1
|
Raven S, Heijne M, Koomen J, Doornenbal G, Maas M, Jacobs P, Keur I, Dijkstra F, Reukers D, Platenburg M, Verweij SP, Mager HJ, Totté J, Vainio S, Bongaerts M, Heddema E. Circulation of avian Chlamydia abortus in the Netherlands and community-acquired pneumonia: an outbreak investigation and retrospective cohort study. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00529-2. [PMID: 39426392 DOI: 10.1016/s1473-3099(24)00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND In 2021, a novel group of Chlamydia strains in wild birds was classified as avian Chlamydia abortus, with unknown zoonotic potential. We report relevant features of avian C abortus infections from a Dutch family cluster and unrelated historical cases using clinical, epidemiological, and microbiological data. METHODS An outbreak of avian C abortus started in the Netherlands in December, 2022. Source investigation was done using questionnaires to interview patients and environmental sampling. The outbreak strain of avian C abortus was cultured from three patients from whom sufficient material was available for culture and underwent whole-genome analysis. The outbreak strains and retrospective cohort study strains previously submitted to the National Human Psittacosis surveillance programme in the Netherlands between 2010 and 2022 were typed by partial ompA sequencing. Strains with the same aberrant ompA genotype were further analysed with XerC gene plasmid analysis and compared with closely related Chlamydia sequences available in GenBank. FINDINGS An avian C abortus strain caused a cluster of respiratory illness in four family members. Three patients were hospitalised with community-acquired pneumonia, one of whom was admitted to the intensive care unit. The faeces of wild birds were considered a probable source for the index infection. For two family members, human-to-human transmission was a plausible route. Ten historical cases could be identified with avian C abortus with the same ompA genotype. All patients had been admitted to hospital, at least five developed pneumonia, and one died. INTERPRETATION This cluster supports that avian C abortus strains can cause human infections and underlines that human-to-human transmission should be considered when tracing the source of such infections. FUNDING National Institute for Public Health and the Environment and Dutch Ministry of Agriculture, Fisheries, Food Security and Nature. TRANSLATION For the Dutch translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Stijn Raven
- Department of Infectious Diseases, Public Health Service Region Utrecht, Zeist, Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Primary and Community Care, Nijmegen, Netherlands.
| | - Marloes Heijne
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Jeroen Koomen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Gert Doornenbal
- Department of Infectious Diseases, Public Health Service Region Utrecht, Zeist, Netherlands
| | - Miriam Maas
- Department of Infectious Diseases, Public Health Service Region Utrecht, Zeist, Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Pieter Jacobs
- Netherlands Food and Consumer Product Safety Authority, Utrecht, Netherlands
| | - Ingrid Keur
- Netherlands Food and Consumer Product Safety Authority, Utrecht, Netherlands
| | - Frederika Dijkstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Daphne Reukers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Mark Platenburg
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Stephan P Verweij
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Hans-Jurgen Mager
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Joan Totté
- Department of Medical Microbiology, Immunology and Infection Control, St Antonius Hospital, Nieuwegein, Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saara Vainio
- Department of Medical Microbiology, Immunology and Infection Control, St Antonius Hospital, Nieuwegein, Netherlands
| | - Maarten Bongaerts
- Department of Medical Microbiology (and reference laboratory for human chlamydia infections from animal origin), Zuyderland Medical Center, Sittard-Geleen, Netherlands
| | - Edou Heddema
- Department of Medical Microbiology (and reference laboratory for human chlamydia infections from animal origin), Zuyderland Medical Center, Sittard-Geleen, Netherlands
| |
Collapse
|
2
|
Lamkiewicz K, Barf LM, Sachse K, Hölzer M. RIBAP: a comprehensive bacterial core genome annotation pipeline for pangenome calculation beyond the species level. Genome Biol 2024; 25:170. [PMID: 38951884 PMCID: PMC11218241 DOI: 10.1186/s13059-024-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Microbial pangenome analysis identifies present or absent genes in prokaryotic genomes. However, current tools are limited when analyzing species with higher sequence diversity or higher taxonomic orders such as genera or families. The Roary ILP Bacterial core Annotation Pipeline (RIBAP) uses an integer linear programming approach to refine gene clusters predicted by Roary for identifying core genes. RIBAP successfully handles the complexity and diversity of Chlamydia, Klebsiella, Brucella, and Enterococcus genomes, outperforming other established and recent pangenome tools for identifying all-encompassing core genes at the genus level. RIBAP is a freely available Nextflow pipeline at github.com/hoelzer-lab/ribap and zenodo.org/doi/10.5281/zenodo.10890871.
Collapse
Affiliation(s)
- Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Martin Hölzer
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, 13353, Germany.
| |
Collapse
|
3
|
Chaiwattanarungruengpaisan S, Thongdee M, Arya N, Paungpin W, Sirimanapong W, Sariya L. Diversity and genetic characterization of Chlamydia isolated from Siamese crocodiles (Crocodylus siamensis). Acta Trop 2024; 253:107183. [PMID: 38479468 DOI: 10.1016/j.actatropica.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Chlamydiosis, an infection caused by several Chlamydia species, has been reported in Nile, saltwater, and Siamese crocodiles. Despite its widespread reports in various countries, including Thailand, genetic information on Chlamydia species remains limited. This study presents a whole-genome-based characterization of Siamese crocodile-isolated Chlamydia. The results showed that Siamese crocodile Chlamydia contained a single circular chromosome with a size of 1.22-1.23 Mbp and a plasmid with a size of 7.7-8.0 kbp. A plasmid containing eight coding sequences (CDSs) was grouped in a β lineage. A chromosome sequence had approximately 1,018-1,031 CDSs. Chlamydial factors involving virulence were documented in terms of the presence of cytotoxins and several virulence factors in the chromosomes of Siamese crocodile Chlamydia. The analysis of antimicrobial resistance genes in the Chlamydia genome revealed that the most common resistance genes were associated with aminoglycosides, fluoroquinolones, macrolides, tetracyclines, and cephalosporins, with loose matching (identities between 21.12 % and 74.65 %). Phylogenetic analyses, encompassing the assessments of both whole proteome and nine taxonomic markers, revealed that Siamese crocodile Chlamydia was separated into three lineages (lineages I-III) with high bootstrapping statistic support. Interestingly, isolate 12-01 differed genetically from the others, suggesting that it is a new member of Chlamydia. The study findings indicate that Siamese crocodiles are susceptible hosts to Chlamydia, involving more than one species. This study is the first employing the highest number of whole-genome data on Siamese crocodile Chlamydia and provides better insights into pathogen genetics.
Collapse
Affiliation(s)
- Somjit Chaiwattanarungruengpaisan
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nlin Arya
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Weena Paungpin
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
4
|
De Meyst A, De Clercq P, Porrez J, Geens T, Braeckman L, Ouburg S, Morré SA, Vanrompay D. Belgian Cross-Sectional Epidemiological Study on Zoonotic Avian Chlamydia spp. in Chickens. Microorganisms 2024; 12:193. [PMID: 38258018 PMCID: PMC10820512 DOI: 10.3390/microorganisms12010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Chlamydia psittaci, Chlamydia gallinacea, and Chlamydia abortus are the most common Chlamydia spp. in chickens and have a confirmed or suggested zoonotic potential. No recent data are available on their prevalence and impact in the Belgian chicken industry or in the recreational chicken branch. Therefore, a cross-sectional epidemiological study was executed where samples were collected from both factory-farmed and backyard chickens. More specifically, pharyngeal chicken swabs were obtained from 20 chicken farms, 5 chicken abattoirs, and 38 different backyard locations and were analyzed using species-specific Polymerase Chain Reactions (PCRs) for the presence of the three avian Chlamydia spp. To investigate their zoonotic potential, samples were simultaneously collected from 54 backyard chicken caretakes and 37 professional chicken caretakers or abattoir employees and analyzed using species-specific PCRs as well. This study confirmed the presence of DNA of all three Chlamydia species in both the chicken industry and backyard settings. Chlamydia psittaci was the most prevalent in the industry chickens (11.0%), whereas Chlamydia gallinacea was the dominant species in the backyard chickens (14.5%). Chlamydia abortus infections were more common in the commercial chickens (9.0%) compared to the backyard chickens (2.6%). The DNA of all three species was also detected in humans (3.9% Chlamydia psittaci, 2.9% Chlamydia gallinacea, and 1.0% Chlamydia abortus).
Collapse
Affiliation(s)
- Anne De Meyst
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (P.D.C.); (J.P.)
| | - Pieter De Clercq
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (P.D.C.); (J.P.)
| | - Jelmer Porrez
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (P.D.C.); (J.P.)
| | - Tom Geens
- Research and Analytics, Liantis, 8200 Bruges, Belgium;
| | - Lutgart Braeckman
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Sander Ouburg
- Research & Development, Microbe&Lab BV, 1105 AG Amsterdam, The Netherlands; (S.O.); (S.A.M.)
| | - Servaas A. Morré
- Research & Development, Microbe&Lab BV, 1105 AG Amsterdam, The Netherlands; (S.O.); (S.A.M.)
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Dutch Chlamydia trachomatis Reference Laboratory, Department of Medical Microbiology, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Daisy Vanrompay
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (P.D.C.); (J.P.)
| |
Collapse
|
5
|
Drozdovskaya PA, Zinserling VA. [Pathogenesis and pathological anatomy of chlamydial infections]. Arkh Patol 2024; 86:68-74. [PMID: 39434530 DOI: 10.17116/patol20248605168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The review presents modern view on the global problem of chlamydial infections. Current nomenclature of chlamydiae was adduced. Epidemiology, etiology, clinical features, pathogenesis, diagnosis and treatment of chlamydiosis received full coverage. The potential involvement of chlamydiae in the progression of various infectious and somatic diseases was revealed. Special attention was paid to pathomorphological alterations in human tissues, which develop during primary infection with chlamydia as well as during chronic infection. Key problems were demonstrated: underestimation of prevalence of chlamydiae among humans in worldwide clinical practice, the difficulty of detection of extragenital chlamydiosis, the lack of effective methods for diagnosis and treatment of persistent forms, the paucity of descriptions of pathomorphological picture of human chlamydiosis, the absence of specific prevention of infection.
Collapse
Affiliation(s)
- P A Drozdovskaya
- Almazov National Medical Research Centre, St. Petersburg, Russia
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - V A Zinserling
- Almazov National Medical Research Centre, St. Petersburg, Russia
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- S.P. Botkin Clinical Infectious Diseases Hospital, St. Petersburg, Russia
| |
Collapse
|
6
|
Szymańska-Czerwińska M, Zaręba-Marchewka K, Niemczuk K. New insight on chlamydiae. J Vet Res 2023; 67:559-565. [PMID: 38130448 PMCID: PMC10730554 DOI: 10.2478/jvetres-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
This article provides an overview of the current knowledge on chlamydiae, which are intracellular bacteria belonging to the Chlamydiaceae family. Whole-genome sequencing leads to great increases in the available data about Chlamydia spp. Recently, novel chlamydial taxons in various hosts living in different environments have been recognised. New species and taxons with Candidatus status have been recorded mainly in birds and reptiles. Chlamydia gallinacea is an emerging infectious agent in poultry with indirectly confirmed zoonotic potential. Recently, a new group of avian C. abortus strains with worldwide distribution in various wild bird families has been described. The definition of C. abortus species became outdated with the discovery of these strains and has been amended. It now includes two subgroups, mammalian and avian, the latter including all isolates hitherto referred to as atypical C. psittaci or C. psittaci/C. abortus intermediates.
Collapse
Affiliation(s)
- Monika Szymańska-Czerwińska
- Department of Cattle and Sheep Diseases, Puławy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, Puławy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
7
|
Kasimov V, White RT, Jelocnik M. Draft genomes of novel avian Chlamydia abortus strains from Australian Torresian crows ( Corvus orru) shed light on possible reservoir hosts and evolutionary pathways. Microb Genom 2023; 9. [PMID: 37991482 DOI: 10.1099/mgen.0.001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Chlamydia abortus, an obligate intracellular bacterium, is a major causative agent of reproductive loss in ruminants, with zoonotic potential. Though this pathogen is primarily known to infect livestock, recent studies have detected and isolated genetically distinct avian strains of C. abortus from wild birds globally. Before this study, only five avian C. abortus genomes were publicly available. Therefore, we performed culture-independent probe-based whole-genome sequencing on clinical swabs positive for avian C. abortus obtained from Australian Torresian crows (Corvus orru) in 2019 and 2020. We successfully obtained draft genomes for three avian C. abortus strains (C1, C2 and C3), each comprising draft chromosomes with lengths of 1 115 667, 1 120 231 and 1 082 115 bp, and associated 7 553 bp plasmids, with a genome completeness exceeding 92 %. Molecular characterization revealed that these three strains comprise a novel sequence type (ST333), whilst phylogenetic analyses placed all three strains in a cluster with other avian C. abortus genomes. Interestingly, these three strains share a distant genomic relation (2693 single nucleotide variants) with the reference strain 15-58d/44 (ST152), isolated from a Eurasian magpie (Pica pica) in Poland, highlighting the need for more publicly available genomes. Broad comparative analyses with other avian C. abortus genomes revealed that the three draft genomes contain conserved Chlamydia genomic features, including genes coding for type III secretion system and polymorphic membrane proteins, and potential virulence factors such as the large chlamydial cytotoxin, warranting further studies. This research provides the first avian C. abortus draft genomes from Australian birds, highlighting Torresian crows as novel reservoir hosts for these potential pathogens, and demonstrates a practical methodology for sequencing novel Chlamydia genomes without relying on traditional cell culture.
Collapse
Affiliation(s)
- Vasilli Kasimov
- University of the Sunshine Coast, School of Science, Engineering and Technology, Sippy Downs, Sunshine Coast, QLD 4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| | - Rhys T White
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Martina Jelocnik
- University of the Sunshine Coast, School of Science, Engineering and Technology, Sippy Downs, Sunshine Coast, QLD 4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| |
Collapse
|
8
|
Dembek ZF, Mothershead JL, Owens AN, Chekol T, Wu A. Psittacosis: An Underappreciated and Often Undiagnosed Disease. Pathogens 2023; 12:1165. [PMID: 37764973 PMCID: PMC10536718 DOI: 10.3390/pathogens12091165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial agent Chlamydia psittaci, and the resulting disease of psittacosis, is a little-known and underappreciated infectious disease by healthcare practitioners and in public health in general. C. psittaci infections can cause significant psittacosis outbreaks, with person-to-person transmission documented in the last decade. In this publication, we review the pathogen and its disease, as well as examine the potential for genetic manipulation in this organism to create a more deadly pathogen. Recent disease surveys indicate that currently, the highest incidences of human disease exist in Australia, Germany and the UK. We recommend the universal public health reporting of C. psittaci and psittacosis disease and increasing the promotion of public health awareness.
Collapse
Affiliation(s)
- Zygmunt F. Dembek
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA; (Z.F.D.); (T.C.)
| | - Jerry L. Mothershead
- Applied Research Associates (ARA), Support to DTRA Technical Reachback, Albuquerque, NM 87110, USA;
| | - Akeisha N. Owens
- Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA;
| | - Tesema Chekol
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA; (Z.F.D.); (T.C.)
| | - Aiguo Wu
- Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA;
| |
Collapse
|
9
|
Zaręba-Marchewka K, Bomba A, Scharf S, Niemczuk K, Schnee C, Szymańska-Czerwińska M. Whole Genome Sequencing and Comparative Genomic Analysis of Chlamydia gallinacea Field Strains Isolated from Poultry in Poland. Pathogens 2023; 12:891. [PMID: 37513738 PMCID: PMC10384503 DOI: 10.3390/pathogens12070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chlamydia gallinacea is an intracellular bacterium belonging to the Chlamydiaceae family. Poultry is considered to be the major reservoir of this agent, which has worldwide distribution and a particularly consistent worldwide occurrence in chicken flocks. The bacterium has been linked to respiratory disease in humans but without definitive confirmation; nevertheless, while it has not been proved to be the cause of human respiratory disease, a recent report from Italy verified its bird-to-human transmission. This aspect being significant for public health, more research is needed to gain insight into the infection biology of C. gallinacea. In this study, the genomes of eleven novel C. gallinacea field strains from different regions of Poland were analyzed comparatively. It was confirmed that C. gallinacea strains are closely related, with at least 99.46% sequence identity. They possess a conservative genome structure involving the plasticity zone with a complete cytotoxin, the type three secretion system, inclusion membrane proteins, polymorphic membrane proteins, hctA and hctB histone-like proteins, and the chlamydial protease-like activating factor exoenzyme, as well as plasmids. Genetic diversity seems to be restricted. However, some genetic loci, such as ompA and multi-locus sequence typing target genes, are diverse enough to enable high-resolution genotyping and epidemiological tracing.
Collapse
Affiliation(s)
- Kinga Zaręba-Marchewka
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Sabine Scharf
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96 a, D-07743 Jena, Germany
| | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96 a, D-07743 Jena, Germany
| | - Monika Szymańska-Czerwińska
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| |
Collapse
|
10
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
11
|
Borel N, Greub G. International Committee on Systematics of Prokaryotes (ICSP) Subcommittee on the taxonomy of Chlamydiae: Minutes of the closed meeting, 25 August 2022, ESCCAR Meeting Lausanne, Switzerland. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748609 DOI: 10.1099/ijsem.0.005712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Nicole Borel
- Institute of Veterinary Pathology, Department of Pathobiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne, Bugnon 48, CH-1011 Lausanne, Switzerland
| |
Collapse
|
12
|
Wang Z, Chen C, Lu H, Wang L, Gao L, Zhang J, Zhu C, Du F, Cui L, Tan Y. Case report: Clinical characteristics of two cases of pneumonia caused with different strains of Chlamydia psittaci. Front Cell Infect Microbiol 2023; 13:1086454. [PMID: 36798086 PMCID: PMC9927004 DOI: 10.3389/fcimb.2023.1086454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Background With the development of metagenomic sequencing technologies, more and more cases of pneumonia caused with Chlamydia psittaci (C. psittaci) have been reported. However, it remains unknown about the characteristics of patients with pneumonia caused by different strains of C. psittaci. Here, we shared the clinical characteristics of two cases of pneumonia caused with C. psittaci strains SZ18-2 and SZ15 which were rarely identified in humans. Case presentation Case 1: A 69-year-old male farmer who fed ducks presented to hospital for cough, diarrhea and lethargy with the temperature of 39.8°C. Case 2: A 48-year-old male worker who slaughtered ducks was transferred to hospital for high fever, cough, myalgia, diarrhea and loss of appetite. Both patients did not take any protective measures (wearing face masks or gloves) while processing ducks. C. psittaci pneumonia was diagnosed by metagenomic next-generation sequencing and polymerase chain reaction. After treatment with doxycycline and azithromycin individually, they recovered well and discharged from hospital. Through OmpA sequencing, two different strains of SZ18-2 and SZ15 were identified in case 1 and case 2, respectively. Conclusions Patients infected with different strains of C. psittaci may own different clinical manifestations. C. psittaci infection should be suspected when pneumonia appears, accompanied by digestive symptoms and multiple organ dysfunction, especially under the exposure of specific birds.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hu Lu
- Department of Emergency, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Gao
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chi Zhu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China,*Correspondence: Yan Tan, ; Lunbiao Cui,
| | - Yan Tan
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Yan Tan, ; Lunbiao Cui,
| |
Collapse
|
13
|
Normand P, Pujic P, Abrouk D, Vemulapally S, Guerra T, Carlos-Shanley C, Hahn D. Draft Genomes of Frankia strains AiPa1 and AiPs1 Retrieved from Soil with Monocultures of Picea abies or Pinus sylvestris using Alnus incana as Capture Plant. J Genomics 2023; 11:1-8. [PMID: 36594039 PMCID: PMC9760358 DOI: 10.7150/jgen.77880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
The genomes of two nitrogen-fixing Frankia strains, AiPa1 and AiPs1, are described as representatives of two novel candidate species. Both strains were isolated from root nodules of Alnus incana, used as capture plants in bioassays on soils from a reforested site at Karttula, Finland, that was devoid of actinorhizal plants but contained 25 year-old monocultures of spruce (Picea abies (L.) Karsten) or pine (Pinus sylvestris L.), respectively. ANI analyses indicate that each strain represents a novel Frankia species, with genome sizes of 6.98 and 7.35 Mb for AiPa1 and AiPs1, respectively. Both genomes harbored genes typical for many other symbiotic frankiae, including genes essential for nitrogen-fixation, for synthesis of hopanoid lipids and iron-sulfur clusters, as well as clusters of orthologous genes, secondary metabolite determinants and transcriptional regulators. Genomes of AiPa1 and AiPs1 had lost 475 and 112 genes, respectively, compared to those of other cultivated Alnus-infective strains with large genomes. Lost genes included one hup cluster in AiPa1 and the gvp cluster in AiPs1, suggesting that some genome erosion has started to occur in a different manner in the two strains.
Collapse
Affiliation(s)
- Philippe Normand
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, France
| | - Petar Pujic
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, France
| | - Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
14
|
Turin L, Surini S, Wheelhouse N, Rocchi MS. Recent advances and public health implications for environmental exposure to Chlamydia abortus: from enzootic to zoonotic disease. Vet Res 2022; 53:37. [PMID: 35642008 PMCID: PMC9152823 DOI: 10.1186/s13567-022-01052-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental transmission of Chlamydia abortus as a result of enzootic disease or disease outbreaks and the threats posed by this pathogen has been previously reported, however a state-of-the-science review of these reports and the identification of future research priorities in this area is still lacking. This study provides an overview of the current knowledge of host–pathogen–environment interactions, addressing public health risks and identifying critical questions and research gaps. We performed a systematic PubMed and Web of Science search for publications related to Chlamydia abortus in the past four decades, and we reviewed and combined the evidence critically discussing and commenting the results. A total of 182 studies, 5 chapters of specific books and the “OIE terrestrial manual” were included in this review. There were substantial variations between the studies in topic addressed and experimental design. Overall, the literature largely supports the crucial role played by environmental exposure on the acquisition of zoonotic disease caused by Chlamydia abortus. We also identify the paucity of information related to interspecies transmission and pathogen adaptation in relation to environmental dissemination and zoonotic risk. This analysis further highlights the need for additional research given that environmental transmission represents a serious risk not only to susceptible patients (pregnant women and immunocompromised individuals), but also for other species including wildlife.
Collapse
Affiliation(s)
- Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy.
| | - Sara Surini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Mara Silvia Rocchi
- Moredun Research Institute, Bush Loan, Pentlands Science Park, Penicuik, EH26 0PZ, Scotland, UK
| |
Collapse
|
15
|
Marti H, Jelocnik M. Animal Chlamydiae: A Concern for Human and Veterinary Medicine. Pathogens 2022; 11:pathogens11030364. [PMID: 35335688 PMCID: PMC8951289 DOI: 10.3390/pathogens11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (H.M.); (M.J.)
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs 4556, Australia
- Correspondence: (H.M.); (M.J.)
| |
Collapse
|