1
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Garrine M, Messa A, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Weldegebriel G, Tate JE, Parashar U, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic analysis of DS-1-like human rotavirus A strains uncovers genetic relatedness of NSP4 gene with animal strains in Manhiça District, Southern Mozambique. Sci Rep 2024; 14:30705. [PMID: 39730435 PMCID: PMC11680989 DOI: 10.1038/s41598-024-79767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024] Open
Abstract
Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq® platform and analysed using bioinformatics tools. All these G and P-type combinations exhibited DS-1-like constellation in the rest of the genome segments as, I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that strains from children with and without diarrhoea clustered together with other Mozambican and global strains. Notably, the NSP4 gene of strains G3P[4] and G8P[4] in children with diarrhoea clustered with animal strains, such as bovine and caprine, with similarity identities ranging from 89.1 to 97.0% nucleotide and 89.5-97.0% amino acids. Our findings revealed genetic similarities among rotavirus strains from children with and without diarrhoea, as well as with animal strains, reinforcing the need of implementing studies with One Health approach in our setting, to elucidate the genetic diversity of this important pathogen.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Eva D João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - James P Nataro
- Department of Paediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Jacqueline E Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique.
- ISGlobal, Barcelona, 08036, Spain.
| |
Collapse
|
2
|
Zhou X, Wang Y, Chen N, Pang B, Liu M, Cai K, Kobayashi N. Surveillance of Human Rotaviruses in Wuhan, China (2019-2022): Whole-Genome Analysis of Emerging DS-1-like G8P[8] Rotavirus. Int J Mol Sci 2023; 24:12189. [PMID: 37569563 PMCID: PMC10419309 DOI: 10.3390/ijms241512189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Yuanhong Wang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Beibei Pang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Manqing Liu
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
3
|
Tatsi EB, Koukou DM, Dellis C, Dourdouna MM, Efthymiou V, Michos A, Syriopoulou V. Epidemiological study of unusual rotavirus strains and molecular characterization of emerging P[14] strains isolated from children with acute gastroenteritis during a 15-year period. Arch Virol 2023; 168:149. [PMID: 37129790 PMCID: PMC10151219 DOI: 10.1007/s00705-023-05769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Rotavirus group A (RVA) is characterized by molecular and epidemiological diversity. To date, 42 G and 58 P RVA genotypes have been identified, some of which, like P[14], have a zoonotic origin. In this study, we describe the epidemiology of unusual RVA genotypes and the molecular characteristics of P[14] strains. Fecal samples from children ≤ 16 years of age with acute gastroenteritis (AGE) who were hospitalized during 2007-2021 in Greece were tested for RVA by immunochromatography. Positive RVA samples were G and P genotyped, and part of the VP7 and VP4 genes were sequenced by the Sanger method. Epidemiological data were also recorded. Phylogenetic analysis of P[14] was performed using MEGA 11 software. Sixty-two (1.4%) out of 4427 children with RVA AGE were infected with an unusual G (G6/G8/G10) or P (P[6]/P[9]/P[10]/P[11]/P[14]) genotype. Their median (IQR) age was 18.7 (37.3) months, and 67.7% (42/62) were males. None of the children were vaccinated against RVA. P[9] (28/62; 45.2%) was the most common unusual genotype, followed by P[14] (12/62; 19.4%). In the last two years, during the period of the COVID-19 pandemic, an emergence of P[14] was observed (5/12, 41.6%) after an 8-year absence. The highest prevalence of P[14] infection was seen in the spring (91.7%). The combinations G8P[14] (41.7%), G6P[14] (41.7%), and G4P[14] (16.6%) were also detected. Phylogenetic analysis showed a potential evolutionary relationship of three human RVA P[14] strains to a fox strain from Croatia. These findings suggest a possible zoonotic origin of P[14] and interspecies transmission between nondomestic animals and humans, which may lead to new RVA genotypes with unknown severity.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece.
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece.
| | - Dimitra-Maria Koukou
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Charilaos Dellis
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Maria-Myrto Dourdouna
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Vasiliki Syriopoulou
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| |
Collapse
|
4
|
Mwangi PN, Potgieter RL, Uwimana J, Mutesa L, Muganga N, Murenzi D, Tusiyenge L, Mwenda JM, Mogotsi MT, Rakau K, Esona MD, Steele AD, Seheri ML, Nyaga MM. The Evolution of Post-Vaccine G8P[4] Group a Rotavirus Strains in Rwanda; Notable Variance at the Neutralization Epitope Sites. Pathogens 2023; 12:658. [PMID: 37242329 PMCID: PMC10223037 DOI: 10.3390/pathogens12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Africa has a high level of genetic diversity of rotavirus strains, which is suggested to be a possible reason contributing to the suboptimal effectiveness of rotavirus vaccines in this region. One strain that contributes to this rotavirus diversity in Africa is the G8P[4]. This study aimed to elucidate the entire genome and evolution of Rwandan G8P[4] strains. Illumina sequencing was performed for twenty-one Rwandan G8P[4] rotavirus strains. Twenty of the Rwandan G8P[4] strains had a pure DS-1-like genotype constellation, and one strain had a reassortant genotype constellation. Notable radical amino acid differences were observed at the neutralization sites when compared with cognate regions in vaccine strains potentially playing a role in neutralization escape. Phylogenetic analysis revealed that the closest relationship was with East African human group A rotavirus (RVA) strains for five of the genome segments. Two genome sequences of the NSP4 genome segment were closely related to bovine members of the DS-1-like family. Fourteen VP1 and eleven VP3 sequences had the closest relationships with the RotaTeq™ vaccine WC3 bovine genes. These findings suggest that the evolution of VP1 and VP3 might have resulted from reassortment events with RotaTeq™ vaccine WC3 bovine genes. The close phylogenetic relationship with East African G8P[4] strains from Kenya and Uganda suggests co-circulation in these countries. These findings highlight the need for continued whole-genomic surveillance to elucidate the evolution of G8P[4] strains, especially after the introduction of rotavirus vaccination.
Collapse
Affiliation(s)
- Peter N. Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Robyn-Lee Potgieter
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Jeannine Uwimana
- Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Leon Mutesa
- Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Narcisse Muganga
- Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Didier Murenzi
- Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Lisine Tusiyenge
- Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kebareng Rakau
- Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University (MEDUNSA), Pretoria 0204, South Africa
| | - Mathew D. Esona
- Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University (MEDUNSA), Pretoria 0204, South Africa
| | - A. Duncan Steele
- Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University (MEDUNSA), Pretoria 0204, South Africa
| | - Mapaseka L. Seheri
- Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University (MEDUNSA), Pretoria 0204, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
5
|
Motayo BO, Faneye AO, Adeniji JA. VP7, VP4, and NSP4 genes of species a rotaviruses isolated from sewage in Nigeria, 2014/2015: partial sequence characterization and biophysical analysis of NSP4 (enterotoxin). Virus Genes 2022; 58:180-187. [PMID: 35303217 DOI: 10.1007/s11262-022-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Species A rotavirus are an important cause of childhood gastroenteritis, and the main contributor to its pathogenicity is the enterotoxin (NSP4) protein. Some biophysical properties of partial NSP4 genes of RVAs isolated from sewage in Nigeria during 2014/2015 were investigated. Samples were typed by RT-PCR and Sanger sequencing of partial VP4, VP7 and NSP4 genes. Phylogeny identified lineages within genotypes, predicted glycosylation sites; hydrophobicity profiles and amino acid alignments were employed to determine some biophysical properties of the NSP4 protein. The VP7 sequences of our isolates were the most diversified, the majority of the isolates carried NSP4 genes of the E1 genotype. Genotype specific variations both in hydrophobicity and potential glycosylation were identified, mutations were highest within the H3 hydrophobic domain and VP4 binding domain. The study of RVA NSP4 genes from non-clinical samples revealed that there were structural consistencies with those of reference genes.
Collapse
Affiliation(s)
- Babatunde O Motayo
- Department of Medical Microbiology, Federal Medical Center, Abeokuta, Nigeria.
| | | | | |
Collapse
|