1
|
Sarry M, Laloy E, Relmy A, Romey A, Bernelin-Cottet C, Salomez AL, Huet H, Hägglund S, Valarcher JF, Bakkali Kassimi L, Blaise-Boisseau S. Susceptibility of primary ovine dorsal soft palate and palatine tonsil cells to FMDV infection. Front Vet Sci 2024; 11:1299379. [PMID: 39149149 PMCID: PMC11324873 DOI: 10.3389/fvets.2024.1299379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. This disease is one of the most important in animal health due to its significant socio-economic impact, especially in case of an outbreak. One important challenge associated with this disease is the ability of the FMD virus (FMDV) to persist in its hosts through still unresolved underlying mechanisms. The absence of relevant in vitro models is one factor preventing advancement in our understanding of FMDV persistence. While a primary bovine cell model has been established using cells from FMDV primary and persistence site in cattle, it appeared interesting to develop a similar model based on ovine anatomical sites of interest to compare host-pathogen interactions. Thus, epithelial cells derived from the palatine tonsils and the dorsal soft palate were isolated and cultured. Their epithelial nature was confirmed using immunofluorescence. Following monolayer infection with FMDV O/FRA/1/2001 Clone 2.2, the FMDV-sensitivity of these cells was evaluated. Dorsal soft palate (DSP) cells were also expanded in multilayers at the air-liquid interface to mimic a stratified epithelium sensitive to FMDV infection. Our investigation revealed the presence of infectious virus, as well as viral antigens and viral RNA, up to 35 days after infection of the cell multilayers. Further experiment with DSP cells from different individuals needs to be reproduced to confirm the robustness of the new model of persistence in multilayer DSP. The establishment of such primary cells creates new opportunities for FMDV research and analysis in sheep cells.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- AgroParistech, Paris, France
| | - Eve Laloy
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Romey
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Cindy Bernelin-Cottet
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Laure Salomez
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Hélène Huet
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jean-François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
2
|
Xu L, Berninger A, Lakin SM, O’Donnell V, Pierce JL, Pauszek SJ, Barrette RW, Faburay B. Direct RNA Sequencing of Foot-and-mouth Disease Virus Genome Using a Flongle on MinION. Bio Protoc 2024; 14:e5017. [PMID: 38948261 PMCID: PMC11211080 DOI: 10.21769/bioprotoc.5017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a severe and extremely contagious viral disease of cloven-hoofed domestic and wild animals, which leads to serious economic losses to the livestock industry globally. FMD is caused by the FMD virus (FMDV), a positive-strand RNA virus that belongs to the genus Aphthovirus, within the family Picornaviridae. Early detection and characterization of FMDV strains are key factors to control new outbreaks and prevent the spread of the disease. Here, we describe a direct RNA sequencing method using Oxford Nanopore Technology (ONT) Flongle flow cells on MinION Mk1C (or GridION) to characterize FMDV. This is a rapid, low cost, and easily deployed point of care (POC) method for a near real-time characterization of FMDV in endemic areas or outbreak investigation sites. Key features • Saves ~35 min of the original protocol time by omitting the reverse transcription step and lowers the costs of reagents and consumables. • Replaces the GridION flow cell from the original protocol with the Flongle, which saves ~90% on the flow cell cost. • Combines the NGS benchwork with a modified version of our African swine fever virus (ASFV) fast analysis pipeline to achieve FMDV characterization within minutes. Graphical overview Schematic of direct RNA sequencing of foot-and-mouth disease virus (FMDV) process, which takes ~50 min from extracted RNA to final loading, modified from the ONT SQK-RNA002 protocol (Version: DRS_9080_v2_revO_14Aug2019).
Collapse
Affiliation(s)
- Lizhe Xu
- Foreign Animal Disease Diagnostic Laboratory (FADDL), National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Plum Island Animal Disease Center, Plum Island, New York, NY, USA
| | - Amy Berninger
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Steven M. Lakin
- FADDL, National Bio- and Agro-defense Facility (NBAF), United States Department of Agriculture, Manhattan, KS, USA
| | - Vivian O’Donnell
- Foreign Animal Disease Diagnostic Laboratory (FADDL), National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Plum Island Animal Disease Center, Plum Island, New York, NY, USA
| | - Jim L. Pierce
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Steven J. Pauszek
- Foreign Animal Disease Diagnostic Laboratory (FADDL), National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Plum Island Animal Disease Center, Plum Island, New York, NY, USA
| | - Roger W. Barrette
- Foreign Animal Disease Diagnostic Laboratory (FADDL), National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Plum Island Animal Disease Center, Plum Island, New York, NY, USA
| | - Bonto Faburay
- Foreign Animal Disease Diagnostic Laboratory (FADDL), National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Plum Island Animal Disease Center, Plum Island, New York, NY, USA
| |
Collapse
|
3
|
Sarry M, Bernelin-Cottet C, Michaud C, Relmy A, Romey A, Salomez AL, Renson P, Contrant M, Berthaud M, Huet H, Jouvion G, Hägglund S, Valarcher JF, Bakkali Kassimi L, Blaise-Boisseau S. Development of a primary cell model derived from porcine dorsal soft palate for foot-and-mouth disease virus research and diagnosis. Front Microbiol 2023; 14:1215347. [PMID: 37840704 PMCID: PMC10570842 DOI: 10.3389/fmicb.2023.1215347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals that has a significant socio-economic impact. One concern associated with this disease is the ability of its etiological agent, the FMD virus (FMDV), to persist in its hosts through underlying mechanisms that remain to be elucidated. While persistence has been described in cattle and small ruminants, it is unlikely to occur in pigs. One of the factors limiting the progress in understanding FMDV persistence and, in particular, differential persistence is the lack of suitable in vitro models. A primary bovine cell model derived from the dorsal soft palate, which is the primary site of replication and persistence of FMDV in cattle, has been developed, and it seemed relevant to develop a similar porcine model. Cells from two sites of FMDV replication in pigs, namely, the dorsal soft palate and the oropharyngeal tonsils, were isolated and cultured. The epithelial character of the cells from the dorsal soft palate was then assessed by immunofluorescence. The FMDV-sensitivity of these cells was assessed after monolayer infection with FMDV O/FRA/1/2001 Clone 2.2. These cells were also grown in multilayers at the air-liquid interface to mimic a stratified epithelium susceptible to FMDV infection. Consistent with what has been shown in vivo in pigs, our study showed no evidence of persistence of FMDV in either the monolayer or multilayer model, with no infectious virus detected 28 days after infection. The development of such a model opens up new possibilities for the study and diagnosis of FMDV in porcine cells.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- AgroParistech, Paris, France
| | - Cindy Bernelin-Cottet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Caroline Michaud
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Romey
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Laure Salomez
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Patricia Renson
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maud Contrant
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maxime Berthaud
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Hélène Huet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Jouvion
- Dynamyc Research Team, Université Paris-Est Créteil, Ecole Nationale Vétérinaire d’Alfort, ANSES, Créteil, France
- Unité d’Histologie et d’Anatomie Pathologique, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jean-François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
4
|
Medina GN, Spinard E, Azzinaro PA, Rodriguez-Calzada M, Gutkoska J, Kloc A, Rieder EA, Taillon BE, Mueller S, de Los Santos T, Segundo FDS. Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation. Viruses 2023; 15:1332. [PMID: 37376631 DOI: 10.3390/v15061332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is a highly contagious disease of cloven-hoofed livestock that can have severe economic impacts. Control and prevention strategies, including the development of improved vaccines, are urgently needed to effectively control FMD outbreaks in endemic settings. Previously, we employed two distinct strategies (codon pair bias deoptimization (CPD) and codon bias deoptimization (CD)) to deoptimize various regions of the FMDV serotype A subtype A12 genome, which resulted in the development of an attenuated virus in vitro and in vivo, inducing varying levels of humoral responses. In the current study, we examined the versatility of the system by using CPD applied to the P1 capsid coding region of FMDV serotype A subtype, A24, and another serotype, Asia1. Viruses carrying recoded P1 (A24-P1Deopt or Asia1-P1Deopt) exhibited different degrees of attenuation (i.e., delayed viral growth kinetics and replication) in cultured cells. Studies in vivo using a mouse model of FMD demonstrated that inoculation with the A24-P1Deopt and Asia1-P1Deopt strains elicited a strong humoral immune response capable of offering protection against challenge with homologous wildtype (WT) viruses. However, different results were obtained in pigs. While clear attenuation was detected for both the A24-P1Deopt and Asia1-P1Deopt strains, only a limited induction of adaptive immunity and protection against challenge was detected, depending on the inoculated dose and serotype deoptimized. Our work demonstrates that while CPD of the P1 coding region attenuates viral strains of multiple FMDV serotypes/subtypes, a thorough assessment of virulence and induction of adaptive immunity in the natural host is required in each case in order to finely adjust the degree of deoptimization required for attenuation without affecting the induction of protective adaptive immune responses.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Edward Spinard
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Paul A Azzinaro
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- ORISE-PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Joseph Gutkoska
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Anna Kloc
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT 06516, USA
| | - Elizabeth A Rieder
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | | | | | | | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- National Institute of Health, NIAID, DMID, OBRRTR, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Stenfeldt C, Fish I, Meek HC, Arzt J. Heterogeneity and Recombination of Foot-and-Mouth Disease Virus during Multi-Strain Coinfection of Cattle. mSphere 2023:e0064322. [PMID: 37093054 DOI: 10.1128/msphere.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Superinfection of cattle persistently infected with foot-and-mouth disease virus (FMDV), with a heterologous FMDV strain has been shown to generate novel recombinant viruses. In this study, we investigated the pathogenesis events within specific tissues associated with FMDV coinfections in cattle subjected to either simultaneous or serial exposure to two distinct strains of FMDV. Both strains of FMDV (one each of serotypes O and A) were similarly localized to the nasopharyngeal mucosa during the early stages of infection. However, while no recombinant FMDV genomes were recovered from simultaneously coinfected cattle, interserotypic recombinants were isolated from nasopharyngeal tissue samples obtained at 48 h after heterologous superinfection of a persistently infected FMDV carrier. Additionally, analysis of FMDV genomes obtained from replicate nasopharyngeal tissue samples demonstrated that adjacent segments of the mucosa were sometimes infected by distinct viruses, demonstrating a multifocal and heterogeneous distribution of FMDV infection during primary and persistent phases of infection. This work indicates that superinfection of FMDV carriers may be an important source of emergent recombinant strains of FMDV in areas where multiple strains are co-circulating. IMPORTANCE Foot-and-mouth disease (FMD) is a socioeconomically impactful livestock disease with a complex epidemiology and ecology. Although recombinant viruses have been identified in field samples, the mechanisms of emergence of those viruses have never been elucidated. This current study demonstrates how serial infection of cattle with two distinct serotypes of FMD virus (FMDV) leads to rapid generation of recombinant viruses in the upper respiratory tracts of infected animals. This finding is particularly relevant in relation to the management of persistently infected FMDV carrier cattle that can maintain subclinical FMDV infection for months to years after an initial infection. Such carrier animals may function as mixing vessels that facilitate the emergence of novel recombinant FMDV strains in areas where multiple virus strains are in circulation.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Research Center, Greenport, New York, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Ian Fish
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Research Center, Greenport, New York, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Haillie C Meek
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Research Center, Greenport, New York, USA
- PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Research Center, Greenport, New York, USA
| |
Collapse
|
6
|
Crespo-Bellido A, Duffy S. The how of counter-defense: viral evolution to combat host immunity. Curr Opin Microbiol 2023; 74:102320. [PMID: 37075547 DOI: 10.1016/j.mib.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Evaluation of Potential In Vitro Recombination Events in Codon Deoptimized FMDV Strains. Viruses 2023; 15:v15030670. [PMID: 36992379 PMCID: PMC10052203 DOI: 10.3390/v15030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Codon deoptimization (CD) has been recently used as a possible strategy to derive foot-and-mouth disease (FMD) live-attenuated vaccine (LAV) candidates containing DIVA markers. However, reversion to virulence, or loss of DIVA, from possible recombination with wild-type (WT) strains has yet to be analyzed. An in vitro assay was developed to quantitate the levels of recombination between WT and a prospective A24-P2P3 partially deoptimized LAV candidate. By using two genetically engineered non-infectious RNA templates, we demonstrate that recombination can occur within non-deoptimized viral genomic regions (i.e., 3′end of P3 region). The sequencing of single plaque recombinants revealed a variety of genome compositions, including full-length WT sequences at the consensus level and deoptimized sequences at the sub-consensus/consensus level within the 3′end of the P3 region. Notably, after further passage, two recombinants that contained deoptimized sequences evolved to WT. Overall, recombinants featuring large stretches of CD or DIVA markers were less fit than WT viruses. Our results indicate that the developed assay is a powerful tool to evaluate the recombination of FMDV genomes in vitro and should contribute to the improved design of FMDV codon deoptimized LAV candidates.
Collapse
|
8
|
Sarry M, Caignard G, Dupré J, Zientara S, Vitour D, Bakkali Kassimi L, Blaise-Boisseau S. Host-Specific Interplay between Foot-and-Mouth Disease Virus 3D Polymerase and the Type-I Interferon Pathway. Viruses 2023; 15:666. [PMID: 36992375 PMCID: PMC10054395 DOI: 10.3390/v15030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. One of the issues related to this disease is the persistence of its causative agent, foot-and-mouth disease virus (FMDV). While the mechanisms of FMDV persistence remain unclear, there are clues that it may be related to protein-protein interactions (PPI) between viral proteins and cellular proteins involved in the interferon (IFN) response. Since FMDV persistence has been described in cattle, sheep and goats but not in swine, we screened PPI involving FMDV proteins and sixteen major type-I IFN pathway proteins from these four species by nanoluciferase-2-hybrid complementation assay, in order to identify new PPI and determine their host specificity. As the results concerning the 3Dpol were the most interesting in view of the limited data concerning its role in immune escape, we decided to focus particularly on this protein. The identified PPI were confirmed by GST pull-down. We identified PPI between 3Dpol and seven IFN pathway proteins, namely, IKKα, IKKε, IRF3, IRF7, NEMO, MDA5 and MAVS. These PPI are conserved among the four studied species, with the exception of the one between 3Dpol and MAVS, which was only found with the swine protein. We also showed, using luciferase reporter assays, that 3Dpol could inhibit the induction phase of the IFN pathway. These results demonstrate, for the first time, a putative role for 3Dpol in FMDV innate immune escape.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
- AgroParistech, 16 Rue Claude Bernard, 75005 Paris, France
| | - Grégory Caignard
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Juliette Dupré
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| |
Collapse
|
9
|
Yadav S, Delgado AH, Hagerman AD, Bertram MR, Moreno-Torres KI, Stenfeldt C, Holmstrom L, Arzt J. Epidemiologic and economic considerations regarding persistently infected cattle during vaccinate-to-live strategies for control of foot-and-mouth disease in FMD-free regions. Front Vet Sci 2022; 9:1026592. [PMID: 36337179 PMCID: PMC9632437 DOI: 10.3389/fvets.2022.1026592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Development of a foot-and-mouth disease (FMD) carrier state following FMD virus (FMDV) infection is a well-established phenomenon in cattle. However, the proportion of cattle likely to become carriers and the duration of the carrier state at a herd or population-level are incompletely understood. The objective of this study was to examine the epidemiologic and economic impacts of vaccination-to-live strategy in a disease-free region or country. We developed and simulated scenarios of FMD spread and control in the US livestock population, which included depopulation for a limited period, followed by a vaccinate-to-live strategy with strong biosecurity and movement restrictions. Six scenarios of FMD spread and control were simulated in the InterSpread Plus (ISP) modeling tool. Data on the number of infected and depopulated cattle (by operation types) from ISP model runs were used to estimate the monthly number of infected but not depopulated (potential carrier) cattle after the infection. Using available literature data on the FMD carrier state, we estimated the monthly proportion of carrier cattle (from infected but not depopulated cattle) over time following infection. Among the simulated scenarios, the median (25th, 75th percentile) number of infected cattle ranged from 43,217 (42,819, 55,274) head to 148,907 (75,819, 205,350) head, and the epidemic duration ranged from 20 (11, 30) to 76 (38, 136) days. In general, larger outbreaks occurred when depopulation was carried out through longer periods, and the onset of the vaccination was late (p > 0.05). The estimated proportion of surviving cattle, which were infected and not depopulated and had the potential to become persistently infected ranged from 14 to 35% of total infected cattle. Production losses in beef and dairy sectors were higher when outbreaks started in multiple states simultaneously, but production losses were small compared to trade losses and consumer avoidance losses. These results can be used to inform the consideration of a vaccinate-to-live strategy for FMD outbreaks and the development of appropriate post-outbreak management strategies. Furthermore, this output will enable a more detailed examination of the epidemiologic and economic implications of allowing convalescent cattle to survive and remain in production chains after FMD outbreaks in FMD-free regions.
Collapse
Affiliation(s)
- Shankar Yadav
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Amy H. Delgado
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
- *Correspondence: Amy H. Delgado
| | - Amy D. Hagerman
- Department of Agricultural Economics, Oklahoma State University, Stillwater, OK, United States
| | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Karla I. Moreno-Torres
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Lindsey Holmstrom
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
10
|
Genome Sequences of Foot-and-Mouth Disease Virus SAT2 Strains Purified from Coinfected Cape Buffalo in Kenya. Microbiol Resour Announc 2022; 11:e0058522. [PMID: 36094207 PMCID: PMC9584222 DOI: 10.1128/mra.00585-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) SAT2 sequences were acquired from Cape buffalo in Kenya in 2016, from either primary passage (n = 38) or plaque purification of dually SAT1/SAT2-infected samples (n = 61). All samples were derived from asymptomatic animals. These sequences contribute to our understanding of FMDV diversity in reservoirs and during subclinical FMDV infections.
Collapse
|
11
|
Genome Sequences of Foot-and-Mouth Disease Virus SAT1 Strains Purified from Coinfected Cape Buffalo in Kenya. Microbiol Resour Announc 2022; 11:e0058422. [PMID: 36094180 PMCID: PMC9584208 DOI: 10.1128/mra.00584-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nearly complete genomes of 49 novel foot-and-mouth disease virus (FMDV) SAT1 strains acquired from oropharyngeal fluid samples from asymptomatic African Cape buffalo in Kenya in 2016 were determined. Sequences were from primary passage or plaque-purified dually SAT1/SAT2-infected samples. These sequences are important for elucidation of the molecular epidemiology of persistent and subclinical FMDV infections.
Collapse
|