1
|
Elshamy S, Kuhnert N, El-Shazly M, Ziemah J, Handoussa H. Comparative metabolomic study of twelve Acacia species by UHPLC-q-tof-ESI-MS coupled with chemometrics in correlation with antibacterial activity. Fitoterapia 2025; 181:106378. [PMID: 39765316 DOI: 10.1016/j.fitote.2025.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Genus Acacia comprises around 1500 species. They are widely used to treat inflammation as well as bacterial and fungal infections as they are enriched in phytochemicals, especially phenolics. The aim of this study was to evaluate the antibacterial activity of leaves' methanolic extracts of twelve Acacia species growing in Egypt against Vibrio parahaemolyticus, Salmonella enterica, Listeria monocytogens, Klebsiella pnemoniae, Bacillus aquimaris, Bacillus subtilis, and Escherichia coli. These species are Acacia nilotica (wild and cultivated), Acacia seyal, Acacia auriculiformis, Acacia saligna, Acacia xanthophloea, Acacia tortilis subsp. raddiana (Gabal Elba and Aswan), Acacia tortilis, Acacia laeta (wild and cultivated), and Acacia albida. Furthermore, to study the metabolomic composition and variation among these species using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time of flight mass spectrometry (UHPLC-q-tof-ESI-MS) coupled with multivariate statistical analysis and correlate it to the antibacterial potential. Results showed that Acacia nilotica (AN) has superior antibacterial activity over the other species. In addition, it exhibited a distinct segregation in Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). Full profiling of AN using UHPLC-ESI-q-tof-MS revealed 42 phenolics mainly catechins. It was further subjected to bio-guided fractionation and revealed the presence of methyl gallic acid, gallic acid, catechin gallate, and digallate isomers in its most bioactive fraction. These compounds were identical to the compounds annotated as VIPs and were responsible for the segregation of AN in both PCA and PLS-DA analyses. Hence, this study sheds light on the use of chemometrics as an early tool for the detection of bioactive compounds.
Collapse
Affiliation(s)
- Salma Elshamy
- Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt.
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Constructor University Bremen, Campus Ring1, 28759 Bremen, Germany
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - James Ziemah
- Department of Life Sciences and Chemistry, Constructor University Bremen, Campus Ring1, 28759 Bremen, Germany
| | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt
| |
Collapse
|
2
|
Khowdiary MM, Alatawi Z, Alhowiti A, Amin MA, Daghistani H, Albaqami FMK, Abdel-Rahman MA, Ghareeb A, Shaer NA, Shawky AM, Fouda A. Phytochemical Analysis and Multifaceted Biomedical Activities of Nitraria retusa Extract as Natural Product-Based Therapies. Life (Basel) 2024; 14:1629. [PMID: 39768337 PMCID: PMC11676749 DOI: 10.3390/life14121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This study examined the phytochemical profile and biomedical activities of Nitraria retusa, a halophytic and drought-resistant shrub. HPLC analysis showed gallic acid (1905.1 μg/g), catechin (1984.1 μg/g), and ellagic acid (2671.1 μg/g) as the primary constituents, while FT-IR analysis revealed a complex organic profile with significant functional groups. The extract demonstrated strong antioxidant activity in DPPH assays, outperforming ascorbic acid (IC50 = 18.7 ± 1.0 μg/mL) with an IC50 of 16.4 ± 4.4 μg/mL. It demonstrated specific antiproliferative effects on cancer cell lines as it showed selective cytotoxicity against cancer cell lines; normal WI38 cells were largely unaffected, showing 50.0% viability at 125 μg/mL. The most sensitive cell line was Caco2, which showed 50.0% viability at 125 μg/mL. Anti-diabetic properties were exhibited by means of inhibition of α-amylase (IC50 = 68.2 ± 4.2 μg/mL) and α-glucosidase (IC50 = 22.8 ± 3.3 μg/mL). Additionally, antimicrobial activity was observed to be broad-spectrum, and it was most effective against E. coli (32.6 mm inhibition zone at 400 μg/mL) and Penicillium glabrum (35.3 mm at 400 μg/mL). These findings highlight the potential of N. retusa in developing plant-based therapeutic approaches.
Collapse
Affiliation(s)
- Manal M. Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (M.M.K.); (N.A.S.)
| | - Zinab Alatawi
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia; (Z.A.); (A.A.)
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia; (Z.A.); (A.A.)
| | - Mohamed A. Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (M.A.A.-R.)
| | - Hussam Daghistani
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Miqad K. Albaqami
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (M.A.A.-R.)
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Nehad A. Shaer
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (M.M.K.); (N.A.S.)
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (M.A.A.-R.)
- School of Nuclear Science and Technology, University of South China, Hengyang 421009, China
| |
Collapse
|
3
|
Bramki A, Benouchenne D, Salvatore MM, Benslama O, Andolfi A, Rahim N, Moussaoui M, Ramoul S, Nessah S, Barboucha G, Bensouici C, Cimmino A, Zorrilla JG, Masi M. In Vitro and In Silico Biological Activities Investigation of Ethyl Acetate Extract of Rubus ulmifolius Schott Leaves Collected in Algeria. PLANTS (BASEL, SWITZERLAND) 2024; 13:3425. [PMID: 39683218 DOI: 10.3390/plants13233425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
This investigation aimed to assess the in vitro and in silico biological properties of the ethyl acetate (EtOAc) extract obtained from leaves of Rubus ulmifolius Schott collected in Algeria. The phytochemical screening data disclosed that flavonoids, tannins, coumarins, saponins, and anthocyanins were abundant. High levels of total phenolics, total flavonoids and flavonols (523.25 ± 3.53 µg GAE/mg, 20.41 ± 1.80, and 9.62 ± 0.51 µg QE/mg respectively) were detected. Furthermore, GC-MS analysis was performed to identify low molecular weight compounds. d-(-)-Fructofuranose, gallic acid, caffeic acid, and catechin were detected as main metabolites of the EtOAc extract. The outcomes revealed that the extract exerted a potent antioxidant apt, and ensured significant bacterial growth inhibitory capacity, where the inhibition zone diameters ranged from 20.0 ± 0.5 to 24.5 ± 0.3 mm. These outcomes were confirmed through molecular docking against key bacterial enzymes that revealed significant interactions and binding affinities. d-(-)-Fructofuranose was identified as the most polar and flexible compound. Gallic acid and caffeic acid demonstrated higher unsaturation. Caffeic acid was well absorbed in the blood-brain barrier (BBB) and human intestine. Catechin was well absorbed in CaCO3, and can act as an inhibitor of CYP1A2. These results highlight how crucial it is to keep looking into natural substances in the quest for more potent and targeted pathology therapies.
Collapse
Affiliation(s)
- Amina Bramki
- Laboratory of BioEngineering, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | - Djamila Benouchenne
- Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
- Laboratory of Genetic, Biochemistry and Plants Biotechnology, Faculty of Natural and Life Sciences, University of Mentouri Brothers, Constantine 1, Constantine 25000, Algeria
| | | | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M'Hidi University, Oum El Bouaghi 04000, Algeria
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Noureddine Rahim
- Biotechnologies Laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | | | - Sourore Ramoul
- Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | - Sirine Nessah
- Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | - Ghozlane Barboucha
- Biotechnologies Laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | - Chawki Bensouici
- Biotechnology Research Center, UV 03, BP. E73, Ali Mendjeli 25016, Algeria
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Jesùs Garcìa Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, 11510 Puerto Real, Spain
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
4
|
Higuchi M, Abiko Y, Washio J, Takahashi N. Antimicrobial effects of epigallocatechin-3-gallate, a catechin abundant in green tea, on periodontal disease-associated bacteria. Arch Oral Biol 2024; 167:106063. [PMID: 39128436 DOI: 10.1016/j.archoralbio.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, exhibits antibacterial activity. In this study, the antimicrobial effects of EGCG on periodontal disease-associated bacteria (Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, and Fusobacterium periodontium) were evaluated and compared with its effects on Streptococcus mutans, a caries-associated bacterium. RESULTS Treatment with 2 mg/ml EGCG for 4 h killed all periodontal disease-associated bacteria, whereas it only reduced the viable count of S. mutans by about 40 %. Regarding growth, the periodontal disease-associated bacteria were more susceptible to EGCG than S. mutans, based on the growth inhibition ring test. As for metabolism, the 50 % inhibitory concentration (IC50) of EGCG for bacterial metabolic activity was lower for periodontal disease-associated bacteria (0.32-0.65 mg/ml) than for S. mutans (1.14 mg/ml). Furthermore, these IC50 values were negatively correlated with the growth inhibition ring (r = -0.73 to -0.86). EGCG induced bacterial aggregation at the following concentrations: P. gingivalis (>0.125 mg/ml), F. periodonticum (>0.5 mg/ml), F. nucleatum (>1 mg/ml), and P. nigrescens (>2 mg/ml). S. mutans aggregated at an EGCG concentration of > 1 mg/ml. CONCLUSION EGCG may help to prevent periodontal disease by killing bacteria, inhibiting bacterial growth by suppressing bacterial metabolic activity, and removing bacteria through aggregation.
Collapse
Affiliation(s)
- Mayu Higuchi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan.
| |
Collapse
|
5
|
Damaschin RP, Lazar MM, Ghiorghita CA, Aprotosoaie AC, Volf I, Dinu MV. Stabilization of Picea abies Spruce Bark Extracts within Ice-Templated Porous Dextran Hydrogels. Polymers (Basel) 2024; 16:2834. [PMID: 39408544 PMCID: PMC11478723 DOI: 10.3390/polym16192834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Porous hydrogels have brought more advantages than conventional hydrogels when used as chromatographic materials, controlled release vehicles for drugs and proteins, matrices for immobilization or separation of molecules and cells, or as scaffolds in tissue engineering. Polysaccharide-based porous hydrogels, in particular, can address challenges related to bioavailability, solubility, stability, and targeted delivery of natural antioxidant compounds. Their porous structure enables the facile encapsulation and controlled release of these compounds, enhancing their therapeutic effectiveness. In this context, in the present study, the cryogelation technique has been adopted to prepare novel dextran (Dx)-based porous hydrogels embedding polyphenol-rich natural extract from Picea abies spruce bark (SBE). The entrapment of the SBE within the Dx network was proved by FTIR, SEM, and energy-dispersive X-ray spectroscopy (EDX). SEM analysis showed that entrapment of SBE resulted in denser cryogels with smaller and more uniform pores. Swelling kinetics confirmed that higher concentrations of Dx, EGDGE, and SBE reduced water uptake. The release studies demonstrated the effective stabilization of SBE in the Dx-based cryogels, with minimal release irrespective of the approach selected for SBE incorporation, i.e., during synthesis (~3-4%) or post-synthesis (~15-16%). In addition, the encapsulation of SBE within the Dx network endowed the hydrogels with remarkable antioxidant and antimicrobial properties. These porous biomaterials could have broad applications in areas such as biomedical engineering, food preservation, and environmental protection, where stability, efficacy, and safety are paramount.
Collapse
Affiliation(s)
- Roxana Petronela Damaschin
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dimitrie Mangeron Boulevard 73, 700050 Iasi, Romania;
| | - Maria Marinela Lazar
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (M.M.L.); (C.-A.G.)
| | - Claudiu-Augustin Ghiorghita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (M.M.L.); (C.-A.G.)
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania;
| | - Irina Volf
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dimitrie Mangeron Boulevard 73, 700050 Iasi, Romania;
| | - Maria Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (M.M.L.); (C.-A.G.)
| |
Collapse
|
6
|
Lin R, Li G, He Q, Song J, Ma Y, Zhan Y, Yuan M, Li Q, Chao D, Li X, Wang P, Zhao T, Zhao D. Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation. J Am Chem Soc 2024; 146:26983-26993. [PMID: 39294849 DOI: 10.1021/jacs.4c08336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
While polyphenolic substances stand as excellent antibacterial agents, their antimicrobial properties rely on the auxiliary support of micro-/nanostructures. Despite offering a novel avenue for enhancing polymer performance, controllable fabrication of mesoporous polymeric nanomaterials encounters significant challenges due to intricate intermolecular forces. In this article, mesoporous catechin nanoparticles have been successfully fabricated using a balanced multivariate interaction approach. The harmonization of the water-ethanol ratio and ionic strength effectively balances the forces of hydrogen bonding and π-π stacking, facilitating the controlled assembly of mesostructures. The mesoporous catechin nanoparticles exhibit a uniform spherical structure (∼100 nm), open mesopores with a diameter of ∼15 nm, and a high surface area of ∼106 m2 g-1. While exhibiting a good biocompatibility and negative surface charge, the mesoporous catechins possess outstanding antibacterial ability and function as an antibiotic mesoformulation without the necessity of loading any drugs. This mesoformulation inhibits 50% in vitro Staphylococcus aureus growth with a low concentration of ∼10 μg mL-1 and achieves complete inhibition at ∼25 μg mL-1. In a mouse wound model, accelerated wound healing and complete closure within 6-8 days are achieved. Proteomics of bacteria reveals that the excellent antibacterial property is attributed to the synergetic effect of mesoformulation's mesostructure and the catechin molecule intervening in bacterial metabolism. Overall, this work may pave a novel way for the future exploration of polymer nanomaterials and antibiotic formulations.
Collapse
Affiliation(s)
- Runfeng Lin
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Gaoyang Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Qianfeng He
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Junfeng Song
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Yanming Ma
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Yating Zhan
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Minjia Yuan
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Qi Li
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Dongliang Chao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
7
|
Shil A, Banerjee A, Roy J, Pal M, Das D, Paul R, Maji BK, Sikdar M. The potential antibacterial effects of tea polyphenols. Drug Metab Pers Ther 2024; 39:103-114. [PMID: 39263725 DOI: 10.1515/dmpt-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
The current review of tea and its parts is focused on the antibacterial properties, considering the possible applications and modes of action against bacterial illnesses. It shows the backdrop of antibiotic resistance and the huge demand for antibacterial treatments out there. From the interactions with bacterial components, the theory presented that tea polyphenols are antibacterial and therefore would be a substitute or supplementary therapy to the usual antibiotics. The study highlighted the role of tea polyphenols as potential antibacterial compounds that may interact with various bacterial components and different polyphenolic compounds occurring in tea. Future research directions may be directed toward testing more plant-based sources for antibacterial properties, in vivo validation of the studies, and possible synergistic effects with classical antibiotics. By addressing the controversies and disagreements involved, the present understanding of the topic of tea's antibacterial properties and enable the entry of new ways for fighting microorganisms resistant to antibiotics. In conclusion, this review adds to the growing body of evidence regarding the antimicrobial properties of tea and emphasizes the need for further studies that will allow the full exploitation of its therapeutic potential for countering the rising problem of antibiotic resistance in healthcare.
Collapse
Affiliation(s)
- Aparna Shil
- Department of Physiology, Harimohan Ghose College, Kolkata, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, Hooghly, West Bengal, India
| | - Jayati Roy
- Department of Physiology (UG & PG), Serampore College, Hooghly, West Bengal, India
| | - Manisha Pal
- Department of Physiology (UG & PG), Serampore College, Hooghly, West Bengal, India
| | - Debasmita Das
- Department of Physiology (UG & PG), Serampore College, Hooghly, West Bengal, India
| | - Rajarshi Paul
- Department of Physiology (UG & PG), Serampore College, Hooghly, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, Hooghly, West Bengal, India
| | - Mausumi Sikdar
- Department of Life Sciences, Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Kruk M, Ponder A, Horoszewicz J, Popławski D, Król K, Leszczyńska J, Jaworska D, Trząskowska M. By-product hazelnut seed skin characteristics and properties in terms of use in food processing and human nutrition. Sci Rep 2024; 14:18835. [PMID: 39138272 PMCID: PMC11322380 DOI: 10.1038/s41598-024-69900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
The hazelnut seed skins (HSS) are by-products from roasting or blanching hazelnuts without direct second utilization. The generation of HSS creates an economic and environmental problem. The object of the study was a comprehensive analysis of the properties for reuse of HSS. Water extraction of industrial HSS was applied (water with sonication of the HSS for 10 min at 90 ℃). The extracts obtained were freeze-dried to facilitate analysis and future application. The HSS and their extracts were analysed. Polyphenols, antioxidants, allergens, antimicrobial properties and instrumental sensory analysis were examined. The total polyphenol content in the samples was 37.8-44.0 mg gallic acid equivalent g-1. Gallic acid was the major phenolic compound. The antioxidant capacity of the samples was 198.9-250.6 mg VCEAC g-1 (vitamin C equivalent) according to the ABTS method and 98.4-106.8 mg VCEAC g-1 in the DPPH method. The extracts inhibited all tested strains of pathogenic bacteria. Allergen content was reduced in HSS and the extracts. Instrumental sensory analysis showed differences between taste parameters and odour profile samples. HSS can be reused in food production as a bacteriostatic, antioxidant additive and sensory-creating factor due to various chemical compounds corresponding with taste and odour.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland.
| | - Alicja Ponder
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Joanna Horoszewicz
- Faculty of Human Nutrition, Warsaw, University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Damian Popławski
- Faculty of Human Nutrition, Warsaw, University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Katarzyna Król
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Joanna Leszczyńska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego St. 4/10, 90-924, Lodz, Poland
| | - Danuta Jaworska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776, Warsaw, Poland.
| |
Collapse
|
9
|
Morra M, Iviglia G, Cassinelli C, Sartori M, Cavazza L, Martini L, Fini M, Giavaresi G. Preliminary Evaluation of Bioactive Collagen-Polyphenol Surface Nanolayers on Titanium Implants: An X-ray Photoelectron Spectroscopy and Bone Implant Study. J Funct Biomater 2024; 15:170. [PMID: 39057292 PMCID: PMC11278435 DOI: 10.3390/jfb15070170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
To endow an implant surface with enhanced properties to ensure an appropriate seal with the host tissue for inflammation/infection resistance, next-generation bone implant collagen-polyphenol nanolayers were built on conventional titanium surfaces through a multilayer approach. X-ray Photoelectron Spectroscopy (XPS) analysis was performed to investigate the chemical arrangement of molecules within the surface layer and to provide an estimate of their thickness. A short-term (2 and 4 weeks) in vivo test of bone implants in a healthy rabbit model was performed to check possible side effects of the soft surface layer on early phases of osteointegration, leading to secondary stability. Results show the building up of the different nanolayers on top of titanium, resulting in a final composite collagen-polyphenol surface and a layer thickness of about 10 nm. In vivo tests performed on machined and state-of-the-art microrough titanium implants do not show significant differences between coated and uncoated samples, as the surface microroughness remains the main driver of bone-to-implant contact. These results confirm that the surface nanolayer does not interfere with the onset and progression of implant osteointegration and prompt the green light for specific investigations of the potential merits of this bioactive coating as an enhancer of the device/tissue seal.
Collapse
Affiliation(s)
- Marco Morra
- Nobil Bio Ricerche srl, V. Valcastellana 26, 14037 Portacomaro, Italy; (G.I.); (C.C.)
| | - Giorgio Iviglia
- Nobil Bio Ricerche srl, V. Valcastellana 26, 14037 Portacomaro, Italy; (G.I.); (C.C.)
| | - Clara Cassinelli
- Nobil Bio Ricerche srl, V. Valcastellana 26, 14037 Portacomaro, Italy; (G.I.); (C.C.)
| | - Maria Sartori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| | - Luca Cavazza
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| | - Lucia Martini
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| | - Milena Fini
- Direzione Scientifica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (L.C.); (L.M.); (G.G.)
| |
Collapse
|
10
|
Kučuk N, Primožič M, Kotnik P, Knez Ž, Leitgeb M. Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity. Foods 2024; 13:553. [PMID: 38397530 PMCID: PMC10888073 DOI: 10.3390/foods13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Petra Kotnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
11
|
Hervay NT, Elias D, Habova M, Jacko J, Morvova M, Gbelska Y. Catechin potentiates the antifungal effect of miconazole in Candida glabrata. Folia Microbiol (Praha) 2023; 68:835-842. [PMID: 37145224 PMCID: PMC10689516 DOI: 10.1007/s12223-023-01061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The rising number of invasive fungal infections caused by drug-resistant Candida strains is one of the greatest challenges for the development of novel antifungal strategies. The scarcity of available antifungals has drawn attention to the potential of natural products as antifungals and in combinational therapies. One of these is catechins-polyphenolic compounds-flavanols, found in a variety of plants. In this work, we evaluated the changes in the susceptibility of Candida glabrata strain characterized at the laboratory level and clinical isolates using the combination of catechin and antifungal azoles. Catechin alone had no antifungal activity within the concentration range tested. Its use in combination with miconazole resulted in complete inhibition of growth in the sensitive C. glabrata isolate and a significant growth reduction in the azole resistant C. glabrata clinical isolate. Simultaneous use of catechin and miconazole leads to increased intracellular ROS generation. The enhanced susceptibility of C. glabrata clinical isolates to miconazole by catechin was accompanied with the intracellular accumulation of ROS and changes in the plasma membrane permeability, as measured using fluorescence anisotropy, affecting the function of plasma membrane proteins.
Collapse
Affiliation(s)
- Nora Tóth Hervay
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, Bratislava, 842 15, Slovak Republic
| | - Daniel Elias
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, Bratislava, 842 15, Slovak Republic
| | - Marcela Habova
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, Bratislava, 842 15, Slovak Republic
| | - Juraj Jacko
- Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, Mlynska Dolina, Bratislava, 842 48, Slovak Republic
| | - Marcela Morvova
- Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, Mlynska Dolina, Bratislava, 842 48, Slovak Republic
| | - Yvetta Gbelska
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, Bratislava, 842 15, Slovak Republic.
| |
Collapse
|
12
|
Wyżga B, Skóra M, Wybraniec S, Hąc-Wydro K. Study on the effect of blackcurrant extract - based preservative on model membranes and pathogenic bacteria. Arch Biochem Biophys 2023; 750:109806. [PMID: 37913854 DOI: 10.1016/j.abb.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
In this work the cosmetic preservative based on a Ribes Nigrum (blackcurrant) plant extract (PhytoCide Black Currant Powder abbr. BCE) was investigated to evaluate its antibacterial effect and to gain an insight into its mechanism of action. The influence of this commercially available formulation on model Escherichia coli and Staphylococcus aureus lipid membranes was studied to analyze its interactions with membrane lipids at a molecular level. The mixed lipid monolayers and one component bacteria lipid films were used to investigate the effect of BCE on condensation and morphology of model systems and to study the ability of BCE components to penetrate into the lipid environment. The in vitro tests were also done on different bacteria species (E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa) to compare antimicrobial potency of the studied formulation. As evidenced the in vitro studies BCE formulation exerts very similar antibacterial activity against E. coli and S. aureus. Moreover, based on the collected data it is impossible to indicate which bacteria: Gram-positive or Gram-negative are more susceptible to this formulation. Model membrane experiments evidenced that the studied preservative affects organization of both E. coli and S. aureus model system by decreasing their condensation and altering their morphology. BCE components are able to penetrate into the lipid systems. However, all these effects depend on the lipid composition and monolayer organization. The collected results were analyzed from the point of view of the mechanism of action of blackcurrant extract and the factors, which may determine the activity of this formulation.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Magdalena Skóra
- Jagiellonian University Medical College, Chair of Microbiology, Department of Infections Control and Mycology, Czysta 18, 31-121, Kraków, Poland
| | - Sławomir Wybraniec
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
13
|
Tan BC, Mahyuddin A, Sockalingam SNMP, Zakaria ASI. Preliminary in vitro cytotoxic evaluation of Uncaria gambier (Hunt) Roxb extract as a potential herbal-based pulpotomy medicament. BMC Complement Med Ther 2023; 23:331. [PMID: 37730579 PMCID: PMC10510159 DOI: 10.1186/s12906-023-04163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The downfall of formocresol as a pulpotomy medicament highlights the importance of cytotoxic evaluation and the establishment of a safe concentration of dental material prior to its usage in the oral cavity. Uncaria gambir is an herbal plant that possesses antimicrobial, anti-inflammatory and antioxidant properties, suggesting its potential as an alternative medicament for pulpotomy. However, there are not many studies published on its cytotoxicity, with some using non-standardised techniques and reported variable outcomes. Here, we investigated the concentration and time-dependent toxicity of Uncaria gambir extract towards the M3CT3-E1 cell line and compared it with the gold standard pulpotomy medicament: mineral trioxide aggregate (MTA). METHODS Uncaria gambir extracts at concentrations ranging from 1000 to 7.8 µg/ml and MTA eluates at 4- and 48 h setting times were prepared. 10% dimethyl sulfoxide (DMSO) and culture media were used as positive and negative controls respectively. Cell viability on days 1, 2, 3 and 7 was analysed using Alamar Blue and Live and Dead Cell assay. Any morphological cellular changes were evaluated using transmission electron microscopes (TEM). Data were analysed using a two-way mixed Analysis of Variance (ANOVA). RESULTS The interaction between the concentration and exposure time on the fluorescence intensity of Uncaria gambir extract and MTA 48 h was found to be statistically significant (p < 0.001). No cytotoxic effects on the cells were exerted by both MTA 48 h and Uncaria gambir extract at a concentration below 500 µg/mL. TEM analysis and Live and Dead Cell assay for both materials were comparable to the negative control. No significant differences in fluorescent intensity were observed between Uncaria gambir extract at 500 µg/mL and MTA 48 h (p > 0.05). CONCLUSION Uncaria gambir extracts at a maximum concentration of 500 μg/mL are non-cytotoxic over time and are comparable to the MTA.
Collapse
Affiliation(s)
- Bee Chin Tan
- Department of Family Oral Health, The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Alida Mahyuddin
- Department of Family Oral Health, The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - S Nagarajan M P Sockalingam
- Department of Family Oral Health, The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Ahmad Shuhud Irfani Zakaria
- Department of Family Oral Health, The National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
14
|
Han S, Washio J, Abiko Y, Zhang L, Takahashi N. Green Tea-Derived Catechins Suppress the Acid Productions of Streptococcus mutans and Enhance the Efficiency of Fluoride. Caries Res 2023; 57:255-264. [PMID: 37699359 PMCID: PMC10641802 DOI: 10.1159/000534055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Green tea-derived catechins, which can be divided into galloylated (epicatechin gallate: ECG, epigallocatechin gallate: EGCG) and non-galloylated (catechin: C, epicatechin: EC, epigallocatechin: EGC) catechins, are considered to be the main contributors to the caries control potential of green tea. In this study, we intended to compare the antimicrobial effects of these representative green tea-derived catechins and their combined effects with fluoride on the acid production and aggregation of Streptococcus mutans. The effects of different catechins on the growth, aggregation and acid production of S. mutans, and the combined effect of catechins and potassium fluoride (2 mm at pH 7.0, 0.3 mm at pH 5.5) on S. mutans acid production were measured by anaerobic culture, turbidity changes due to aggregation, and pH-stat methods. Molecular docking simulations were also performed to investigate the interactions between catechins and membrane-embedded enzyme II complex (EIIC), a component of the phosphoenolpyruvate-dependent phosphotransferase system (sugar uptake-related enzyme). ECG or EGCG at 1 mg/mL significantly inhibited the growth of S. mutans, induced bacterial aggregation, and decreased glucose-induced acid production (p < 0.05). All catechins were able to bind to EIIC in silico, in the following order of affinity: EGCG, ECG, EGC, EC, and C. Furthermore, they enhanced the inhibitory effects of fluoride at pH 5.5 and significantly inhibited S. mutans acid production by 47.5-86.6% (p < 0.05). These results suggest that both galloylated and non-galloylated catechins exhibit antimicrobial activity, although the former type demonstrates stronger activity, and that the caries control effects of green tea may be due to the combined effects of multiple components, such as catechins and fluoride. The detailed mechanisms underlying these phenomena and the in vivo effect need to be explored further.
Collapse
Affiliation(s)
- Sili Han
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
15
|
Messire G, Serreau R, Berteina-Raboin S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants (Basel) 2023; 12:1317. [PMID: 37507856 PMCID: PMC10376544 DOI: 10.3390/antiox12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Here we have chosen to highlight the main natural molecules extracted from Camellia sinensis, Andrographis paniculata, and Curcuma longa that may possess antioxidant activities of interest for skin protection. The molecules involved in the antioxidant process are, respectively, catechins derivatives, in particular, EGCG, andrographolide, and its derivatives, as well as various curcuminoids. These plants are generally used as beverages for Camellia sinensis (tea tree), as dietary supplements, or as spices. The molecules they contain are known for their diverse therapeutic activities, including anti-inflammatory, antimicrobial, anti-cancer, antidiabetic, and dermatological treatment. Their common antioxidant activities and therapeutic applications are widely documented, but their use in cosmetics is more recent. We will see that the use of pharmacomodulated derivatives, the addition of co-antioxidants, and the use of various formulations enable better skin penetration and greater ingredient stability. In this review, we will endeavor to compile the cosmetic uses of these natural molecules of interest and the various structural modulations reported with the aim of improving their bioavailability as well as establishing their different mechanisms of action.
Collapse
Affiliation(s)
- Gatien Messire
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| | - Raphaël Serreau
- Unité de Recherche PSYCOMADD, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
- Addictologie EPSM Georges DAUMEZON, GHT Loiret, 1 Route de Chanteau, 45400 Fleury les Aubrais, France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| |
Collapse
|
16
|
Almuhanna Y, Alqasmi MH, AlSudais H, Alrouji M, Kuriri FA, Alissa M, Alsuwat MA, Asad M, Joseph B. Effect of Achillea fragrantissima Extract on Excision Wound Biofilms of MRSA and Pseudomonas aeruginosa in Diabetic Mice. Int J Mol Sci 2023; 24:ijms24119774. [PMID: 37298725 DOI: 10.3390/ijms24119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Achillea fragrantissima, a desert plant commonly known as yarrow, is traditionally used as an antimicrobial agent in folklore medicine in Saudi Arabia. The current study was undertaken to determine its antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) and multi-drug-resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) using in vitro and in vivo studies. A biofilm model induced through an excision wound in diabetic mice was used to evaluate its effect in vivo. The skin irritation and cytotoxic effects of the extract were determined using mice and HaCaT cell lines, respectively. The Achillea fragrantissima methanolic extract was analyzed with LC-MS to detect different phytoconstituents, which revealed the presence of 47 different phytoconstituents. The extract inhibited the growth of both tested pathogens in vitro. It also increased the healing of biofilm-formed excision wounds, demonstrating its antibiofilm, antimicrobial, and wound-healing action in vivo. The effect of the extract was concentration-dependent, and its activity was stronger against MRSA than MDR-P. aeruginosa. The extract formulation was devoid of a skin irritation effect in vivo and cytotoxic effect on HaCaT cell lines in vitro.
Collapse
Affiliation(s)
- Yasir Almuhanna
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Hussein Alqasmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Hamood AlSudais
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Fahd A Kuriri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al-Taif 21974, Saudi Arabia
| | - Mohammed Asad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
17
|
Gao Y, Wang H, Li X, Niu X. Molecular mechanism of green tea polyphenol epicatechin gallate attenuating Staphylococcus aureus pathogenicity by targeting Ser/Thr phosphatase Stp1. Food Funct 2023; 14:4792-4806. [PMID: 37128867 DOI: 10.1039/d3fo00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, through virtual screening and in vitro bioactivity assays, we discovered that (-)-epicatechin gallate (ECG), a polyphenol compound extracted from green tea, demonstrated marked anti-Ser/Thr phosphatase (Stp1) activity towards Staphylococcus aureus (S. aureus) with an IC50 value of 8.35 μM. By targeting S. aureus Stp1, ECG prevented the up-regulation of virulence gene and the formation of antibody membrane and protected the mice from S. aureus infection. Through MD simulation, the allosteric inhibitory mechanism of ECG on Stp1 was determined. The Stp1-ECG complex model underwent a significant change in conformation; its flap subdomain changed from opening to closing, whereas Stp1 activity was lost when bound to ECG. In addition, the MD simulation results of Stp1 and several tea polyphenol compounds showed that gallate groups and fewer adjacent phenolic hydroxyl groups contributed to the binding of Stp1 and inhibitors. As an inhibitor targeting S. aureus Stp1, ECG reduced the pathogenicity of S. aureus without inhibiting S. aureus, which largely reduced the possibility of drug resistance. Our findings demonstrated a novel molecular mechanism of green tea as the usual drink against S. aureus infection and elucidated the future design of allosteric inhibitors targeting Stp1.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Xuening Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| |
Collapse
|
18
|
Szewczyk A, Marino A, Taviano MF, Cambria L, Davì F, Trepa M, Grabowski M, Miceli N. Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. Int J Mol Sci 2023; 24:ijms24087045. [PMID: 37108206 PMCID: PMC10138805 DOI: 10.3390/ijms24087045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The present work focuses on in vitro cultures of Ruta montana L. in temporary immersion PlantformTM bioreactors. The main aim of the study was to evaluate the effects of cultivation time (5 and 6 weeks) and different concentrations (0.1-1.0 mg/L) of plant growth and development regulators (NAA and BAP) on the increase in biomass and the accumulation of secondary metabolites. Consequently, the antioxidant, antibacterial, and antibiofilm potentials of methanol extracts obtained from the in vitro-cultured biomass of R. montana were evaluated. High-performance liquid chromatography analysis was performed to characterize furanocoumarins, furoquinoline alkaloids, phenolic acids, and catechins. The major secondary metabolites in R. montana cultures were coumarins (maximum total content of 1824.3 mg/100 g DM), and the dominant compounds among them were xanthotoxin and bergapten. The maximum content of alkaloids was 561.7 mg/100 g DM. Concerning the antioxidant activity, the extract obtained from the biomass grown on the 0.1/0.1 LS medium variant, with an IC50 0.90 ± 0.03 mg/mL, showed the best chelating ability among the extracts, while the 0.1/0.1 and 0.5/1.0 LS media variants showed the best antibacterial (MIC range 125-500 µg/mL) and antibiofilm activity against resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Lucia Cambria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Mariusz Grabowski
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Zammit Young GW, Blundell R. A review on the phytochemical composition and health applications of honey. Heliyon 2023; 9:e12507. [PMID: 36755588 PMCID: PMC9900486 DOI: 10.1016/j.heliyon.2022.e12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Though honey has long been used as medicine, there is a scarcity of knowledge on how it interacts with the body. Scope and approach While different types of honey have different chemical and medicinal properties according to their origin, this narrative review seeks to analyse the current knowledge on the chemical composition and therapeutic use of honey. With numerous chemical components, honey has a range of health benefits in multiple disciplines of medicine, and provides an interesting prospect in chemical analysis with regards to identification of its origin. Key findings and conclusions There is a great potential for the use of honey in medicine, primarily due to its antioxidant and antimicrobial properties. Recent studies on the phenolic and enzymatic components of honey have made honey's therapeutic method of action in relation to the above properties clearer, still more research needs to be conducted and more innovations need to be tested, for the full potential of honey to be understood.
Collapse
Affiliation(s)
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Malta
| |
Collapse
|
20
|
Iviglia G, Morra M. Engineering Interfacial Environment of Epigallocatechin Gallate Coated Titanium for Next-Generation Bioactive Dental Implant Components. Int J Mol Sci 2023; 24:ijms24032661. [PMID: 36768982 PMCID: PMC9917301 DOI: 10.3390/ijms24032661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
In view of endowing the surface of abutments, a component of titanium dental implant systems, with antioxidant and antimicrobial properties, a surface layer coated with epigallocatechin gallate (EGCg), a polyphenol belonging to the class of flavonoids, was built on titanium samples. To modulate interfacial properties, EGCg was linked either directly to the surface, or after populating the surface with terminally linked polyethyleneglycol (PEG) chains, Mw ~1600 Da. The underlying assumption is that fouling-resistant, highly hydrated PEG chains could reduce non-specific bioadhesion and magnify intrinsic EGCg properties. Treated surfaces were investigated by a panel of surface/interfacial sensitive techniques, to provide chemico-physical characterization of the surface layer and its interfacial environment. Results show: (i) successful EGCg coupling for both approaches; (ii) that both approaches endow the Ti surface with the same antioxidant properties; (iii) that PEG-EGCg coated surfaces are more hydrophilic and show a significantly higher (>50%) interaction force with water. Obtained results build up a rationale basis for evaluation of the merits of finely tuning interfacial properties of polyphenols coated surfaces in biological tests.
Collapse
|
21
|
Effects of a Semisynthetic Catechin on Phosphatidylglycerol Membranes: A Mixed Experimental and Simulation Study. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010422. [PMID: 36615630 PMCID: PMC9824143 DOI: 10.3390/molecules28010422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Catechins have been shown to display a great variety of biological activities, prominent among them are their chemo preventive and chemotherapeutic properties against several types of cancer. The amphiphilic nature of catechins points to the membrane as a potential target for their actions. 3,4,5-Trimethoxybenzoate of catechin (TMBC) is a modified structural analog of catechin that shows significant antiproliferative activity against melanoma and breast cancer cells. Phosphatidylglycerol is an anionic membrane phospholipid with important physical and biochemical characteristics that make it biologically relevant. In addition, phosphatidylglycerol is a preeminent component of bacterial membranes. Using biomimetic membranes, we examined the effects of TMBC on the structural and dynamic properties of phosphatidylglycerol bilayers by means of biophysical techniques such as differential scanning calorimetry, X-ray diffraction and infrared spectroscopy, together with an analysis through molecular dynamics simulation. We found that TMBC perturbs the thermotropic gel to liquid-crystalline phase transition and promotes immiscibility in both phospholipid phases. The modified catechin decreases the thickness of the bilayer and is able to form hydrogen bonds with the carbonyl groups of the phospholipid. Experimental data support the simulated data that locate TMBC as mostly forming clusters in the middle region of each monolayer approaching the carbonyl moiety of the phospholipid. The presence of TMBC modifies the structural and dynamic properties of the phosphatidylglycerol bilayer. The decrease in membrane thickness and the change of the hydrogen bonding pattern in the interfacial region of the bilayer elicited by the catechin might contribute to the alteration of the events taking place in the membrane and might help to understand the mechanism of action of the diverse effects displayed by catechins.
Collapse
|
22
|
Long P, Rakariyatham K, Ho CT, Zhang L. Thearubigins: Formation, structure, health benefit and sensory property. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Kong C, Zhang H, Li L, Liu Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. J Oral Microbiol 2022; 14:2131117. [PMID: 36212989 PMCID: PMC9542882 DOI: 10.1080/20002297.2022.2131117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For thousands of years, caries, periodontitis and mucosal diseases, which are closely related to oral microorganisms, have always affected human health and quality of life. These complex microbiota present in different parts of the mouth can cause chronic infections in the oral cavity under certain conditions, some of which can also lead to acute and systemic diseases. With the mutation of related microorganisms and the continuous emergence of drug-resistant strains, in order to prevent and treat related diseases, in addition to the innovation of diagnosis and treatment technology, the development of new antimicrobial drugs is also important. Catechins are polyphenolic compounds in green tea, some of which are reported to provide health benefits for a variety of diseases. Studies have shown that epigallocatechin-3-gallate (EGCG) is the most abundant and effective active ingredient in green tea catechins, which acts against a variety of gram-positive and negative bacteria, as well as some fungi and viruses. This review aims to summarize the research progress on the activity of EGCG against common oral disease-associated organisms and discuss the mechanisms of these actions, hoping to provide new medication strategies for the prevention and treatment of oral infectious diseases, the future research of EGCG and its translation into clinical practice are also discussed.
Collapse
Affiliation(s)
- Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
25
|
Liu T, Wang J, Du MR, Wang YS, Fang X, Peng H, Shi QS, Xie XB, Zhou G. The interplays between epigallocatechin-3-gallate (EGCG) and Aspergillus niger RAF106 based on metabolism. Fungal Biol 2022; 126:727-737. [PMID: 36517140 DOI: 10.1016/j.funbio.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a vital kind of catechin with high bioactive activities, however, limited research has been conducted to elucidate the molecular basis of EGCG biotransformation by Aspergillus niger and the underlying regulatory mechanisms. In this study, A. niger RAF106, isolated from Pu-erh tea, was applied to conduct the EGCG fermentation process, and the samples were collected at different fermentation times to determine the intermediary metabolites of EGCG and the metabolome as well as physiological activity changes of A. niger RAF106. The results demonstrated that EGCG enhances the growth of A. niger RAF106 by promoting conidial germination and hyphae branching. Meanwhile, metabolomic analyses indicated that EGCG significantly regulates the amino acid metabolism of A. niger RAF106. Furthermore, metabolomic analyses also revealed that the levels of original secondary metabolites in the supernatant of the cultures changed significantly from the fermentation stage M2 to M3, in which the main differentially changed metabolites (DCMs) were flavonoids. Most of these flavonoids exhibited antioxidant properties and thus increased the radical scavenging activity of the supernatant of the cultures. In addition, we also found several intermediary metabolites of EGCG, GA, and EGC, including oolonghomobisflavan A, (-)-Epigallocatechin 3, 5-di-gallate, (-)-Epigallocatechin 3-(3-methyl-gallate) (-)-Catechin 3-O-gallate, 4'-Methyl-(-)-epigallocatechin 3-(4-methyl-gallate), myricetin, prodelphinidin B, 7-galloylcatechin, and 3-hydroxyphenylacetic acid. These findings contribute to improving the bioavailability of EGCG and help mine highly active metabolites, which can be used as raw materials for the development of pharmaceutical intermediates or functional foods. In addition, the results also provide a theoretical basis for better control of the risk of A. niger origin and the regulatory mechanisms of the biotransformation process mediated by A. niger.
Collapse
Affiliation(s)
- Tong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Min-Ru Du
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, PR China.
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, PR China.
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
26
|
New Insights into the Antimicrobial Potential of Polyalthia longifolia-Antibiofilm Activity and Synergistic Effect in Combination with Penicillin against Staphylococcus aureus. Microorganisms 2022; 10:microorganisms10101943. [PMID: 36296219 PMCID: PMC9609894 DOI: 10.3390/microorganisms10101943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Widespread antibiotic resistance has led to the urgent need for the identification of new antimicrobials. Plants are considered a valuable potential resource for new effective antimicrobial compounds. Therefore, in the present study, we focused on the antimicrobial activity of Polyalthia longifolia plants harvested from Cameroon using the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill assays. The mechanism of action was investigated by employing fluorescence and scanning electron microscopy. The anti-Staphylococcus aureus activity was studied using biofilm inhibition and checkerboard assays. Our results revealed that the tested extracts possess important antimicrobial activities, notably against Gram positive bacteria (MICs as low as 0.039 mg/mL). P. longifolia leaf extracts exhibited a significant bactericidal effect, with a total kill effect recorded after only 2 h of exposure at concentrations equivalent to MBC (0.078 and 0.156 mg/mL). The extracts showed a synergistic antibacterial activity in combination with penicillin against a MRSA clinical isolate and significantly inhibited S. aureus biofilm formation. The mechanism of action is related to the impairment of cell membrane integrity and cell lysis. All these findings suggest that P. longifolia could be an important source of reliable compounds used to develop new antimicrobials.
Collapse
|
27
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
28
|
Ousji O, Sleno L. Structural Elucidation of Novel Stable and Reactive Metabolites of Green Tea Catechins and Alkyl Gallates by LC-MS/MS. Antioxidants (Basel) 2022; 11:antiox11091635. [PMID: 36139709 PMCID: PMC9495999 DOI: 10.3390/antiox11091635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/20/2022] Open
Abstract
Synthetic gallic acid derivatives are employed as additives in food, personal care products, and pharmaceutical formulations. Despite their widespread use, little is known about their human exposure, health effects, and metabolism. Green tea catechins are natural antioxidants, known for their health-promoting properties, and are also employed as food additives or in personal care products. The objective of this study was to establish metabolic pathways involved in the biotransformation of green tea catechins and synthetic gallate esters. Liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) was used to elucidate oxidative and methylated metabolites, in addition to glutathione conjugates, formed in vitro using human liver microsomal incubations. The developed method was applied to 14 different parent compounds with a wide range of polarities, for the structural elucidation of many known and novel metabolites. These results serve to inform about the wide variety of possible metabolites formed upon exposure to these compounds.
Collapse
|
29
|
Szuba A, Kalemba EM, Wawrzyniak MK, Suszka J, Chmielarz P. Deterioration in the Quality of Recalcitrant Quercus robur Seeds during Six Months of Storage at Subzero Temperatures: Ineffective Activation of Prosurvival Mechanisms and Evidence of Freezing Stress from an Untargeted Metabolomic Study. Metabolites 2022; 12:756. [PMID: 36005628 PMCID: PMC9413681 DOI: 10.3390/metabo12080756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Pedunculate oak (Quercus robur L.) is an economically important forest-forming species in Poland that produces seeds that are sensitive to desiccation; therefore, short-lived seeds are classified as recalcitrant. Such seeds display active metabolism throughout storage. Acorns stored under controlled conditions (moisture content of 40%, temperature -3 °C) maintain viability for up to 1.5-2 years. Meanwhile, oaks only produce large numbers of seeds every few years during so-called mast years. This results in a scarcity of good-quality seeds for continuous nursery production and restoration. The recalcitrant storage behavior and the requirements of foresters make it necessary to develop a new protocol for longer acorn storage at lower temperatures. Two storage temperatures were tested: -3 °C (currently used in forest practice) and -7 °C. Our results showed that acorns stored for six months exhibited deterioration and reduced germination capacity, as well as reduced seedling performance, particularly when acorns were stored at -7 °C. To elucidate the decrease in quality during storage, an untargeted metabolomics study was performed for the first time and supported with the analysis of carbohydrates and percentages of carbon (C) and nitrogen (N). Embryonic axes were characterized by a lower C:N ratio and higher hydration. A total of 1985 metabolites were detected, and 303 were successfully identified and quantified, revealing 44 known metabolites that displayed significantly up- or downregulated abundance. We demonstrated for the first time that the significant deterioration of seed germination potential, particularly in seeds stored at -7 °C, was accompanied by an increased abundance of phenolic compounds and carbohydrates but also amino acids and phosphorylated monosaccharides, particularly in the embryonic axes. The increased abundance of defense-related metabolites (1,2,4-Benzenetriol; BTO), products of ascorbic acid degradation (threonic and isothreonic acid), as well as antifreezing compounds (sugar alcohols, predominantly threitol), was reported in seed stored at -7 °C. We hypothesize that seed deterioration was caused by freezing stress experienced during six months of storage at -7 °C, a decline in antioxidative potential and the unsuccessful rerouting of the energy-production pathways. Additionally, our data are a good example of the application of high-throughput metabolomic tools in forest management.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, PL-62035 Kórnik, Poland
| | | | | | | | | |
Collapse
|
30
|
Aljuffali IA, Lin CH, Yang SC, Alalaiwe A, Fang JY. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022; 23:187. [PMID: 35798907 DOI: 10.1208/s12249-022-02344-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022] Open
Abstract
Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.
Collapse
Affiliation(s)
- Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan. .,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Dehbanipour R, Ghalavand Z. Anti-virulence therapeutic strategies against bacterial infections: recent advances. Germs 2022; 12:262-275. [PMID: 36504617 PMCID: PMC9719373 DOI: 10.18683/germs.2022.1328] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
The emergence and increasing prevalence of multidrug-resistant pathogens has become a major global healthcare problem. According to the World Health Organization if these trends continue, mortality from infection in 2050 will be higher than that from cancer. Microorganisms have various resistance mechanisms against different classes of antibiotics that emphasize the need for discovery of new antimicrobial compounds to treat bacterial infections. An interesting and new strategy for disarming pathogens is antivirulence therapy by blocking bacterial virulence factors or pathogenicity. Therefore, the use of these new pathoblockers could reduce the administration of broad-spectrum antimicrobials and prevalence of resistant strains. This review provides an overview of the antivirulence strategies published studies between years 2017 and 2021. Most antivirulence strategies focused on adhesins, toxins and bacterial communication. Additionally, targeting two-component systems and ncRNA elements were also examined in some studies. These new strategies have the potential to replace traditional antimicrobial agents and can be used to treat infections, especially infections caused by resistant pathogens, by targeting virulence factors.
Collapse
Affiliation(s)
- Razieh Dehbanipour
- PhD, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St, Tabnak Blv., Yaman Av., Chamran Highway, Tehran, Iran
| | - Zohreh Ghalavand
- PhD, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St, Tabnak Blv., Yaman Av., Chamran Highway, Tehran, Iran,Corresponding author: Zohreh Ghalavand,
| |
Collapse
|
32
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
33
|
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov Today 2022; 27:2028-2041. [PMID: 35561965 DOI: 10.1016/j.drudis.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Infections are a growing global threat, and the number of resistant species of microbial pathogens is alarming. However, the rapid development of cross-resistant or multidrug-resistant strains and the development of so-called 'superbugs' are in stark contrast to the number of newly launched anti-infectives on the market. In this review, I summarize the causes of antimicrobial resistance, briefly discuss different approaches to the discovery and development of new anti-infective drugs, and focus on drug repurposing strategy, which is discussed from all possible perspectives. A comprehensive overview of drugs of other indications tested for their in vitro antimicrobial activity to support existing anti-infective therapeutics is provided, including several critical remarks on this strategy of repurposing non-antibiotics to antibacterial drugs.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
34
|
Antimicrobial Activity of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) against Clinical Isolates of Multidrug-Resistant Vibrio cholerae. Antibiotics (Basel) 2022; 11:antibiotics11040518. [PMID: 35453268 PMCID: PMC9028445 DOI: 10.3390/antibiotics11040518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of multidrug-resistant (MDR) Vibrio cholerae necessitates the development of novel prevention and treatment strategies. This study aims to evaluate the in vitro antibacterial activity of green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against MDR V. cholerae. First, MIC and MBC values were evaluated by broth microdilution techniques against 45 V. cholerae strains. The checkerboard assay was then used to determine the synergistic effect of EGCG and tetracycline. The pharmaceutical mode of action of EGCG was clarified by time-killing kinetics and membrane disruption assay. Our results revealed that all of the 45 clinical isolates were susceptible to EGCG, with MIC and MBC values in the range of 62.5–250 µg/mL and 125–500 µg/mL, respectively. Furthermore, the combination of EGCG and tetracycline was greater than either treatment alone, with a fractional inhibitory concentration index (FICI) of 0.009 and 0.018 in the O1 and O139 representative serotypes, respectively. Time-killing kinetics analysis suggested that EGCG had bactericidal activity for MDR V. cholerae after exposure to at least 62.5 µg/mL EGCG within 1 h. The mode of action of EGCG might be associated with membrane disrupting permeability, as confirmed by scanning electron microscopy. This is the first indication that EGCG is a viable anti-MDR V. cholerae treatment.
Collapse
|
35
|
de Freitas MA, da Cruz RP, dos Santos ATL, Almeida-Bezerra JW, Machado AJT, dos Santos JFS, Rocha JE, Boligon AA, Bezerra CF, de Freitas TS, do Nascimento Silva MK, Mendonça ACAM, da Costa JGM, Coutinho HDM, da Cunha FAB, Filho JR, Morais-Braga MFB. HPLC-DAD analysis and antimicrobial activities of Spondias mombin L. (Anacardiaceae). 3 Biotech 2022; 12:61. [PMID: 35186658 PMCID: PMC8818589 DOI: 10.1007/s13205-022-03126-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Spondias mombin is used in the folk medicine for the treatment of diarrhea and dysentery, indicating that extracts obtained from this species may present pharmacological activities against pathogenic microorganisms. The purpose of this work was to investigate the chemical composition and evaluate the antimicrobial activity of extracts obtained from the leaves (aqueous) and bark (hydroethanolic) of S. mombin both as single treatments and in combination with conventional drugs. Following a qualitative chemical prospection, the extracts were analyzed by HPLC-DAD. The antimicrobial activities were evaluated by microdilution. The combined activity of drugs and extracts was verified by adding a subinhibitory concentration of the extract in the presence of variable drug concentrations. The Minimum Fungicidal Concentration (MFC) was determined by a subculture of the microdilution test, while the effect of the in vitro treatments on morphological transition was analyzed by subculture in moist chambers. While the qualitative analysis detected the presence of phenols and flavonoids, the HPLC analysis identified quercetin, caffeic acid, and catechin as major components in the leaf extract, whereas kaempferol and quercetin were found as major compounds in the bark extract. The extracts showed effective antibacterial activities only against the Gram-negative strains. With regard to the combined activity, the leaf extract potentiated the action of gentamicin and imipenem (against Staphylococcus aureus), while the bark extract potentiated the effect of norfloxacin (against S. aureus), imipenem (against Escherichia coli), and norfloxacin (against Pseudomonas aeruginosa). A more significant antifungal (fungistatic) effect was achieved with the bark extract (even though at high concentrations), which further enhanced the activity of fluconazole. The extracts also inhibited the emission of filaments by Candida albicans and Candida tropicalis. Together, these findings suggest that that the extract constituents may act by favoring the permeability of microbial cells to conventional drugs, as well as by affecting virulence mechanisms in Candida strains.
Collapse
|
36
|
Cibikkarthik T, Smiline Girija AS, Vijayashree Priyadharsini J. Protein targets in red complex pathogens for catechin. Bioinformation 2021; 17:1105-1108. [PMID: 35291341 PMCID: PMC8900166 DOI: 10.6026/973206300171105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
The development of antimicrobial drug resistance has encouraged scientists to develop alternate methods to combat infectious pathogens associated with dental diseases. Therefore, it is of interest to predict interactions for catechin (a plant derived compound) with protein targets in the red complex pathogens using computer aided network tools. However, in vitro and in vivo studies are warranted to confirm the antimicrobial effect of catechin (gallocatechin, epicatechin, epigallactocatechin (EGC) and gallolyl catechins) on the dental pathogens.
Collapse
Affiliation(s)
- T Cibikkarthik
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - A S Smiline Girija
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - J Vijayashree Priyadharsini
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
37
|
Sasagawa K, Domon H, Sakagami R, Hirayama S, Maekawa T, Isono T, Hiyoshi T, Tamura H, Takizawa F, Fukushima Y, Tabeta K, Terao Y. Matcha Green Tea Exhibits Bactericidal Activity against Streptococcus pneumoniae and Inhibits Functional Pneumolysin. Antibiotics (Basel) 2021; 10:antibiotics10121550. [PMID: 34943762 PMCID: PMC8698834 DOI: 10.3390/antibiotics10121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Rina Sakagami
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yoichi Fukushima
- Nestlé Japan Ltd., Wellness Communications, Tokyo 140-0002, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-2838
| |
Collapse
|
38
|
Comparison of the Biological Potential and Chemical Composition of Brazilian and Mexican Propolis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Propolis is a resinous substance collected by bees from plants and its natural product is available as a safe therapeutic option easily administered orally and readily available as a natural supplement and functional food. In this work, we review the most recent scientific evidence involving propolis from two countries (Brazil and Mexico) located in different hemispheres and with varied biomes. Brazil has a scientifically well documented classification of different types of propolis. Although propolis from Brazil and Mexico present varied compositions, they share compounds with recognized biological activities in different extraction processes. Gram-negative bacteria growth is inhibited with lower concentrations of different types of propolis extracts, regardless of origin. Prominent biological activities against cancer cells and fungi were verified in the different types of extracts evaluated. Antiprotozoal activity needs to be further evaluated for propolis of both origins. Regarding the contamination of propolis (e.g., pesticides, toxic metals), few studies have been carried out. However, there is evidence of chemical contamination in propolis by anthropological action. Studies demonstrate the versatility of using propolis in its different forms (extracts, products, etc.), but several potential applications that might improve the value of Brazilian and Mexican propolis should still be investigated.
Collapse
|
39
|
Prophylactic Catechin-Rich Green Tea Extract Treatment Ameliorates Pathogenic Enterotoxic Escherichia coli-Induced Colitis. Pathogens 2021; 10:pathogens10121573. [PMID: 34959529 PMCID: PMC8704293 DOI: 10.3390/pathogens10121573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we explored the potential beneficial effects of green tea extract (GTE) in a pathogenic Escherichia coli (F18:LT:STa:Stx2e)-induced colitis model. The GTE was standardized with catechin and epigallocatechin-3-gallate content using chromatography analysis. Ten consecutive days of GTE (500 and 1000 mg/kg) oral administration was followed by 3 days of a pathogenic E. coli challenge (1 × 109 CFU/mL). In vitro antibacterial analysis showed that GTE successfully inhibited the growth of pathogenic E. coli, demonstrating over a 3-fold reduction under time- and concentration-dependent conditions. The in vivo antibacterial effect of GTE was confirmed, with an inhibition rate of approximately 90% when compared to that of the E. coli alone group. GTE treatment improved pathogenic E. coli-induced intestinal injury with well-preserved epithelial linings and villi. In addition, the increased expression of annexin A1 in GTE-treated jejunum tissue was detected, which was accompanied by suppressed inflammation-related signal expression, including TNFA, COX-2, and iNOS. Moreover, proliferation-related signals such as PCNA, CD44, and Ki-67 were enhanced in the GTE group compared to those in the E. coli alone group. Taken together, these results indicate that GTE has an antibacterial activity against pathogenic E. coli and ameliorates pathogenic E. coli-induced intestinal damage by modulating inflammation and epithelial cell proliferation.
Collapse
|