered potent natural antioxidants with potential health benefits.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1, Constantine 25000, Algeria
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (M.C.-B.); (H.P.-S.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (M.C.-B.); (H.P.-S.)
| |
Collapse
|
26
|
Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023; 15:3454. [PMID: 37571391 PMCID: PMC10420887 DOI: 10.3390/nu15153454] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
It is well known that neurodegenerative diseases' development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients' lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson's disease), AD (Alzheimer's disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB's integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols.
Collapse
Affiliation(s)
- Izabela Grabska-Kobyłecka
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Aleksandra Król
- Department of Experimental Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland;
| | - Dominika Książek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Andrzej Kobyłecki
- Interventional Cardiology Lab, Copernicus Hospital, Pabianicka Str. 62, 93-513 Łódź, Poland;
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| |
Collapse
|
27
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
28
|
ALNasser MN, AlSaadi AM, Whitby A, Kim DH, Mellor IR, Carter WG. Acai Berry ( Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress. Life (Basel) 2023; 13:life13041019. [PMID: 37109548 PMCID: PMC10144606 DOI: 10.3390/life13041019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aberrant accumulation of the neurotransmitter L-glutamate (L-Glu) has been implicated as a mechanism of neurodegeneration, and the release of L-Glu after stroke onset leads to a toxicity cascade that results in neuronal death. The acai berry (Euterpe oleracea) is a potential dietary nutraceutical. The aim of this research was to investigate the neuroprotective effects of acai berry aqueous and ethanolic extracts to reduce the neurotoxicity to neuronal cells triggered by L-Glu application. L-Glu and acai berry effects on cell viability were quantified using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and effects on cellular bioenergetics were assessed via quantitation of the levels of cellular ATP, mitochondrial membrane potential (MMP), and production of reactive oxygen species (ROS) in neuroblastoma cells. Cell viability was also evaluated in human cortical neuronal progenitor cell culture after L-Glu or/and acai berry application. In isolated cells, activated currents using patch-clamping were employed to determine whether L-Glu neurotoxicity was mediated by ionotropic L-Glu-receptors (iGluRs). L-Glu caused a significant reduction in cell viability, ATP, and MMP levels and increased ROS production. The co-application of both acai berry extracts with L-Glu provided neuroprotection against L-Glu with sustained cell viability, decreased LDH production, restored ATP and MMP levels, and reduced ROS levels. Whole-cell patch-clamp recordings showed that L-Glu toxicity is not mediated by the activation of iGluRs in neuroblastoma cells. Fractionation and analysis of acai berry extracts with liquid chromatography-mass spectrometry identified several phytochemical antioxidants that may have provided neuroprotective effects. In summary, the acai berry contains nutraceuticals with antioxidant activity that may be a beneficial dietary component to limit pathological deficits triggered by excessive L-Glu accumulations.
Collapse
Affiliation(s)
- Maryam N ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ayman M AlSaadi
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Alison Whitby
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian R Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wayne G Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
29
|
Shahid Nadeem M, Khan JA, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sayyed N, Gupta G, Kazmi I. Protective Effect of Hirsutidin against Rotenone-Induced Parkinsonism via Inhibition of Caspase-3/Interleukins-6 and 1β. ACS OMEGA 2023; 8:13016-13025. [PMID: 37065035 PMCID: PMC10099452 DOI: 10.1021/acsomega.3c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
A participant of the chemical family recognized as anthocyanins, hirsutidin is an O-methylated anthocyanidin. It is a natural substance, i.e., existing in Catharanthus roseus (Madagascar periwinkle), the predominant component in petals, as well as callus cultures. The literature review indicated a lack of scientifically verified findings on hirsutidin's biological activities, particularly its anti-Parkinson's capabilities. Using the information from the previous section as a reference, a present study has been assessed to evaluate the anti-Parkinson properties of hirsutidin against rotenone-activated Parkinson's in experimental animals. For 28 days, rats received hirsutidin at a dose of 10 mg/kg and rotenone at a dose of 0.5 mg/kg s.c. to test the neuroprotective effects. The hirsutidin was given 1 h before the rotenone. Behavioral tests, including the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field analysis, were performed. The levels of neurotransmitters (5-HT, DOPAC, 5-HIAA, dopamine, and HVA), neuroinflammatory markers (TNF-α, IL-6, IL-1β, caspase-3), an endogenous antioxidant, nitrite content, and acetylcholine were measured in all the rats on the 29th day. Hirsutidin exhibited substantial behavioral improvement in the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field test. Furthermore, hirsutidin restored neuroinflammatory markers, cholinergic function, nitrite content, neurotransmitters, and endogenous antioxidant levels. According to the study, hirsutidin has anti-inflammatory and antioxidant characteristics. As a result, it implies that hirsutidin may have anti-Parkinsonian effects in rats.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Gaurav Gupta
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Nardini M. An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends. Molecules 2023; 28:molecules28073221. [PMID: 37049984 PMCID: PMC10096009 DOI: 10.3390/molecules28073221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Beer is one of the oldest and most common beverages worldwide. The phenolic contents and antioxidant properties of beer are crucial factors in evaluating its nutritional quality. Special beers brewed with the addition of adjuncts are gaining in consumer preference, in response to demands for healthy food and new gustatory and olfactory stimuli. Many studies recently dealt with functional beers brewed with the addition of adjuncts. This review focuses on bioactive molecules, particularly the composition of phenolic compounds, and the antioxidant activity of beer. The current knowledge concerning the effect of the addition of adjuncts in the form of fruit, vegetables, herbs, and natural foods on the polyphenol content, antioxidant properties, and phenolic profile of beer is reviewed, with an outline of the emerging trends in brewing processes. Future studies need to complete the identification and characterization of the bioactive molecules in beer, as well as studying their absorption and metabolic fate in humans.
Collapse
Affiliation(s)
- Mirella Nardini
- CREA, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
31
|
Bułakowska A, Sławiński J, Hałasa R, Hering A, Gucwa M, Ochocka JR, Stefanowicz-Hajduk J. An In Vitro Antimicrobial, Anticancer and Antioxidant Activity of N–[(2–Arylmethylthio)phenylsulfonyl]cinnamamide Derivatives. Molecules 2023; 28:molecules28073087. [PMID: 37049849 PMCID: PMC10096175 DOI: 10.3390/molecules28073087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Cinnamic acid is a plant metabolite with antimicrobial, anticancer, and antioxidant properties. Its synthetic derivatives are often more effective in vitro than parent compounds due to stronger biological activities. In our study, we synthesized ten new N–(4–chloro–2–mercapto–5–methylphenylsulfonyl)cinnamamide derivatives, containing two pharmacophore groups: cinnamic acid moiety and benzenesulfonamide. The antimicrobial activity of the obtained compounds was estimated using different types of Gram-positive and Gram-negative bacteria, fungus species of Candida albicans, as well as clinical strains. The compounds were evaluated on biofilm formation and biofilm formed by Staphylococcus clinical strains (methicillin–resistance S. aureus MRSA and methicillin–resistance coagulase–negative Staphylococcus MRCNS). Furthermore, blood bacteriostatic activity test was performed using S. aureus and S. epidermidis. In cytotoxic study, we performed in vitro hemolysis assay on domestic sheep peripheral blood and MTT [3–(4,5–dimethylthiazol–2–yl)–2,5–diphenyltetrazolium bromide] assay on human cervical HeLa, ovarian SKOV-3, and breast MCF-7 cancer cell lines. We also estimated antioxidant activity of ten compounds with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′–azino–bis(3–ethylbenzthiazoline–6–sulfonic acid) (ABTS) assays. Our results showed a significant antimicrobial activity of the compounds. All of them were active on Staphylococcus and Enterococcus species (MIC was 1–4 µg/mL). The compounds 16d and 16e were the most active on staphylococci clinical strains and efficiently inhibited the biofilm formation and biofilm already formed by the clinical staphylococci. Moreover, the hemolytic properties of the tested compounds occurred in higher quantities (>32.5 µg/mL) than the concentrations that inhibited both the growth of bacteria in the blood and the formation and growth of biofilm. The results of MTT assay showed that compounds 16c, 16d, 17a, and 17d demonstrated the best activity on the cancer cells (the IC50 values were below 10 µg/mL). Compound 16f was the least active on the cancer cells (IC50 was > 60 µg/mL). Antiradical tests revealed that compounds 16f and 17d had the strongest antioxidant properties within the tested group (IC50 was 310.50 ± 0.73 and 574.41 ± 1.34 µg/mL in DPPH, respectively, and 597.53 ± 1.3 and 419.18 ± 2.72 µg/mL in ABTS assay, respectively). Our study showed that the obtained cinnamamide derivatives can be used as potential antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- Anita Bułakowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
- Correspondence: (A.B.); (J.S.-H.)
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
- Correspondence: (A.B.); (J.S.-H.)
| |
Collapse
|
32
|
de Morais MC, Medeiros GA, Almeida FS, Rocha JDC, Perez-Castillo Y, Keesen TDSL, de Sousa DP. Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum. Molecules 2023; 28:molecules28062844. [PMID: 36985814 PMCID: PMC10053546 DOI: 10.3390/molecules28062844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in South America, the Mediterranean basin, and West and Central Asia. The most affected country, Brazil, reported 4297 VL cases in 2017. L. infantum is transmitted by female phlebotomine sand flies during successive blood meals. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new antileishmanial drugs. Cinnamic acid derivatives have shown several pharmacological activities, including antiparasitic action. Therefore, in the present study, the biological evaluation of cinnamic acid and thirty-four derivatives against L. infantum is reported. The compounds were prepared by several synthesis methods and characterized by spectroscopic techniques and high-resolution mass spectrometry. The results revealed that compound 32 (N-(4-isopropylbenzyl)cinnamamide) was the most potent antileishmanial agent (IC50 = 33.71 μM) with the highest selectivity index (SI > 42.46), followed by compound 15 (piperonyl cinnamate) with an IC50 = 42.80 μM and SI > 32.86. Compound 32 was slightly less potent and nineteen times more selective for the parasite than amphotericin B (MIC = 3.14 uM; SI = 2.24). In the molecular docking study, the most likely target for the compound in L. infantum was aspartyl aminopeptidase, followed by aldehyde dehydrogenase, mitochondrial. The data obtained show the antileishmanial potential of this class of compounds and may be used in the search for new drug candidates against Leishmania species.
Collapse
Affiliation(s)
- Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| | - Gisele Alves Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Juliana da Câmara Rocha
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Yunierkis Perez-Castillo
- Bio-Cheminformatics Research Group and Area de Ciencias Aplicadas, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, Quito 170503, Ecuador
| | - Tatjana de Souza Lima Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| |
Collapse
|
33
|
Ali DE, Bassam SM, Elatrebi S, Habiba ES, Allam EA, Omar EM, Ghareeb DA, Abdulmalek SA, Abdel-Sattar E. HR LC-MS/MS metabolomic profiling of Yucca aloifolia fruit and the potential neuroprotective effect on rotenone-induced Parkinson's disease in rats. PLoS One 2023; 18:e0282246. [PMID: 36854038 PMCID: PMC9974117 DOI: 10.1371/journal.pone.0282246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Yucca aloifolia L. fruit (Yucca or Spanish bayonet, family Asparagaceae) is recognized for its purplish red color reflecting its anthocyanin content, which has a powerful antioxidant activity. This study aimed to investigate yucca (YA) fruit extract's protective effect on Parkinson's disease (PD). In vitro study, the anti-inflammatory activity of yucca fruit extracts was explored by measuring tumor necrosis factor receptor 2 (TNF-R2) and nuclear factor kappa B (NF-KB) to choose the most effective extract. Afterward, a detailed in vivo investigation of the protective effect of the most active extract on rotenone-induced PD was performed on male albino Wister rats. First, the safety of the extract in two different doses (50 and 100 mg/kg in 0.9% saline orally) was confirmed by a toxicological study. The rats were divided into four groups: 1) normal control (NC); 2) rotenone group; and third and fourth groups received 50 and 100 mg/kg yucca extract, respectively. The neurobehavioral and locomotor activities of the rats were tested by rotarod, open field, and forced swim tests. Striatal dopamine, renal and liver functions, and oxidative stress markers were assessed. Western blot analysis of brain tissue samples was performed for p-AMPK, Wnt3a, and β-catenin. Histopathological examination of striatal tissue samples was performed by light and electron microscopy (EM). The metabolites of the active extract were characterized using high-resolution LC-MS/MS, and the results showed the prevalence of anthocyanins, saponins, phenolics, and choline. Biochemical and histopathological tests revealed a dose-dependent improvement with oral Yucca extract. The current study suggests a possible neuroprotective effect of the acidified 50% ethanol extract (YA-C) of the edible Yucca fruit, making it a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Dalia E. Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Samar M. Bassam
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Soha Elatrebi
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa S. Habiba
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A. Allam
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Omar
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A. Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa A. Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
- * E-mail:
| |
Collapse
|
34
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
35
|
Synthetic Cinnamides and Cinnamates: Antimicrobial Activity, Mechanism of Action, and In Silico Study. Molecules 2023; 28:molecules28041918. [PMID: 36838906 PMCID: PMC9967511 DOI: 10.3390/molecules28041918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
The severity of infectious diseases associated with the resistance of microorganisms to drugs highlights the importance of investigating bioactive compounds with antimicrobial potential. Therefore, nineteen synthetic cinnamides and cinnamates having a cinnamoyl nucleus were prepared and submitted for the evaluation of antimicrobial activity against pathogenic fungi and bacteria in this study. To determine the minimum inhibitory concentration (MIC) of the compounds, possible mechanisms of antifungal action, and synergistic effects, microdilution testing in broth was used. The structures of the synthesized products were characterized with FTIR spectroscopy, 1 H-NMR, 13 C-NMR, and HRMS. Derivative 6 presented the best antifungal profile, suggesting that the presence of the butyl substituent potentiates its biological response (MIC = 626.62 μM), followed by compound 4 (672.83 μM) and compound 3 (726.36 μM). All three compounds were fungicidal, with MFC/MIC ≤ 4. For mechanism of action, compounds 4 and 6 directly interacted with the ergosterol present in the fungal plasmatic membrane and with the cell wall. Compound 18 presented the best antibacterial profile (MIC = 458.15 μM), followed by compound 9 (550.96 μM) and compound 6 (626.62 μM), which suggested that the presence of an isopropyl group is important for antibacterial activity. The compounds were bactericidal, with MBC/MIC ≤ 4. Association tests were performed using the Checkerboard method to evaluate potential synergistic effects with nystatin (fungi) and amoxicillin (bacteria). Derivatives 6 and 18 presented additive effects. Molecular docking simulations suggested that the most likely targets of compound 6 in C. albicans were caHOS2 and caRPD3, while the most likely target of compound 18 in S. aureus was saFABH. Our results suggest that these compounds could be used as prototypes to obtain new antimicrobial drugs.
Collapse
|
36
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
37
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
38
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
39
|
Arshad HM, Ahmad FUD, Lodhi AH. Methanolic Extract of Aerva javanica Leaves Prevents LPS-Induced Depressive Like Behavior in Experimental Mice. Drug Des Devel Ther 2022; 16:4179-4204. [PMID: 36514526 PMCID: PMC9741839 DOI: 10.2147/dddt.s383054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aim Depression is a chronic recurrent neuropsychiatric disorder associated with inflammation. This study explored the pharmacological activities of Aerva javanica leaves crude extract (Aj.Cr) on lipopolysaccharide (LPS)-induced depressive-like behavior in experimental mice. Methods Aj.Cr was evaluated for its phenolic and flavonoid contents, bioactive potential, amino acid profiling and enzyme inhibition assays using different analytical techniques followed by in-silico molecular docking was performed. In addition, three ligands identified in HPLC analysis and standard galantamine were docked to acetyl cholinesterase (AchE) enzyme to assess the ligand interaction along with their binding affinities. In in-vivo analysis, mice were given normal saline (10 mL/kg), imipramine (10 mg/kg) and Aj.Cr (100, 300, and 500 mg/kg) orally for 14-consecutive days. On the 14th day, respective treatment was given 30-minutes before intra-peritoneal administration of (0.83 mg/kg) LPS. Open field, forced swim and tail suspension tests were performed 24-hours after LPS injection, followed by a sucrose preference test 48-hours later. Serum corticosterone levels, as well as levels of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and catecholamines were determined in brain tissues. Results In-vitro results revealed that crude extract of Aj.Cr possesses anti-depressant agents with solid antioxidant potential. In-vivo analysis showed that LPS significantly increased depressive-like behavior followed by alteration in serum and tissue biomarkers as compared to normal control (p < 0.001). While imipramine and Aj.Cr (100, 300, and 500 mg/kg) treated groups significantly (p<0.05) improved the depressive-like behavior and biomarkers when compared to the LPS group. Conclusion The mitigation of LPS-induced depressive-like behavior by Aj.Cr may be linked to the modulation of oxidative stress, neuro-inflammation and catecholamines due to the presence of potent bioactive compounds exerting anti-depressant effects.
Collapse
Affiliation(s)
- Hafiza Maida Arshad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan,Correspondence: Fiaz-ud-Din Ahmad, Department of Pharmacology, the Islamia University of Bahawalpur, Pakistan Khawaja Fareed Campus, Railway Road, Bahawalpur, 63100, Pakistan, Tel +92-320-8402376, Email
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
40
|
Asyakina L, Atuchin V, Drozdova M, Kozlova O, Prosekov A. Ex Vivo and In Vitro Antiaging and Antioxidant Extract Activity of the Amelanchier ovalis from Siberia. Int J Mol Sci 2022; 23:ijms232315156. [PMID: 36499480 PMCID: PMC9738774 DOI: 10.3390/ijms232315156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Phenolic acids are biologically active substances that prevent aging and age-related diseases, e.g., cancer, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, etc. Cellular senescence is related to oxidative stress. The Siberian Federal District is rich in medicinal plants whose extracts contain phenolic acids. These plants can serve as raw materials for antiaging, antioxidant food supplements, and Amelanchier ovalis is one of them. In the present research, we tested the phytochemical profile of its extract for phenolic acids. Its geroprotective and antioxidant properties were studied both ex vivo and in vitro using Saccharomyces cerevisiae Y-564 as a model organism. The chromotographic analysis revealed gallic, p-hydroxybenzoic, and protocatechuic acids, as well as derivatives of chlorogenic and gallic acids. The research involved 0.25, 0.5, and 1.0 mg/mL extracts of Amelanchier ovalis, all of which increased the growth and lifespan of yeast cells. In addition, the extracts increased the survival rate of yeast under oxidative stress. An in vitro experiment also demonstrated the antioxidant potential of Amelanchier ovalis against ABTS radicals. Therefore, the Amelanchier ovalis berry extract proved to be an excellent source of phenolic acids and may be recommended as a raw material for use in antioxidant and geroprotective food supplements.
Collapse
Affiliation(s)
- Lyudmila Asyakina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650000 Kemerovo, Russia
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
- Correspondence:
| | - Margarita Drozdova
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650000 Kemerovo, Russia
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650000 Kemerovo, Russia
| | - Alexander Prosekov
- Department of Bionanotechnology, Kemerovo State University, 650000 Kemerovo, Russia
| |
Collapse
|
41
|
Anogeissus leiocarpus (DC.) Guill and Perr ameliorates pentylenetetrazole-induced seizure/cognitive impairment in rats via inhibition of oxidative stress. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Thapliyal S, Singh J, Mamgain M, Kumar A, Bisht M, Singh A, Meena K, Kishore S, Handu S. Efficacy of Ferulic Acid in an Animal Model of Drug-Resistant Epilepsy: Beneficial or Not? Cureus 2022; 14:e30892. [DOI: 10.7759/cureus.30892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
|
43
|
The Potential Neuroprotective Effect of Cyperus esculentus L. Extract in Scopolamine-Induced Cognitive Impairment in Rats: Extensive Biological and Metabolomics Approaches. Molecules 2022; 27:molecules27207118. [PMID: 36296710 PMCID: PMC9606906 DOI: 10.3390/molecules27207118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study is to investigate the phytochemical composition of tiger nut (TN) (Cyperus esculentus L.) and its neuroprotective potential in scopolamine (Scop)-induced cognitive impairment in rats. The UHPLC-ESI-QTOF-MS analysis enabled the putative annotation of 88 metabolites, such as saccharides, amino acids, organic acids, fatty acids, phenolic compounds and flavonoids. Treatment with TN extract restored Scop-induced learning and memory impairments. In parallel, TN extract succeeded in lowering amyloid beta, β-secretase protein expression and acetylcholine esterase (AChE) activity in the hippocampus of rats. TN extract decreased malondialdehyde levels, restored antioxidant levels and reduced proinflammatory cytokines as well as the Bax/Bcl2 ratio. Histopathological analysis demonstrated marked neuroprotection in TN-treated groups. In conclusion, the present study reveals that TN extract attenuates Scop-induced memory impairments by diminishing amyloid beta aggregates, as well as its anti-inflammatory, antioxidant, anti-apoptotic and anti-AChE activities.
Collapse
|
44
|
Phenolic Acids as Antidepressant Agents. Nutrients 2022; 14:nu14204309. [PMID: 36296993 PMCID: PMC9610055 DOI: 10.3390/nu14204309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Depression is a psychiatric disorder affecting the lives of patients and their families worldwide. It is an important pathophysiology; however, the molecular pathways involved are not well understood. Pharmacological treatment may promote side effects or be ineffective. Consequently, efforts have been made to understand the molecular pathways in depressive patients and prevent their symptoms. In this context, animal models have suggested phytochemicals from medicinal plants, especially phenolic acids, as alternative treatments. These bioactive molecules are known for their antioxidant and antiinflammatory activities. They occur in some fruits, vegetables, and herbal plants. This review focused on phenolic acids and extracts from medicinal plants and their effects on depressive symptoms, as well as the molecular interactions and pathways implicated in these effects. Results from preclinical trials indicate the potential of phenolic acids to reduce depressive-like behaviour by regulating factors associated with oxidative stress, neuroinflammation, autophagy, and deregulation of the hypothalamic-pituitary-adrenal axis, stimulating monoaminergic neurotransmission and neurogenesis, and modulating intestinal microbiota.
Collapse
|
45
|
Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022; 49:10865-10874. [PMID: 35900613 DOI: 10.1007/s11033-022-07755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders. METHODS AND RESULTS Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson's diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression. CONCLUSION Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.
Collapse
|
46
|
Bartolome F, Carro E, Alquezar C. Oxidative Stress in Tauopathies: From Cause to Therapy. Antioxidants (Basel) 2022; 11:antiox11081421. [PMID: 35892623 PMCID: PMC9332496 DOI: 10.3390/antiox11081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress (OS) is the result of an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of cells. Due to its high oxygen demand, the human brain is highly susceptible to OS and, thus, it is not a surprise that OS has emerged as an essential component of the pathophysiology of several neurodegenerative diseases, including tauopathies. Tauopathies are a heterogeneous group of age-related neurodegenerative disorders characterized by the deposition of abnormal tau protein in the affected neurons. With the worldwide population aging, the prevalence of tauopathies is increasing, but effective therapies have not yet been developed. Since OS seems to play a key role in tauopathies, it has been proposed that the use of antioxidants might be beneficial for tau-related neurodegenerative diseases. Although antioxidant therapies looked promising in preclinical studies performed in cellular and animal models, the antioxidant clinical trials performed in tauopathy patients have been disappointing. To develop effective antioxidant therapies, the molecular mechanisms underlying OS in tauopathies should be completely understood. Here, we review the link between OS and tauopathies, emphasizing the causes of OS in these diseases and the role of OS in tau pathogenesis. We also summarize the antioxidant therapies proposed as a potential treatment for tauopathies and discuss why they have not been completely translated to clinical trials. This review aims to provide an integrated perspective of the role of OS and antioxidant therapies in tauopathies. In doing so, we hope to enable a more comprehensive understanding of OS in tauopathies that will positively impact future studies.
Collapse
Affiliation(s)
- Fernando Bartolome
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Program, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Carolina Alquezar
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
47
|
The Content of Phenolic Compounds and Mineral Elements in Edible Nuts. Molecules 2022; 27:molecules27144326. [PMID: 35889199 PMCID: PMC9316459 DOI: 10.3390/molecules27144326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Edible nuts are an important component of a healthy diet, and their frequent consumption has beneficial impact on human health, including reducing the risk of cardiovascular and neurodegenerative diseases. Moreover, various factors, including cultivar, climate, soil characteristic, storage and treatment have influence on the chemical composition of nuts. Therefore, nine tree nut types and peanuts commonly available on Polish market were evaluated for phenolic profile and mineral elements content. The concentration of individual phenolic compounds, including flavonoids, aromatic acids and caffeic acid phenethyl ester (CAPE) was determined by ultra-high pressure liquid chromatography, while the content of macro-elements and trace minerals was analyzed by atomic absorption spectrometry. The phenolic profile of analyzed nuts substantially varied depending on the type of nut. The highest total content of all analyzed flavonoids was determined in walnuts (114.861 µg/g), while the lowest in almonds (1.717 µg/g). In turn, the highest total content of all tested aromatic acid was determined in pecans (33.743 µg/g), and the lowest in almonds (0.096 µg/g). Epicatechin and cinnamic acid were detected in the highest concentration in tested nuts. Moreover, in examined nuts (except walnuts and Brazil nuts), the presence of CAPE was confirmed. The tested nuts were also characterized by wide variation in element concentrations. Almonds contained high concentration of macro-elements (13,111.60 µg/g), while high content of trace elements was determined in pine nuts (192.79 µg/g). The obtained results indicate that the tested nuts are characterized by a significant diversity in the content of both phenolic compounds and minerals. However, all types of nuts, apart from the well-known source of fatty acids, are a rich source of various components with beneficial effect on human health.
Collapse
|
48
|
Saadullah M, Arif S, Hussain L, Asif M, Khurshid U. Dose Dependent Effects of Breynia cernua Against the Paraquat Induced Parkinsonism like Symptoms in Animals' Model: In Vitro, In Vivo and Mechanistic Studies. Dose Response 2022; 20:15593258221125478. [PMID: 36106058 PMCID: PMC9465616 DOI: 10.1177/15593258221125478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aims and objectives of the study were to evaluate the antiParkinson's (PD) potential of B cernua (BCE). B cernua (Poir.) Müll. Arg. (B cernua) is a member of the Phyllanthaceae family. HPLC revealed the presence of various phytochemicals. Study was conducted for 40 days. After PD induction by paraquat behavioural studies were carried out. Biochemical parameters such as DPPH, NO-scavenging, Ferrous reducing power, MDA, GSH, CAT, SOD, acetylcholinesterase (AChE), neurotransmitter estimation and TNF-α and IL-6 levels were determined. DPPH, NO-scavenging and Ferrous reducing power assays showed 78.02%, 48.05% and 71.45% inhibitions, respectively. There was significant improvement in motor functions and coordination in a dose-dependent manner (50 < 250 < 500 mg/kg) in PD rat model. Biochemical markers; SOD, CAT, GPx and GSH showed significant restoration (P < .001) while MDA showed significant decrease (P < .05). The AChE level was significantly reduced (P < .05) at 500 mg/kg while neurotransmitters were significantly improved (P < .001) in a dose-dependent fashion. The ELISA results showed significant (P < .001) down-regulation of IL-6 and TNF-α level. In conclusion, it is suggested that BCE has the potential to reduce the symptoms of PD.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical
Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
- Malik Saadullah, Department of
Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College
University, Allama Iqbal Road, Faisalabad 38000, Pakistan.
| | - Sania Arif
- Department of Pharmaceutical
Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty
of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
- Liaqat Hussain, Department of Pharmacology,
Faculty of Pharmaceutical Sciences, Government College University, Allama Iqbal
Road, Faisalabad 38000, Pakistan.
| | - Muhammad Asif
- Department of Pharmacology, Faculty
of Pharmacy, The Islamia University of
Bahawalpur, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, The Islamia University of
Bahawalpur, Pakistan
| |
Collapse
|
49
|
Bukhari SNA, Yogesh R. An Overview of Tetramethylpyrazine (Ligustrazine) and its Derivatives as
Potent Anti-Alzheimer’s Disease Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405232333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tetramethylpyrazine (TMP), or ligustrazine, is an alkaloid isolated from the Chinese herb
Ligusticum wallichii. It is known for its broad-spectrum medicinal properties against several diseases, and
various studies have shown that it can modulate diverse biological targets and signaling pathways to produce
neuroprotective effects, especially against Alzheimer’s disease (AD). This has attracted significant
research attention evaluating TMP as a potent multitarget anti-AD agent. This review compiles the results
of studies assessing the neuroprotective mechanisms exerted by TMP as well as its derivatives prepared
using a multi-target-directed ligand strategy to explore its multitarget modulating properties. The present
review also highlights the work done on the design, synthesis, structure-activity relationships, and mechanisms
of some potent TMP derivatives that have shown promising anti-AD activities. These derivatives
were designed, synthesized, and evaluated to develop anti-AD molecules with enhanced biological and
pharmacokinetic activities compared to TMP. This review article paves the way for the exploration and
development of TMP and TMP derivatives as an effective treatment for AD.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Ruchika Yogesh
- 22 A3, DS Tower 1, Sukhumvit Soi 33, Khlong Tan Nuea, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
50
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|