1
|
Wang X, Walker G, Kim KW, Stelzer-Braid S, Scotch M, Rawlinson WD. The resurgence of influenza A/H3N2 virus in Australia after the relaxation of COVID-19 restrictions during the 2022 season. J Med Virol 2024; 96:e29922. [PMID: 39295292 DOI: 10.1002/jmv.29922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
This study retrospectively analyzed the genetic characteristics of influenza A H3N2 (A/H3N2) viruses circulating in New South Wales (NSW), the Australian state with the highest number of influenza cases in 2022, and explored the phylodynamics of A/H3N2 transmission within Australia during this period. Sequencing was performed on 217 archived specimens, and A/H3N2 evolution and spread within Australia were analyzed using phylogenetic and phylodynamic methods. Hemagglutinin genes of all analyzed NSW viruses belonged to subclade 3C.2a1b.2a.2 and clustered together with the 2022 vaccine strain. Complete genome analysis of NSW viruses revealed highly frequent interclade reassortments between subclades 3C.2a1b.2a.2 and 3C.2a1b.1a. The estimated earliest introduction time of the dominant subgroup 3C.2a1b.2a.2a.1 in Australia was February 22, 2022 (95% highest posterior density: December 19, 2021-March 13, 2022), following the easing of Australian travel restrictions, suggesting a possible international source. Phylogeographic analysis revealed that Victoria drove the transmission of A/H3N2 viruses across the country during this season, while NSW did not have a dominant role in viral dissemination to other regions. This study highlights the importance of continuous surveillance and genomic characterization of influenza viruses in the postpandemic era, which can inform public health decision-making and enable early detection of novel strains with pandemic potential.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Gregory Walker
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ki W Kim
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Sacha Stelzer-Braid
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Phoenix, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - William D Rawlinson
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
2
|
Fall A, Han L, Yunker M, Gong YN, Li TJ, Norton JM, Abdullah O, Rothman RE, Fenstermacher KZJ, Morris CP, Pekosz A, Klein E, Mostafa HH. Evolution of Influenza A(H3N2) Viruses in 2 Consecutive Seasons of Genomic Surveillance, 2021-2023. Open Forum Infect Dis 2023; 10:ofad577. [PMID: 38088981 PMCID: PMC10715682 DOI: 10.1093/ofid/ofad577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Background The circulation and the genomic evolution of influenza A(H3N2) viruses during the 2021/2022 and 2022/2023 seasons were studied and associated with infection outcomes. Methods Remnant influenza A-positive samples following standard-of-care testing from patients across the Johns Hopkins Health System (JHHS) were used for the study. Samples were randomly selected for whole viral genome sequencing. The sequence-based pEpitope model was used to estimate the predicted vaccine efficacy (pVE) for circulating H3N2 viruses. Clinical data were collected and associated with viral genomic data. Results A total of 121 683 respiratory specimens were tested for influenza at JHHS between 1 September 2021 and 31 December 2022. Among them, 6071 (4.99%) tested positive for influenza A. Of these, 805 samples were randomly selected for sequencing, with hemagglutinin (HA) segments characterized for 610 samples. Among the characterized samples, 581 were H3N2 (95.2%). Phylogenetic analysis of HA segments revealed the exclusive circulation of H3N2 viruses with HA segments of the 3C.2a1b.2a.2 clade. Analysis of a total of 445 complete H3N2 genomes revealed reassortments; 200 of 227 of the 2022/2023 season genomes (88.1%) were found to have reassorted with clade 3C.2a1b.1a. The pVE was estimated to be -42.53% for the 2021/2022 season and 30.27% for the 2022/2023 season. No differences in clinical presentations or admissions were observed between the 2 seasons. Conclusions The increased numbers of cases and genomic diversity of influenza A(H3N2) during the 2022/2023 season were not associated with a change in disease severity compared to the previous influenza season.
Collapse
Affiliation(s)
- Amary Fall
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lijie Han
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Madeline Yunker
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tai-Jung Li
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Julie M Norton
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Omar Abdullah
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - C Paul Morris
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Andrew Pekosz
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W.Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Center for Disease Dynamics, Economics, and Policy, Washington, District of Columbia, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Li Z, Xiong Y, Long J, Li T, Fu X, Yang S, Tian D, Zhao Y, Qi L. Resurgence of influenza during COVID-19 in Chongqing, China: A retrospective analysis. J Med Virol 2023; 95:e29249. [PMID: 38009822 DOI: 10.1002/jmv.29249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/12/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
To better understand the trends of influenza and the impact of public health and social measures (PHSMs) implemented during the coronavirus disease 2019 (COVID-19) period in Chongqing, China. Data from the China Influenza Surveillance Information System from January 2017 to June 2022 were extracted. Epidemiological characteristics (influenza-like illness [ILI] and ILI%) and virological characteristics (influenza positive rate and circulating (sub)types) of influenza were described and compared between the pre-COVID-19 period and the COVID-19 period. Our survey showed that the implementation of PHSMs during the COVID-19 period had a positive impact on reducing influenza transmission. However, influenza activity resurged in 2021-2022 as the PHSMs were eased. Children under 5 years old constituted the highest proportion of ILI cases. The overall influenza positive rate was 23.70%, with a higher rate observed during the pre-COVID-19 period (31.55%) compared to the COVID-19 period (13.68%). Influenza virus subtypes co-circulated and the predominant subtype varied each year, with influenza A subtypes predominated in 2018/2019, while influenza B/Victoria lineage dominated in 2020/2021. PHSMs are effective measures to mitigate the spread of influenza. The findings underscore the need for bolstering monitoring systems, advocating influenza vaccination, and implementing practical PHSMs to strengthen prevention and control measures against influenza.
Collapse
Affiliation(s)
- Zhourong Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yu Xiong
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Jiang Long
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Tingting Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| | - Xiaoqing Fu
- Southwest Medical University, Sichuan, China
| | - Shuang Yang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Dechao Tian
- Department of Biostatistics and Systems Biology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yong Zhao
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing, China
| |
Collapse
|