1
|
Choudhuri S, Ghosh B. Computational approach for decoding malaria drug targets from single-cell transcriptomics and finding potential drug molecule. Sci Rep 2024; 14:24064. [PMID: 39402081 PMCID: PMC11473826 DOI: 10.1038/s41598-024-72427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/06/2024] [Indexed: 10/17/2024] Open
Abstract
Malaria is a deadly disease caused by Plasmodium parasites. While potent drugs are available in the market for malaria treatment, over the years, Plasmodium parasites have successfully developed resistance against many, if not all, front-line drugs. This poses a serious threat to global malaria eradication efforts, and the continued discovery of new drugs is necessary to tackle this debilitating disease. With recent unprecedented progress in machine learning techniques, single-cell transcriptomic in Plasmodium offers a powerful tool for identifying crucial proteins as a drug target and subsequent computational prediction of potential drugs. In this study, We have implemented a mutual-information-based feature reduction algorithm with a classification algorithm to select important proteins from transcriptomic datasets (sexual and asexual stages) for Plasmodium falciparum and then constructed the protein-protein interaction (PPI) networks of the proteins. The analysis of this PPI network revealed key proteins vital for the survival of Plasmodium falciparum. Based on the function and identification of a few strong binding sites on a couple of these key proteins, we computationally predicted a set of potential drug molecules using a deep learning-based technique. Lead drug molecules that satisfy ADMET and drug-likeliness properties are finally reported out of the generated drugs. The study offers a general computational pipeline to identify crucial proteins using scRNA-seq data sets and further development of potential new drugs.
Collapse
Affiliation(s)
- Soham Choudhuri
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Bhaswar Ghosh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
2
|
do Nascimento Martinez L, Silva DC, Brilhante-da-Silva N, da Silva Rodrigues FL, de Lima AA, Tada MS, Costa JDN. Monitoring the density of Plasmodium spp. gametocytes in isolates from patient samples in the region of Porto Velho, Rondônia. 3 Biotech 2023; 13:405. [PMID: 37987025 PMCID: PMC10657340 DOI: 10.1007/s13205-023-03822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 11/22/2023] Open
Abstract
Gametocytes are the forms of the malaria parasite that are essential for the continuation of the transmission cycle to the vector Anopheles. This study aimed to evaluate the parasite density of Plasmodium spp gametocytes in samples from patients in the region of Porto Velho, Rondônia. Slides containing patient samples were selected from users who sought out care at the Center for Research in Tropical Medicine (CEPEM) during the period from January to December 2016. Samples of Plasmodium vivax and Plasmodium falciparum were selected for analysis of their respective gametocytes. In parallel, monitoring was performed in cultures of NF54 strain P. falciparum gametocytes. Of 248 thick smear slides (EG) evaluated in double blind, 142 (57.2%) were detected with P. vivax, of this total 47 (18.9%) had gametocytes, 1 (0.4%) with LVC negative diagnosis for gametocytes and 1 (0.4%) Pv + Pf (mixed malaria). Regarding P. falciparum, the total number of samples analyzed was 106 (42.7%), of which 20 (8.0%) had gametocytes detected, 6 (2.4%) LVC negative for gametocyte forms, and 3 (1.2%) Pv + Pf (mixed malaria), Plasmodium malariae species was not detected among the samples. The results showed that P. vivax gametocytes were present in the first days of symptoms, with a higher prevalence in patients with two crosses, a fact that was also observed in patients with P. falciparum regarding the prevalence of gametocytes. Faced with this problem, it is necessary to monitor the fluctuation of gametocytes, since these forms are responsible for continuing the malaria cycle within the mosquito vector.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios em Malária e Leishmaniose (PBML)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Experimental (Pgbioexp), Centro Universitário São Lucas-PVH/ Afya, Porto Velho, RO Brazil
| | | | - Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos (LEA)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Celular E Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | | | | | - Mauro Shugiro Tada
- Centro de Pesquisa em Medicina Tropical–CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, Rondônia Brazil
| | - Joana D.‘Arc Neves Costa
- Laboratório de Epidemiologia de Malária, Centro de Pesquisa em Medicina Tropical-CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, RO Brasil
| |
Collapse
|
3
|
Chawla J, Goldowitz I, Oberstaller J, Zhang M, Pires CV, Navarro F, Sollelis L, Wang CCQ, Seyfang A, Dvorin J, Otto TD, Rayner JC, Marti M, Adams JH. Phenotypic Screens Identify Genetic Factors Associated with Gametocyte Development in the Human Malaria Parasite Plasmodium falciparum. Microbiol Spectr 2023; 11:e0416422. [PMID: 37154686 PMCID: PMC10269797 DOI: 10.1128/spectrum.04164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen. IMPORTANCE Blocking human-to-vector transmission is an essential step toward malaria elimination. Gametocytes are solely responsible for achieving this transmission and represent an opportunity for therapeutic intervention. While these falciform-shaped parasite stages were first discovered in the 1880s, our understanding of the genetic determinants responsible for their formation and molecular mechanisms that drive their development is limited. In this work, we developed a scalable screening methodology with piggyBac mutants to identify genes that influence the development of gametocytes in the most lethal human malaria parasite, P. falciparum. By doing so, we lay the foundation for large-scale functional genomic studies specifically designed to address remaining questions about sexual commitment, maturation, and mosquito infection in P. falciparum. Such functional genetic screens will serve to expedite the identification of essential pathways and processes for the development of novel transmission-blocking agents.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ilana Goldowitz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Francesca Navarro
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chengqi C. Q. Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Andreas Seyfang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jeffrey Dvorin
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H. Adams
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Alemayehu A. Biology and epidemiology of Plasmodium falciparum and Plasmodium vivax gametocyte carriage: Implication for malaria control and elimination. Parasite Epidemiol Control 2023; 21:e00295. [PMID: 36950502 PMCID: PMC10025134 DOI: 10.1016/j.parepi.2023.e00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Malaria is among the leading public health problems worldwide. Female anopheles mosquito orchestrates the transmission of malaria by taking gametocytes and introducing sporozoite while taking blood meals. Interrupting transmission is the major strategy for malaria elimination. The gametocyte stage is essential for the onward transmission of malaria. Thus, understanding its basic biology and epidemiology is key to malaria control and elimination. Therefore, the current review focuses on revealing the biology, prevalence, and determinants of gametocyte carriage as well as its implication on mitigation of malaria. It also illustrates the role of asymptomatic and sub-microscopic Plasmodium infections and G-6-PD deficiency in gametocyte carriage and hence malaria transmission. Gametocytogenesis is initiated at committed merozoites and gives rise to the development of gametocytes. The trigger for gametocytogenesis depends on the host, parasite, and intervention factors. Gametocytes pass through five developmental stages identifiable by molecular markers. A considerable number of malaria patients carry gametocytes at a sub-microscopic level, thereby serving as a potential infectious reservoir of transmission. Factors involving the human host, Plasmodium parasite, and intervention parameters play a critical role in gametocyte biology and prevalence. The contribution of asymptomatic and sub-microscopic infections to malaria transmission is unknown. The clear impact of G-6-PD deficiency on malaria control and elimination remains unclear. Lack of clarity on such issues might impede the success of interventions. Basic science and epidemiological studies should continue to overcome the challenges and cope with the ever-evolving parasite and guide interventions.
Collapse
Affiliation(s)
- Aklilu Alemayehu
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
5
|
Wakoli DM, Ondigo BN, Ochora DO, Amwoma JG, Okore W, Mwakio EW, Chemwor G, Juma J, Okoth R, Okudo C, Yeda R, Opot BH, Cheruiyot AC, Juma D, Roth A, Ogutu BR, Boudreaux D, Andagalu B, Akala HM. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med 2022; 20:448. [PMID: 36397090 PMCID: PMC9673313 DOI: 10.1186/s12916-022-02652-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
Collapse
Affiliation(s)
- Dancan M Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya. .,Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas O Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Jackeline Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Amanda Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benhards R Ogutu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Daniel Boudreaux
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| |
Collapse
|
6
|
Portugaliza HP, Natama HM, Guetens P, Rovira-Vallbona E, Somé AM, Millogo A, Ouédraogo DF, Valéa I, Sorgho H, Tinto H, van Hong N, Sitoe A, Varo R, Bassat Q, Cortés A, Rosanas-Urgell A. Plasmodium falciparum sexual conversion rates can be affected by artemisinin-based treatment in naturally infected malaria patients. EBioMedicine 2022; 83:104198. [PMID: 35961203 PMCID: PMC9385555 DOI: 10.1016/j.ebiom.2022.104198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 10/25/2022] Open
|
7
|
Abugri J, Ayariga J, Sunwiale SS, Wezena CA, Gyamfi JA, Adu-Frimpong M, Agongo G, Dongdem JT, Abugri D, Dinko B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022; 8:e10390. [PMID: 36033316 PMCID: PMC9398786 DOI: 10.1016/j.heliyon.2022.e10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
There is an unmet need to unearth alternative treatment options for malaria, wherein this quest is more pressing in recent times due to high morbidity and mortality data arising mostly from the endemic countries coupled with partial diversion of attention from the disease in view of the SARS-Cov-2 pandemic. Available therapeutic options for malaria have been severely threatened with the emergence of resistance to almost all the antimalarial drugs by the Plasmodium falciparum parasite in humans, which is a worrying situation. Artemisinin combination therapies (ACT) that have so far been the mainstay of malaria have encountered resistance by malaria parasite in South East Asia, which is regarded as a notorious ground zero for the emergence of resistance to antimalarial drugs. This review analyzes a few key druggable targets for the parasite and the potential of specific inhibitors to mitigate the emerging antimalarial drug resistance problem by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Moreover, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage these findings for antimalarial drug production.
Collapse
Affiliation(s)
- James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Joseph Ayariga
- The Biomedical Engineering Programme, Alabama State University, Montgomery, AL, 36104, USA
| | - Samuel Sunyazi Sunwiale
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Cletus Adiyaga Wezena
- Department of Microbiology, School of Biosciences, University for Development Studies (UDS), Nyankpala Campus, Tamale, Ghana
| | - Julien Agyemang Gyamfi
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Julius Tieroyaare Dongdem
- Department of Biochemistry and Molecular Medicine. School of Medicine. University for Development Studies (UDS), Tamale-Campus, Ghana
| | - Daniel Abugri
- Department of Biological Sciences, Microbiology PhD Programme, Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, USA
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho. Ghana
| |
Collapse
|
8
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Consalvi S, Tammaro C, Appetecchia F, Biava M, Poce G. Malaria transmission blocking compounds: a patent review. Expert Opin Ther Pat 2022; 32:649-666. [PMID: 35240899 DOI: 10.1080/13543776.2022.2049239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite substantial progress in the field, malaria remains a global health issue and currently available control strategies are not sufficient to achieve eradication. Agents able to prevent transmission are likely to have a strong impact on malaria control and have been prioritized as a primary objective to reduce the number of secondary infections. Therefore, there is an increased interest in finding novel drugs targeting sexual stages of Plasmodium and innovative methods to target malaria transmission from host to vector, and vice versa. AREAS COVERED This review covers innovative transmission-blocking inventions patented between 2015 and October 2021. The focus is on chemical interventions which could be used as "chemical vaccines" to prevent transmission (small molecules, carbohydrates, and polypeptides). EXPERT OPINION Even though the development of novel strategies to block transmission still requires fundamental additional research and a deeper understanding of parasite sexual stages biology, the research in this field has significantly accelerated. Among innovative inventions patented over the last six years, the surface-delivery of antimalarial drugs to kill transmission-stages parasites in mosquitoes holds the highest promise for success in malaria control strategies, opening completely new scenarios in malaria transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Chiara Tammaro
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Chahine Z, Le Roch KG. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:940321. [PMID: 37200864 PMCID: PMC10191146 DOI: 10.3389/fsysb.2022.940321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.
Collapse
|
11
|
Takashima E, Tachibana M, Morita M, Nagaoka H, Kanoi BN, Tsuboi T. Identification of Novel Malaria Transmission-Blocking Vaccine Candidates. Front Cell Infect Microbiol 2021; 11:805482. [PMID: 34917521 PMCID: PMC8670312 DOI: 10.3389/fcimb.2021.805482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Control measures have significantly reduced malaria morbidity and mortality in the last two decades; however, the downward trends have stalled and have become complicated by the emergence of COVID-19. Significant efforts have been made to develop malaria vaccines, but currently only the RTS,S/AS01 vaccine against Plasmodium falciparum has been recommended by the WHO, for widespread use among children in sub-Saharan Africa. The efficacy of RTS,S/AS01 is modest, and therefore the development of more efficacious vaccines is still needed. In addition, the development of transmission-blocking vaccines (TBVs) to reduce the parasite transmission from humans to mosquitoes is required toward the goal of malaria elimination. Few TBVs have reached clinical development, and challenges include low immunogenicity or high reactogenicity in humans. Therefore, novel approaches to accelerate TBV research and development are urgently needed, especially novel TBV candidate discovery. In this mini review we summarize the progress in TBV research and development, novel TBV candidate discovery, and discuss how to accelerate novel TBV candidate discovery.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
12
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|