1
|
Martínez-Espinoza I, Babawale PI, Miletello H, Cheemarla NR, Guerrero-Plata A. Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus. Vaccines (Basel) 2024; 12:1198. [PMID: 39460364 PMCID: PMC11511582 DOI: 10.3390/vaccines12101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal tissues such as the lung, the relevance of IFN-ε against respiratory viral infections remains elusive. RESULTS We present, for the first time, the expression of IFN-ε in alveolar epithelial cells and primary human bronchial epithelial cells grown in an air-liquid interface (ALI) in response to human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) infection. The molecular characterization of the IFN-ε induction by the viruses indicates that the expression of RIG-I is necessary for an optimal IFN-ε expression. Furthermore, treatment of the airway epithelial cells with rhIFN-ε induced the expression of IFN-stimulated genes (ISGs) and significantly restricted the viral replication of HMPV and RSV. CONCLUSIONS These findings underscore the relevance of IFN-ε against viral infections in the respiratory tract.
Collapse
Affiliation(s)
| | | | | | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Chuah JJM, Campbell NK. IFNε, IFNω and IFNλ: interferons defending the mucosa. Curr Opin Immunol 2024; 89:102456. [PMID: 39173414 DOI: 10.1016/j.coi.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The unconventional type I interferons IFNε and IFNω and type III interferon IFNλ are gradually emerging as tissue-specific cytokines in defence of mucosal tissues. This review provides an overview of the distinct features and functions that define these IFNs as protective factors in the respiratory, gastrointestinal and reproductive tracts, highlighting their immunoregulatory roles against pathogens while maintaining tolerance against commensal microbes. In particular, we discuss recent advances in our understanding of the constitutively expressed IFNε and its role in protecting against mucosal infections, inflammation and cancers. We identify an emerging theme for this unique cytokine as a key contributor to the 'first line of defence' against pathogens and maintenance of mucosal tissue homeostasis, primarily through its regulation of immune cell populations.
Collapse
Affiliation(s)
- Jasmine J M Chuah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Nicole K Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Calvet GA, Kara EO, Bôtto-Menezes CHA, da Costa Castilho M, de Oliveira Franca RF, Habib N, Neto AM, Pereira GFM, Giozza SP, Bermúdez XPD, Fernandes TJ, Modjarrad K, Brasil P, Broutet NJN, de Filippis AMB. Detection and persistence of Zika virus in body fluids and associated factors: a prospective cohort study. Sci Rep 2023; 13:21557. [PMID: 38057382 PMCID: PMC10700488 DOI: 10.1038/s41598-023-48493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
This study aimed to analyze the detection and duration of the Zika virus (ZIKV) in plasma, urine, saliva, sweat, rectal swabs, vaginal secretions, breast milk, and semen and to explore risk factors associated with prolonged viral persistence. A prospective cohort study of symptomatic patients and their household contacts was conducted in Brazil from July 2017 to June 2019. A total of 260 individuals (184 women and 76 men) with confirmed ZIKV infection were enrolled and followed up for 12 months. ZIKV RNA was present in all body fluid specimens and detectable for extended periods in urine, sweat, rectal swabs, and semen. The longest detection duration was found in semen, with high viral loads in the specimens. ZIKV RNA clearance was associated with several factors, including age, sex, education level, body mass index, non-purulent conjunctivitis, joint pain, and whether the participant had a history of yellow fever vaccination. The influence of each of these factors on the low or fast viral clearance varied according to the specific body fluid under investigation. Recurrent ZIKV detection events after total viral clearance were observed in the cohort. Our findings provide valuable insights into the persistence and potential recurrence of ZIKV infection, highlighting the need for continued monitoring and follow-up of individuals infected with ZIKV and for effective prevention measures to reduce the risk of transmission.
Collapse
Affiliation(s)
- Guilherme Amaral Calvet
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Edna Oliveira Kara
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Camila Helena Aguiar Bôtto-Menezes
- Department of Malaria, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- School of Health Sciences, Amazonas State University (UEA), Manaus, Amazonas, Brazil
| | - Marcia da Costa Castilho
- Department of Malaria, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | | | - Ndema Habib
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Armando Menezes Neto
- Department of Virology and Experimental Therapy, Institute Aggeu Magalhães, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Gerson Fernando Mendes Pereira
- Department of HIV/AIDS, Tuberculosis, Viral Hepatitis and Sexually Transmitted Infections (DATHI), Ministry of Health, Brasília, Brazil
| | - Silvana Pereira Giozza
- Department of HIV/AIDS, Tuberculosis, Viral Hepatitis and Sexually Transmitted Infections (DATHI), Ministry of Health, Brasília, Brazil
| | | | - Tatiana Jorge Fernandes
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrícia Brasil
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Filardo S, Di Pietro M, Bozzuto G, Fracella M, Bitossi C, Molinari A, Scagnolari C, Antonelli G, Sessa R. Interferon-ε as potential inhibitor of Chlamydia trachomatis infection. Microb Pathog 2023; 185:106427. [PMID: 37890679 DOI: 10.1016/j.micpath.2023.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Chlamydia trachomatis, the main cause of bacterial sexually transmitted diseases, is responsible for severe reproductive sequelae. Amongst all the cytokines involved in host immunity towards this pathogen, IFN-ε has recently acquired importance for its potential contribution to the female reproductive tract innate defenses. Herein, our study aimed to explore, for the first time, the activity of IFN-ε toward C. trachomatis in an in vitro infection model, by testing its effects on the different phases of chlamydial developmental cycle, as well as on the ultrastructural characteristics of chlamydial inclusions, via transmission electron microscopy. Main result is the capability of IFN-ε to alter C. trachomatis growth, as suggested by reduced infectious progenies, as well as a patchy distribution of bacteria and altered morphology of reticulate bodies within inclusions. In conclusion, our results suggest that IFN-ε could play a role in the innate and adaptive immune defenses against C. trachomatis; in the future, it will be needed to investigate its activity on an infection model more closely resembling the physiological environment of the female genital tract.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giuseppina Bozzuto
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Camilla Bitossi
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Agnese Molinari
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale di Porta Tiburtina, 28, 00185, Rome, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
5
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Kolli P, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ɛ restricts Zika virus infection in the female reproductive tract. PNAS NEXUS 2023; 2:pgad350. [PMID: 37954158 PMCID: PMC10639110 DOI: 10.1093/pnasnexus/pgad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Priyanka Kolli
- Graduate School of Biological Sciences, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirella Salvatore
- Departmentof Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ε restricts Zika virus infection in the female reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535968. [PMID: 37066223 PMCID: PMC10104157 DOI: 10.1101/2023.04.06.535968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q. Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY10461
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Schmitz Y, Schwerdtfeger M, Westmeier J, Littwitz-Salomon E, Alt M, Brochhagen L, Krawczyk A, Sutter K. Superior antiviral activity of IFNβ in genital HSV-1 infection. Front Cell Infect Microbiol 2022; 12:949036. [PMID: 36325470 PMCID: PMC9618724 DOI: 10.3389/fcimb.2022.949036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Type I interferons (IFNs) present the first line of defense against viral infections, providing antiviral, immunomodulatory and antiproliferative effects. The type I IFN family contains 12 IFNα subtypes and IFNβ, and although they share the same receptor, they are classified as non-redundant, capable to induce a variety of different IFN-stimulated genes. However, the biological impact of individual subtypes remains controversial. Recent data propose a subtype-specificity of type I IFNs revealing unique effector functions for different viruses and thus expanding the implications for IFNα-based antiviral immunotherapies. Despite extensive research, drug-resistant infections with herpes simplex virus type 1 (HSV-1), which is the common agent of recurrent orogenital lesions, are still lacking a protective or curing therapeutic. However, due to the risk of generalized infections in immunocompromised hosts as well as the increasing incidence of resistance to conventional antiherpetic agents, HSV infections raise major health concerns. Based on their pleiotropic effector functions, the application of type I IFNs represents a promising approach to inhibit HSV-1 replication, to improve host immunity and to further elucidate their qualitative differences. Here, selective IFNα subtypes and IFNβ were evaluated for their therapeutic potential in genital HSV-1 infections. Respective in vivo studies in mice revealed subtype-specific differences in the reduction of local viral loads. IFNβ had the strongest antiviral efficacy against genital HSV-1 infection in mice, whereas IFNα1, IFNα4, and IFNα11 had no impact on viral loads. Based on flow cytometric analyses of underlying immune responses at local and peripheral sites, these differences could be further assigned to specific modulations of the antiviral immunity early during HSV-1 infection. IFNβ led to enhanced systemic cytokine secretion and elevated cytotoxic responses, which negatively correlated with viral loads in the vaginal tract. These data provide further insights into the diversity of type I IFN effector functions and their impact on the immunological control of HSV-1 infections.
Collapse
Affiliation(s)
- Yasmin Schmitz
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Mara Schwerdtfeger
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Jaana Westmeier
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, Essen, Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Kathrin Sutter,
| |
Collapse
|