1
|
Mansfield KL, González E, McKay S, Apaa T, Kent AJ, Cropper P, Berry N, Hernández-Triana LM, Johnson N. Short Communication: Anaplasma phagocytophilum and Babesia spp. in ixodid ticks infesting red foxes (Vulpes vulpes) in Great Britain. Ticks Tick Borne Dis 2024; 15:102401. [PMID: 39383837 DOI: 10.1016/j.ttbdis.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/11/2024]
Abstract
Red foxes (Vulpes vulpes) are found throughout the United Kingdom (UK), and can reach high population densities in urban areas. They are often infested with ticks which may carry tick-borne pathogens, leading to a risk of transmission to domestic animals and humans. This study investigated the prevalence of tick-borne pathogens in ticks sourced from red fox carcasses across Great Britain between 2018 and 2022. Tick species were identified using morphological keys and molecular barcoding, followed by specific pathogen testing using PCR. In total, 227 ticks were collected from 93 foxes. Pooling (n = 2) was undertaken for unengorged nymphs from the same tick species and fox host, with 203 homogenates tested in total (24 pools and 179 individual ticks). Ixodes hexagonus was the most abundant tick species sampled (73 %), of which 59 % were nymphs and 41 % were females. Less common were Ixodes ricinus (12 %) and Ixodes canisuga (15 %), the majority of which were females (73 % and 91 %, respectively). One Ixodes sp. larva was identified. Babesia DNA was identified in seven individual ticks and once in pooled ticks (n = 2); seven detections were in I. hexagonus and one in I. canisuga, with an overall detection rate of 7 % (95 % CI: 6 - 8 %). Sequence analysis confirmed that all Babesia detections in I. hexagonus were Babesia vulpes, with detection of Babesia Badger Type A in I. canisuga. Screening for Anaplasma phagocytophilum DNA through amplification of the msp2 gene yielded an overall detection rate of 4 % (detected in I. hexagonus only). Louping ill virus was not detected by qRT-PCR in any tick RNA tested. The majority of pathogen detections were in ticks from red foxes in rural areas of the UK, although a small number of Babesia detections were in ticks collected from semi-rural or urban red foxes. Additionally, B. vulpes was detected in GB red fox tissues, suggesting a potential role as a reservoir host. This study confirms the detection of tick-borne pathogens in ticks infesting UK red foxes and highlights the involvement of GB tick species in animal or human disease transmission.
Collapse
Affiliation(s)
- Karen L Mansfield
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, KT15 3NB, UK.
| | - Estela González
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, KT15 3NB, UK
| | - Stuart McKay
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, KT15 3NB, UK
| | - Ternenge Apaa
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, KT15 3NB, UK
| | - Alexander J Kent
- Animal and Plant Health Agency, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Paul Cropper
- Animal and Plant Health Agency, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Naomi Berry
- Animal and Plant Health Agency, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | | | - Nicholas Johnson
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, KT15 3NB, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
2
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
3
|
Tufts DM, Goethert HK, Diuk-Wasser MA. Host-pathogen associations inferred from bloodmeal analyses of Ixodes scapularis ticks in a low biodiversity setting. Appl Environ Microbiol 2024; 90:e0066724. [PMID: 39207157 PMCID: PMC11409645 DOI: 10.1128/aem.00667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Tick-borne pathogen emergence is dependent on the abundance and distribution of competent hosts in the environment. Ixodes scapularis ticks are generalist feeders, and their pathogen infection prevalence depends on their relative feeding on local competent and non-competent hosts. The ability to determine what host a larval life stage tick fed on can help predict infection prevalence, emergence, and spread of certain tick-borne pathogens and the risks posed to public health. Here, we use a newly developed genomic target-based technique to detect the source of larval bloodmeals by sampling questing nymphs from Block Island, RI, a small island with a depauperate mammalian community. We used previously designed specific assays to target all known hosts on this island and analyzed ticks for four human pathogenic tick-borne pathogens. We determined the highest proportion of larvae fed on avian species (42.34%), white-footed mice (36.94%), and white-tailed deer (20.72%) and occasionally fed on feral cats, rats, and voles, which are in low abundance on Block Island. Additionally, larvae that had fed on white-footed mice were significantly more likely to be infected with Borrelia burgdorferi and Babesia microti, while larvae that had fed on white-footed mice or white-tailed deer were significantly more likely to be infected with, respectively, mouse- and deer-associated genotypes of Anaplasma phagocytophilum. The ability to detect a nymph's larval host allows for a better understanding of tick feeding behavior, host distribution, pathogen prevalence, and zoonotic risks to humans, which can contribute to better tick management strategies. IMPORTANCE Tick-borne diseases, such as Lyme disease, babesiosis, and anaplasmosis, pose significant public health burdens. Tick bloodmeal analysis provides a noninvasive sampling method to evaluate tick-host associations and combined with a zoonotic pathogen assay, can generate crucial insights into the epidemiology and transmission of tick-borne diseases by identifying potential key maintenance hosts. We investigated the bloodmeals of questing Ixodes scapularis nymphs. We found that avian hosts, white-footed mice, and white-tailed deer fed the majority of larval ticks and differentially contributed to the prevalence of multiple tick-borne pathogens and pathogen genotypes in a low biodiversity island setting. Unraveling the intricate network of host-vector-pathogen interactions will contribute to improving wildlife management and conservation efforts, to developing targeted surveillance, and vector and host control efforts, ultimately reducing the incidence of tick-borne diseases and improving public health.
Collapse
Affiliation(s)
- Danielle M. Tufts
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| | - Heidi K. Goethert
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Philippe C, Geebelen L, Hermy MRG, Dufrasne FE, Tersago K, Pellegrino A, Fonville M, Sprong H, Mori M, Lernout T. The prevalence of pathogens in ticks collected from humans in Belgium, 2021, versus 2017. Parasit Vectors 2024; 17:380. [PMID: 39238018 PMCID: PMC11378490 DOI: 10.1186/s13071-024-06427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Ticks carry a variety of microorganisms, some of which are pathogenic to humans. The human risk of tick-borne diseases depends on, among others, the prevalence of pathogens in ticks biting humans. To follow-up on this prevalence over time, a Belgian study from 2017 was repeated in 2021. METHODS During the tick season 2021, citizens were invited to have ticks removed from their skin, send them and fill in a short questionnaire on an existing citizen science platform for the notification of tick bites (TekenNet). Ticks were morphologically identified to species and life stage level and screened using multiplex qPCR targeting, among others, Borrelia burgdorferi (sensu lato), Anaplasma phagocytophilum, Borrelia miyamotoi, Neoehrlichia mikurensis, Babesia spp., Rickettsia helvetica and tick-borne encephalitis virus (TBEV). The same methodology as in 2017 was used. RESULTS In 2021, the same tick species as in 2017 were identified in similar proportions; of 1094 ticks, 98.7% were Ixodes ricinus, 0.8% Ixodes hexagonus and 0.5% Dermacentor reticulatus. A total of 928 nymphs and adults could be screened for the presence of pathogens. Borrelia burgdorferi (s.l.) was detected in 9.9% (95% CI 8.2-12.0%), which is significantly lower than the prevalence of 13.9% (95% CI 12.2-15.7%) in 2017 (P = 0.004). The prevalences of A. phagocytophilum (4.7%; 95% CI 3.5-6.3%) and R. helvetica (13.3%; 95% CI 11.2-15.6%) in 2021 were significantly higher compared to 2017 (1.8%; 95% CI 1.3-2.7% and 6.8%; 95% CI 5.6-8.2% respectively) (P < 0.001 for both). For the other pathogens tested, no statistical differences compared to 2017 were found, with prevalences ranging between 1.5 and 2.9% in 2021. Rickettsia raoultii was again found in D. reticulatus ticks (n = 3/5 in 2021). Similar to 2017, no TBEV was detected in the ticks. Co-infections were found in 5.1% of ticks. When combining co-infection occurrence in 2017 and 2021, a positive correlation was observed between B. burgdorferi (s.l.) and N. mikurensis and B. burgdorferi (s.l.) and B. miyamotoi (P < 0.001 for both). CONCLUSIONS Although the 2021 prevalences fell within expectations, differences were found compared to 2017. Further research to understand the explanations behind these differences is needed.
Collapse
Affiliation(s)
- Camille Philippe
- Sciensano, Belgian Institute for Health, Brussels, Belgium
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | - Katrien Tersago
- Division of Preventive Health Policy, Flemish Department of Care, Environmental Healthcare, Brussels, Belgium
| | - Alessandro Pellegrino
- Infectious Disease Surveillance Unit, Agence pour une Vie de Qualité (AVIQ), Charleroi, Belgium
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Marcella Mori
- Sciensano, Belgian Institute for Health, Brussels, Belgium
| | - Tinne Lernout
- Sciensano, Belgian Institute for Health, Brussels, Belgium
| |
Collapse
|
5
|
Spoorenberg N, Köhler CF, Vermeulen E, Jurriaans S, Cornelissen M, Persson KEM, van Doorn I, Sprong H, Hovius JW, Zonneveld R. Autochthonous Human Babesiosis Caused by Babesia venatorum, the Netherlands. Emerg Infect Dis 2024; 30:1934-1938. [PMID: 39174031 PMCID: PMC11347003 DOI: 10.3201/eid3009.240556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Severe babesiosis with 9.8% parasitemia was diagnosed in a patient in the Netherlands who had previously undergone splenectomy. We confirmed Babesia venatorum using PCR and sequencing. B. venatorum was also the most prevalent species in Ixodes ricinus ticks collected around the patient's home. Our findings warrant awareness for severe babesiosis in similar patients.
Collapse
|
6
|
Jajosky RP, Jajosky AN, Jajosky PG, Stowell SR. Do Babesia microti Hosts Share a Blood Group System Gene Ortholog, Which Could Generate an Erythrocyte Antigen That Is Essential for Parasite Invasion? Trop Med Infect Dis 2024; 9:195. [PMID: 39330884 PMCID: PMC11436039 DOI: 10.3390/tropicalmed9090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The United States of America (US) has the highest annual number of human babesiosis cases caused by Babesia microti (Bm). Babesia, like malaria-causing Plasmodium, are protozoan parasites that live within red blood cells (RBCs). Both infectious diseases can be associated with hemolysis and organ damage, which can be fatal. Since babesiosis was made a nationally notifiable condition by the Centers for Disease Control and Prevention (CDC) in January 2011, human cases have increased, and drug-resistant strains have been identified. Both the Bm ligand(s) and RBC receptor(s) needed for invasion are unknown, partly because of the difficulty of developing a continuous in vitro culture system. Invasion pathways are relevant for therapies (e.g., RBC exchange) and vaccines. We hypothesize that there is at least one RBC surface antigen that is essential for Bm invasion and that all Bm hosts express this. Because most RBC surface antigens that impact Plasmodium invasion are in human blood group (hBG) systems, which are generated by 51 genes, they were the focus of this study. More than 600 animals with at least one hBG system gene ortholog were identified using the National Center for Biotechnology Information (NCBI) command-line tools. Google Scholar searches were performed to determine which of these animals are susceptible to Bm infection. The literature review revealed 28 Bm non-human hosts (NHH). For 5/51 (9.8%) hBG system genes (e.g., RhD), no NHH had orthologs. This means that RhD is unlikely to be an essential receptor for invasion. For 24/51 (47.1%) hBG system genes, NHH had 4-27 orthologs. For the ABO gene, 15/28 NHH had an ortholog, meaning that this gene is also unlikely to generate an RBC antigen, which is essential for Bm invasion. Our prior research showed that persons with blood type A, B, AB, O, RhD+, and RhD- can all be infected with Bm, supporting our current study's predictions. For 22/51 (43.1%) hBG system genes, orthologs were found in all 28 NHH. Nineteen (37.3%) of these genes encode RBC surface proteins, meaning they are good candidates for generating a receptor needed for Bm invasion. In vitro cultures of Bm, experimental Bm infection of transgenic mice (e.g., a CD44 KO strain), and analyses of Bm patients can reveal further clues as to which RBC antigens may be essential for invasion.
Collapse
Affiliation(s)
- Ryan P Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Audrey N Jajosky
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14586, USA
| | | | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
7
|
Barbiero A, Gabrielli S, Dani L, Spinicci M, Lagi F, Basile G, Nacci F, Mantella A, Kiros ST, Pieri A, Delama A, Piubelli C, Scarso S, Angheben A, Feasi M, Granozzi B, Comai G, Varani S, Zammarchi L, Bartoloni A. Babesiosis in the immunocompromised population: Results from a multicentric cohort study conducted in Italy. Parasite Epidemiol Control 2024; 26:e00372. [PMID: 39188966 PMCID: PMC11347065 DOI: 10.1016/j.parepi.2024.e00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Human babesiosis is an emerging zoonotic disease; diffused especially in some regions of the United States, it has been less frequently observed in other continents, including Europe. Serological surveys suggest that babesiosis could be more frequent than expected in European countries, representing an emerging health-issue and a possible harm, especially in immunocompromised populations. Only one case of human babesiosis has been reported in Italy and data about the diffusion of the pathogen in this country are scant. We conducted a multicentric serological survey in 5 centers of North-Eastern Italy, aimed to detect the seroprevalence of Babesia spp. antibodies in 3 groups of immunocompromised patients: people living with HIV (PLHIV), rheumatologic patients undergoing immunosuppressive therapies and patients undergoing renal transplant. Among the 433 enrolled patients, 3 (0.7%) tested positive for Babesia spp. serology. All positive patients belonged to the PLHIV group, with a seroprevalence of 1.7% (3/180) in this population; the three serologically positive patients were all asymptomatic. They were all enrolled in the provinces of Bolzano and Trento, where seroprevalences of 3.1% and 3.6% were recorded, respectively. Our results suggest that further research is needed on this field, awareness should be raised toward the human disease in Europe, especially in immunocompromised patients, and this emerging health issue should be analyzed in a One-Health perspective to be fully understood.
Collapse
Affiliation(s)
- Anna Barbiero
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Simona Gabrielli
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, 00185 Roma, Italy
| | - Lapo Dani
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Michele Spinicci
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
- Department of Infectious and Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
- Regional Referral Center for Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
| | - Filippo Lagi
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
- Department of Infectious and Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
| | - Gregorio Basile
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Francesca Nacci
- Section of Rheumatology, Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50125 Florence, Italy
| | - Antonia Mantella
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
- Regional Referral Center for Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
| | - Seble Tekle Kiros
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Angela Pieri
- Department of Infectious Diseases, Provincial Hospital of Bolzano (SABES-ASDAA), Bolzano-Bozen, Italy
- Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Andrea Delama
- Infectious Diseases Unit, Trento Hospital, 38122 Trento, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore-Don Calabria Hospital, 37024 Negrar di Valpolicella, (VR), Italy
| | - Salvatore Scarso
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore-Don Calabria Hospital, 37024 Negrar di Valpolicella, (VR), Italy
| | - Andrea Angheben
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore-Don Calabria Hospital, 37024 Negrar di Valpolicella, (VR), Italy
| | - Marcello Feasi
- Department of Infectious Diseases, Galliera Hospital, 16128 Genova, Italy
| | - Bianca Granozzi
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Stefania Varani
- Unit of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Lorenzo Zammarchi
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
- Department of Infectious and Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
- Regional Referral Center for Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
| | - Alessandro Bartoloni
- Department of Clinical and Experimental Medicine, Università degli Studi di Firenze, 50134 Firenze, Italy
- Department of Infectious and Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
- Regional Referral Center for Tropical Diseases, Azienda Ospedaliero Universitaria Careggi, 50134 Firenze, Italy
| |
Collapse
|
8
|
Moerbeck L, Parreira R, Szczotko M, Seixas G, Velez R, Dmitryjuk M, Santos AS, Domingos A, Antunes S. Ticks and Tick-Borne Pathogens Circulating in Peri-Domestic Areas in Mainland Portugal. Microorganisms 2024; 12:1006. [PMID: 38792834 PMCID: PMC11123758 DOI: 10.3390/microorganisms12051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Over the years, tick-borne pathogens (TBPs) have garnered significant interest due to their medical, veterinary and economic importance. Additionally, TBPs have drawn attention to how these microorganisms interact with their own vectors, increasing the risk to human and animal infection of emerging and reemerging zoonoses. In this sense, ticks, which are obligate hematophagous ectoparasites, have a key role in maintaining and transmitting TBPs among humans and animals. The aim of this study was to assess the prevalence of neglected TBPs in mainland Portugal, namely Anaplasma spp., Babesia spp., Ehrlichia spp. and Neoehrlichia mikurensis. DNA fragments were detected in questing ticks collected from five different ecological areas under investigation. To the best of the authors' knowledge, this study reports new worldwide findings, including B. bigemina infecting Ixodes frontalis, Ixodes ricinus and Rhipicephalus sanguineus sensu lato. Additionally, it presents new findings in Portugal of N. mikurensis infecting I. ricinus and of presumably Wolbachia endosymbionts being detected in I. ricinus. Overall, there were 208 tick samples that were negative for all screened TBPs. The results herein obtained raise concerns about the circulation of neglected TBPs in mainland Portugal, especially in anthropophilic ticks, highlighting the importance of adopting a One Health perspective.
Collapse
Affiliation(s)
- Leonardo Moerbeck
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Ricardo Parreira
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Magdalena Szczotko
- Students’ Parasitology “Vermis” Science Club, Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Gonçalo Seixas
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Rita Velez
- Centro de Estudos de Vetores e Doenças Infeciosas Dr. Francisco Cambournac, Instituto Nacional de Saúde Doutor Ricardo Jorge (CEVDI-INSA), 2965-575 Águas de Moura, Portugal; (R.V.); (A.S.S.)
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Ana Sofia Santos
- Centro de Estudos de Vetores e Doenças Infeciosas Dr. Francisco Cambournac, Instituto Nacional de Saúde Doutor Ricardo Jorge (CEVDI-INSA), 2965-575 Águas de Moura, Portugal; (R.V.); (A.S.S.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Sandra Antunes
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.P.); (G.S.); (A.D.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
9
|
Jaenson TGT, Gray JS, Lindgren PE, Wilhelmsson P. Coinfection of Babesia and Borrelia in the Tick Ixodes ricinus-A Neglected Public Health Issue in Europe? Pathogens 2024; 13:81. [PMID: 38251388 PMCID: PMC10818971 DOI: 10.3390/pathogens13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Ixodes ricinus nymphs and adults removed from humans, and larvae and nymphs from birds, have been analysed for infection with Babesia species and Borrelia species previously in separately published studies. Here, we use the same data set to explore the coinfection pattern of Babesia and Borrelia species in the ticks. We also provide an overview of the ecology and potential public health importance in Sweden of I. ricinus infected both with zoonotic Babesia and Borrelia species. Among 1952 nymphs and adult ticks removed from humans, 3.1% were PCR-positive for Babesia spp. Of these Babesia-positive ticks, 43% were simultaneously Borrelia-positive. Among 1046 immatures of I. ricinus removed from birds, 2.5% were Babesia-positive, of which 38% were coinfected with Borrelia species. This study shows that in I. ricinus infesting humans or birds in Sweden, potentially zoonotic Babesia protozoa sometimes co-occur with human-pathogenic Borrelia spp. Diagnostic tests for Babesia spp. infection are rarely performed in Europe, and the medical significance of this pathogen in Europe could be underestimated.
Collapse
Affiliation(s)
- Thomas G. T. Jaenson
- Evolutionary Biology Centre, Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36 Uppsala, Sweden;
| | - Jeremy S. Gray
- UCD School of Biology and Environmental Science, University College Dublin, D04 N2E5 Dublin, Ireland;
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Clinical Microbiology, Region Jönköping County, SE-551 11 Jönköping, Sweden
| | - Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Clinical Microbiology, Region Jönköping County, SE-551 11 Jönköping, Sweden
| |
Collapse
|
10
|
Gandy S, Medlock J, Cull B, Smith R, Gibney Z, Sewgobind S, Parekh I, Harding S, Johnson N, Hansford K. Detection of Babesia species in questing Ixodes ricinus ticks in England and Wales. Ticks Tick Borne Dis 2024; 15:102291. [PMID: 38061320 DOI: 10.1016/j.ttbdis.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Babesiosis, a disease in humans and animals is caused by piroplasms from the genus Babesia and is transmitted by ixodid ticks. Bovine babesiosis, commonly called redwater fever, is reported in cattle from many regions of the British Isles. The presence of Babesia in questing ticks in the United Kingdom (UK) and its potential impact on public and animal health has not been widely studied. Therefore, this study aimed to assess the presence of Babesia spp. in England and Wales using ticks collected over a six-year period. Questing Ixodes ricinus nymphs were collected at 20 recreational areas between 2014 and 2019 and screened for Babesia. Of 3912 nymphs tested, Babesia spp. were detected in 15, giving an overall prevalence of 0.38% [95%CI: 0.21-0.63%]. A number of Babesia species were identified including B. venatorum (n = 9), B. divergens/capreoli (n = 5) and B. odocoilei-like species (n = 1). Based on the low prevalence of Babesia detected in questing I. ricinus nymphs in the recreational areas studied, the likelihood of exposure to Babesia-infected ticks is lower compared to other pathogens more widely studied in the UK (e.g. Borrelia burgdorferi s.l.). However, localized areas of elevated risk may occur in pockets in England and Wales.
Collapse
Affiliation(s)
- Sara Gandy
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom.
| | - Jolyon Medlock
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom; NIHR Health Protection Research Unit in Environmental Change and Health, United Kingdom
| | - Benjamin Cull
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom
| | - Rob Smith
- Health Protection Division, Public Health Wales, Cardiff, United Kingdom
| | - Zoë Gibney
- Emerging Infections and Zoonoses Team, UK Health Security Agency, United Kingdom
| | | | - Insiyah Parekh
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Sophie Harding
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, United Kingdom; Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| | - Kayleigh Hansford
- Medical Entomology and Zoonoses Ecology, UK Health Security Agency, Porton Down, United Kingdom
| |
Collapse
|
11
|
Bakker JW, Begemann HLM, Fonville M, Esser HJ, de Boer WF, Sprong H, Koenraadt CJM. Differential associations of horizontally and vertically transmitted symbionts on Ixodes ricinus behaviour and physiology. Parasit Vectors 2023; 16:443. [PMID: 38017525 PMCID: PMC10685571 DOI: 10.1186/s13071-023-06025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Ixodes ricinus ticks are infected with a large diversity of vertically and horizontally transmitted symbionts. While horizontally transmitted symbionts rely on a vertebrate host for their transmission, vertically transmitted symbionts rely more on the survival of their invertebrate host for transmission. We therefore hypothesized horizontally transmitted symbionts to be associated with increased tick activity to increase host contact rate and vertically transmitted symbionts to be associated with higher tick weight and lipid fraction to promote tick survival. METHODS We used a behavioural assay to record the questing activity of I. ricinus ticks. In addition, we measured weight and lipid fraction and determined the presence of ten symbiont species in these ticks using qPCR, of which six were vertically transmitted and four horizontally transmitted. RESULTS Vertically transmitted symbionts (e.g. Midichloria mitochondrii) were associated with an increase in tick weight, whereas horizontally transmitted symbionts (e.g. Borrelia burgdorferi sensu lato) were often associated with lower weight and lipid fraction of ticks. Moreover, horizontally transmitted symbionts (e.g. B. burgdorferi s.l.) were associated with increased tick activity, which may benefit pathogen transmission and increases tick-borne disease hazard. CONCLUSIONS Our study shows that horizontally and vertically transmitted symbionts differentially influence the behaviour and physiology of I. ricinus and warrants future research to study the underlying mechanisms and effects on transmission dynamics of tick-borne pathogens.
Collapse
Affiliation(s)
- Julian W Bakker
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Hannah L M Begemann
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
12
|
Zając Z, Obregon D, Foucault-Simonin A, Wu-Chuang A, Moutailler S, Galon C, Kulisz J, Woźniak A, Bartosik K, Cabezas-Cruz A. Disparate dynamics of pathogen prevalence in Ixodes ricinus and Dermacentor reticulatus ticks occurring sympatrically in diverse habitats. Sci Rep 2023; 13:10645. [PMID: 37391552 PMCID: PMC10313804 DOI: 10.1038/s41598-023-37748-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Ixodes ricinus and Dermacentor reticulatus ticks are important reservoirs and vectors of pathogens. The aim of the present study was to investigate the dynamic of the prevalence and genetic diversity of microorganisms detected in these tick species collected from two ecologically diverse biotopes undergoing disparate long-term climate condition. High-throughput real time PCR confirmed high prevalence of microorganisms detected in sympatrically occurring ticks species. D. reticulatus specimens were the most often infected with Francisella-like endosymbiont (FLE) (up to 100.0%) and Rickettsia spp. (up to 91.7%), while in case of I. ricinus the prevalence of Borreliaceae spirochetes reached up to 25.0%. Moreover, pathogens belonging to genera of Bartonella, Anaplasma, Ehrlichia and Babesia were detected in both tick species regardless the biotope. On the other hand, Neoehrlichia mikurensis was conformed only in I. ricinus in the forest biotope, while genetic material of Theileria spp. was found only in D. reticulatus collected from the meadow. Our study confirmed significant impact of biotope type on prevalence of representatives of Borreliaceae and Rickettsiaceae families. The most common co-infection detected in D. reticulatus was Rickettsia spp. + FLE, while Borreliaceae + R. helvetica was the most common in I. ricinus. Additionally, we found significant genetic diversity of R. raoultii gltA gene across studied years, however such relationship was not observed in ticks from studied biotopes. Our results suggest that ecological type of biotope undergoing disparate long-term climate conditions have an impact on prevalence of tick-borne pathogens in adult D. reticulatus and I. ricinus.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland.
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Clemence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
13
|
Quarsten H, Henningsson A, Krogfelt K, Strube C, Wennerås C, Mavin S. Tick-borne diseases under the radar in the North Sea Region. Ticks Tick Borne Dis 2023; 14:102185. [PMID: 37116420 DOI: 10.1016/j.ttbdis.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
The impact of tick-borne diseases caused by pathogens such as Anaplasma phagocytophilum, Neoehrlichia mikurensis, Borrelia miyamotoi, Rickettsia helvetica and Babesia species on public health is largely unknown. Data on the prevalence of these pathogens in Ixodes ricinus ticks from seven countries within the North Sea Region in Europe as well as the types and availability of diagnostic tests and the main clinical features of their corresponding diseases is reported and discussed. Raised awareness is needed to discover cases of these under-recognized types of tick-borne disease, which should provide valuable insights into these diseases and their clinical significance.
Collapse
Affiliation(s)
- Hanne Quarsten
- Department of Medical Microbiology, Sørlandet Hospital, Kristiansand 4615, Norway.
| | - Anna Henningsson
- Department of Clinical Microbiology in Jönköping, County Hospital Ryhov, Jönköping 55185, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping 58183, Sweden
| | - Karen Krogfelt
- Department of Science and Environment, University of Roskilde, Roskilde 4000, Denmark
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover 30559, Germany
| | - Christine Wennerås
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg 413 46, Sweden
| | - Sally Mavin
- Scottish Lyme Disease and Tick-Borne Infections Reference Laboratory, Raigmore Hospital, Inverness IV2 3BW, United Kingdom
| |
Collapse
|
14
|
Uiterwijk M, Vojta L, Šprem N, Beck A, Jurković D, Kik M, Duscher GG, Hodžić A, Reljić S, Sprong H, Beck R. Diversity of Hepatozoon species in wild mammals and ticks in Europe. Parasit Vectors 2023; 16:27. [PMID: 36694253 PMCID: PMC9872412 DOI: 10.1186/s13071-022-05626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Hepatozoon spp. are tick-borne parasites causing subclinical to clinical disease in wild and domestic animals. Aim of this study was to determine Hepatozoon prevalence and species distribution among wild mammals and ticks in Europe. METHODS Samples of wild mammals and ticks, originating from Austria, Bosnia and Herzegovina, Croatia, Belgium and the Netherlands, were tested with PCR to amplify a ~ 670-bp fragment of the small subunit ribosomal RNA gene. RESULTS Of the 2801 mammal samples that were used for this study, 370 (13.2%) tested positive. Hepatozoon canis was detected in samples of 178 animals (3 Artiodactyla, 173 Carnivora, 1 Eulipotyphia, 1 Lagomorpha), H. martis in 125 (3 Artiodactyla, 122 Carnivora), H. sciuri in 13 (all Rodentia), Hepatozoon sp. in 47 (among which Hepatozoon sp. Vole isolate, all Rodentia) and H. ayorgbor in 4 (all Rodentia). Regarding origin, 2.9% (6/208) tested positive from Austria, 2.8% (1/36) from Bosnia and Herzegovina, 14.6% (173/1186) from Croatia and 13.9% (190/1371) from Belgium/the Netherlands. Of the 754 ticks collected, 0.0% (0/35) Hyalomma sp., 16.0% (4/25) Dermacentor spp., 0.0% (0/23) Haemaphysalis spp., 5.3% (24/50) Ixodes and 1.4% (3/221) Rhipicephalus spp. tested positive for Hepatozoon (4.2%; 32/754), most often H. canis (n = 22). CONCLUSIONS Hepatozoon canis is most present in mammals (especially in Carnivora such as gray wolves and golden jackals) and ticks, followed by H. martis, which was found merely in stone martens and pine martens. None of the rodent-associated Hepatozoon spp. were detected in the ticks, suggesting the possible implication of other arthropod species or non-vectorial routes in the transmission cycle of the hemoprotozoans in rodents. Our findings of H. canis in ticks other than R. sanguineus add to the observation that other ticks are also involved in the life cycle of Hepatozoon. Now that presence of Hepatozoon has been demonstrated in red foxes, gray wolves, mustelids and rodents from the Netherlands and/or Belgium, veterinary clinicians should be aware of the possibility of spill-over to domestic animals, such as dogs.
Collapse
Affiliation(s)
- Mathilde Uiterwijk
- Centre for Monitoring of Vectors (CMV), Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Lea Vojta
- Division of Molecular Biology, Laboratory for Molecular Plant Biology and Biotechnology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ana Beck
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Daria Jurković
- Laboratory for Parasitology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Marja Kik
- Faculty of Veterinary Medicine, Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Georg G. Duscher
- Austrian Agency for Health & Food Safety (AGES), Vienna, Austria
| | - Adnan Hodžić
- Centre for Microbiology and Environmental System Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Vienna, Austria
| | - Slaven Reljić
- Department of Forensic and State Veterinary Medicine, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hein Sprong
- Centre of Infectious Disease Control of the National Institute for Public Health and the Environment (Cib-RIVM), Bilthoven, the Netherlands
| | - Relja Beck
- Laboratory for Parasitology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| |
Collapse
|
15
|
Ozubek S, Ulucesme MC, Aktas M. Discovery of a Novel Species Infecting Goats: Morphological and Molecular Characterization of Babesia aktasi n. sp. Pathogens 2023; 12:pathogens12010113. [PMID: 36678461 PMCID: PMC9863244 DOI: 10.3390/pathogens12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
A novel Babesia sp. infecting goats was discovered based on the molecular findings obtained in the current study, which was conducted in the Mediterranean region of Türkiye. The goal of this study was to isolate this species of Babesia (Babesia sp.) infecting goats in vivo and to assess the genetic and morphological characterization of the parasite. To identify the animal naturally infected with Babesia sp. and isolate the parasite from this animal, field studies were conducted first, and genomic DNA were extracted from blood samples taken from goats (n = 50). The Theileria, Babesia, and Anaplasma species were identified using a nested PCR-based reverse line blotting (RLB) method. The study included one goat that was determined to be infected with Babesia sp. (single infection) in RLB for in vivo isolation. A blood smear was prepared to examine the parasite's morphology, but it was found to be negative microscopically. Following that, a splenectomy operation (to suppress the immune system) was performed to make the parasites visible microscopically in this animal. Parasitemia began after splenectomy, and the maximum parasitemia was determined to be 1.9%. The goat displayed no significant symptoms other than fever, loss of appetite, and depression. During a period when parasitemia was high, blood from this goat was inoculated into another splenectomized goat (Theileria-Babesia-Anaplasma-Mycoplasma spp. free). On the third day of inoculation, 10% parasitemia with high fever was detected in the goat, and on the fourth day, the goat was humanely euthanized due to severe acute babesiosis symptoms. Except for mild subcutaneous jaundice, no lesions were discovered during the necropsy. According to the microscopic measurement results, ring, double pyriform, spectacle-frame-like, and line forms were observed, and it was observed to be between 1.0-2.5 µm (1.38 ± 0.17 to 0.7 ± 0.21-all forms). A phylogenetic analysis and sequence comparison using the 18S rRNA and cox1 genes revealed that this species is distinct from the small ruminant Babesia species (18S rRNA 92-94%, cox1 79-80%) and has the highest similarity to Babesia sp. deer, which has been reported in deer. Furthermore, it was determined to resemble B. venatorum, B. divergens, Babesia sp. FR1 and Babesia sp. MO1 species, all of which are zoonotic. Additional research is needed to clarify the clinical status of this parasite in goats and other hosts (mountain goat, sheep, calf).
Collapse
|
16
|
Cuperus T, de Vries A, Jaarsma RI, Sprong H, Maas M. Occurrence of Rickettsia spp., Hantaviridae, Bartonella spp. and Leptospira spp. in European Moles ( Talpa europaea) from the Netherlands. Microorganisms 2022; 11:microorganisms11010041. [PMID: 36677332 PMCID: PMC9861085 DOI: 10.3390/microorganisms11010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The European mole (Talpa europaea) has a widespread distribution throughout Europe. However, little is known about the presence of zoonotic pathogens in European moles. We therefore tested 180 moles from the middle and the south of the Netherlands by (q)PCR for the presence of multiple (tick-borne) zoonotic pathogens. Spotted fever Rickettsia was found in one (0.6%), Leptospira spp. in three (1.7%), Bartonella spp. in 69 (38.3%) and Hantaviridae in 89 (49.4%) of the 180 moles. Infections with Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp. and Francisella tularensis were not found. In addition, in a subset of 35 moles no antibodies against Tick-borne encephalitis virus were found. The obtained sequences of Bartonella spp. were closely related to Bartonella spp. sequences from moles in Spain and Hungary. The Hantaviridae were identified as the mole-borne Nova virus, with high sequence similarity to sequences from other European countries, and Bruges virus. Though the zoonotic risk from moles appears limited, our results indicate that these animals do play a role in multiple host-pathogen cycles.
Collapse
|
17
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
18
|
Technical Evaluation of qPCR Multiplex Assays for the Detection of Ixodes ricinus-Borne Pathogens. Microorganisms 2022; 10:microorganisms10112222. [DOI: 10.3390/microorganisms10112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Background: The extent to which infections with Ixodes ricinus-borne pathogens (TBPs), other than Borrelia burgdorferi s. l. and tick-borne encephalitis virus (TBEV), cause disease in humans remains unclear. One of the reasons is that adequate diagnostic modalities are lacking in routine or research settings. Methods: We evaluated the analytical specificity, sensitivity and robustness of qPCR assays for the detection of Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma ixodetis, several Babesia species and Spotted Fever Rickettsia species as well as Bartonella species in human samples. Results: The qPCRs were found to perform well, given the difficulties of dealing with microorganisms for which confirmed patient materials are scarce or non-existent, a hurdle that was partially overcome by using synthetic controls. Spiking blood samples with the tested microorganisms showed that the detection of the TBPs was not inhibited by the presence of blood. The acceptable sensitivity when multiplexing the different pathogens, the good inter-assay variability and the absence of cross-reactivity make them potentially suitable as human diagnostics. Conclusions: The qPCRs evaluated in this study are technically suitable for the laboratory diagnostic assessment of clinical samples for infection with tick-borne pathogens. However, clinical validation and independent confirmation are still needed, pending the availability of sufficient human samples for testing in different laboratories.
Collapse
|
19
|
Guven E, Akyuz M, Kirman R, Balkaya I, Avcioglu H. Zoonotic Babesia microti infection in wild rodents in Erzurum province, northeastern Turkey. Zoonoses Public Health 2022; 69:875-883. [PMID: 35726555 DOI: 10.1111/zph.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Wild rodents are natural reservoir hosts of various pathogens, including Babesia microti. This study investigated the presence of B. microti in rodents from Erzurum province in Turkey. A total of 498 rodents and 21 rodent-fed ticks were analysed using the polymerase chain reaction (PCR) technique to test for the presence of B. microti. Babesia spp. were detected in three (0.6%) of the 498 rodent spleen samples. The Babesia-positive rodent species were identified as Microtus socialis by means of molecular analysis. The rodent-fed ticks comprised 15 Ixodes laguri and 6 Rhipicephalus sanguineus, none of which tested positive for Babesia spp. A sequence analysis of the 18S PCR amplicons confirmed the three Babesia-positive samples to be B. microti. The Erzurum isolates were 100% identical to the zoonotic Jena strain. The results of this study indicate the existence of zoonotic B. microti strains that may constitute a potential public health risk in Erzurum province. Future studies should determine the tick vector and other reservoir rodent species of B. microti in Erzurum.
Collapse
Affiliation(s)
- Esin Guven
- Department of Parasitology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Muzaffer Akyuz
- Department of Parasitology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ridvan Kirman
- Department of Parasitology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ibrahim Balkaya
- Department of Parasitology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Hamza Avcioglu
- Department of Parasitology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
20
|
Espinosa-Muñoz DY, López-López L, Ríos-Osorio LA, Gutiérrez-Builes LA. Detection of Babesia and the associated factors in cattle and humans from Magdalena Medio region, Colombia. Comp Immunol Microbiol Infect Dis 2022; 90-91:101900. [DOI: 10.1016/j.cimid.2022.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
21
|
Babesia and Theileria Identification in Adult Ixodid Ticks from Tapada Nature Reserve, Portugal. Pathogens 2022; 11:pathogens11020222. [PMID: 35215163 PMCID: PMC8876925 DOI: 10.3390/pathogens11020222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
This study, conducted in a nature reserve in southern Portugal, investigated the frequency and diversity of tick-borne piroplasms in six species of adult ixodid ticks removed from 71 fallow deer (Dama dama) and 12 red deer (Cervus elaphus), collected over the period 2012–2019. The majority of 520 ticks were Ixodes ricinus (78.5%), followed by Rhipicephalus sanguineus sensu lato, Hyalomma lusitanicum, Haemaphysalis punctata, Dermacentor marginatus, and Ixodes hexagonus. The R. sanguineus ticks collected from the deer were clearly exophilic, in contrast to the endophilic species usually associated with dogs. Four tick-borne piroplasms, including Theileria spp., and the zoonotic species, Babesia divergens and Babesia microti, were detected. B. divergens 18S rDNA, identical to that of the bovine reference strain U16370 and to certain strains from red deer, was detected in I. ricinus ticks removed from fallow deer. The sporadic detection of infections in ticks removed from the same individual hosts suggests that the piroplasms were present in the ticks rather than the hosts. Theileria sp OT3 was found in I. ricinus and, along with T. capreoli, was also detected in some of the other tick species. The natural vector and pathogenic significance of this piroplasm are unknown.
Collapse
|
22
|
The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 2022; 121:1207-1245. [DOI: 10.1007/s00436-022-07424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
|
23
|
Bajer A, Dwużnik-Szarek D. The specificity of Babesia-tick vector interactions: recent advances and pitfalls in molecular and field studies. Parasit Vectors 2021; 14:507. [PMID: 34583754 PMCID: PMC8480096 DOI: 10.1186/s13071-021-05019-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background Babesia spp. are protozoan parasites of great medical and veterinary importance, especially in the northern Hemisphere. Ticks are known vectors of Babesia spp., although some Babesia-tick interactions have not been fully elucidated. Methods The present review was performed to investigate the specificity of Babesia-tick species interactions that have been identified using molecular techniques in studies conducted in the last 20 years under field conditions. We aimed to indicate the main vectors of important Babesia species based on published research papers (n = 129) and molecular data derived from the GenBank database. Results Repeated observations of certain Babesia species in specific species and genera of ticks in numerous independent studies, carried out in different areas and years, have been considered epidemiological evidence of established Babesia-tick interactions. The best studied species of ticks are Ixodes ricinus, Dermacentor reticulatus and Ixodes scapularis (103 reports, i.e. 80% of total reports). Eco-epidemiological studies have confirmed a specific relationship between Babesia microti and Ixodes ricinus, Ixodes persulcatus, and Ixodes scapularis and also between Babesia canis and D. reticulatus. Additionally, four Babesia species (and one genotype), which have different deer species as reservoir hosts, displayed specificity to the I. ricinus complex. Eco-epidemiological studies do not support interactions between a high number of Babesia spp. and I. ricinus or D. reticulatus. Interestingly, pioneering studies on other species and genera of ticks have revealed the existence of likely new Babesia species, which need more scientific attention. Finally, we discuss the detection of Babesia spp. in feeding ticks and critically evaluate the data on the role of the latter as vectors. Conclusions Epidemiological data have confirmed the specificity of certain Babesia-tick vector interactions. The massive amount of data that has been thus far collected for the most common tick species needs to be complemented by more intensive studies on Babesia infections in underrepresented tick species. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05019-3.
Collapse
Affiliation(s)
- Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
24
|
Hildebrandt A, Zintl A, Montero E, Hunfeld KP, Gray J. Human Babesiosis in Europe. Pathogens 2021; 10:1165. [PMID: 34578196 PMCID: PMC8468516 DOI: 10.3390/pathogens10091165] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Babesiosis is attracting increasing attention as a worldwide emerging zoonosis. The first case of human babesiosis in Europe was described in the late 1950s and since then more than 60 cases have been reported in Europe. While the disease is relatively rare in Europe, it is significant because the majority of cases present as life-threatening fulminant infections, mainly in immunocompromised patients. Although appearing clinically similar to human babesiosis elsewhere, particularly in the USA, most European forms of the disease are distinct entities, especially concerning epidemiology, human susceptibility to infection and clinical management. This paper describes the history of the disease and reviews all published cases that have occurred in Europe with regard to the identity and genetic characteristics of the etiological agents, pathogenesis, aspects of epidemiology including the eco-epidemiology of the vectors, the clinical courses of infection, diagnostic tools and clinical management and treatment.
Collapse
Affiliation(s)
- Anke Hildebrandt
- St. Vincenz Hospital Datteln, Department of Internal Medicine I, 45711 Datteln, Germany;
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany
| | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, D04 W6F6 Dublin, Ireland;
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Klaus-Peter Hunfeld
- Institute of Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Center, Medical Faculty Goethe University Frankfurt, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany;
- Society for Promoting Quality Assurance in Medical Laboratories (INSTAND, e.v.), Ubierstraße 20, 40223 Düsseldorf, Germany
- ESGBOR Study Group of the European Society for Clinical Microbiology & Infectious Diseases (ESCMID), ESCMID Executive Office, P.O. Box 214, 4010 Basel, Switzerland
| | - Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, D04 N2E5 Dublin, Ireland
| |
Collapse
|
25
|
Babesia microti in Rodents from Different Habitats of Lithuania. Animals (Basel) 2021; 11:ani11061707. [PMID: 34200491 PMCID: PMC8227240 DOI: 10.3390/ani11061707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Babesia microti, the causative agent of human babesiosis, is an intraerythrocytic protozoan parasite, that circulates among small rodents and ixodid ticks in many countries worldwide. Zoonotic and non-zoonotic B. microti strains have been identified in rodent populations in Europe. Analyzing eight species of small rodents collected from different habitats (meadows, forests and their ecotones) in Lithuania, we checked for the presence of B. microti and found the highest infection prevalence to be in Microtus oeconomus and Microtus agrestis rodents. Of note, this study also detected the first reported cases of Babesia parasites in Micromys minutus mice. In term of habitat, the highest prevalence of Babesia parasites was detected in rodents trapped in meadows. Our results demonstrate that rodents, especially Microtus voles, can play an important role in the circulation of the zoonotic B. microti ‘Jena/Germany’ strain in Lithuania. Abstract Babesia microti (Aconoidasida: Piroplasmida) (Franca, 1910) is an emerging tick-borne parasite with rodents serving as the considered reservoir host. However, the distribution of B. microti in Europe is insufficiently characterized. Based on the sample of 1180 rodents from 19 study sites in Lithuania, the objectives of this study were: (1) to investigate the presence of Babesia parasites in eight species of rodents, (2) to determine the prevalence of Babesia parasites in rodents from different habitats, and (3) to characterize the detected Babesia strains using partial sequencing of the 18S rRNR gene. Babesia DNA was detected in 2.8% rodents. The highest prevalence of Babesia was found in Microtus oeconomus (14.5%) and Microtus agrestis (7.1%) followed by Clethrionomys glareolus (2.3%), Apodemus flavicollis (2.2%) and Micromys minutus (1.3%). In M.minutus, Babesia was identified for the first time. The prevalence of Babesia-infected rodents was higher in the meadow (5.67%) than in the ecotone (1.69%) and forest (0.31%) habitats. The sequence analysis of the partial 18S rRNA gene reveals that Babesia isolates derived from rodents were 99–100% identical to human pathogenic B. microti ‘Jena/Germany’ strain.
Collapse
|
26
|
Egan SL, Taylor CL, Austen JM, Banks PB, Northover AS, Ahlstrom LA, Ryan UM, Irwin PJ, Oskam CL. Haemoprotozoan surveillance in peri-urban native and introduced wildlife from Australia. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100052. [PMID: 35284862 PMCID: PMC8906138 DOI: 10.1016/j.crpvbd.2021.100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Siobhon L. Egan
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Corresponding author.
| | - Casey L. Taylor
- School of Life and Environmental Sciences, Camperdown, The University of Sydney, New South Wales, 2006, Australia
| | - Jill M. Austen
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Peter B. Banks
- School of Life and Environmental Sciences, Camperdown, The University of Sydney, New South Wales, 2006, Australia
| | - Amy S. Northover
- College of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Liisa A. Ahlstrom
- Elanco Animal Health, Macquarie Park, New South Wales, 2113, Australia
| | - Una M. Ryan
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Peter J. Irwin
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- College of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Charlotte L. Oskam
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Corresponding author.
| |
Collapse
|