1
|
Alhadlaq MA, Aljurayyad OI, Almansour A, Al-Akeel SI, Alzahrani KO, Alsalman SA, Yahya R, Al-Hindi RR, Hakami MA, Alshahrani SD, Alhumeed NA, Al Moneea AM, Al-Seghayer MS, AlHarbi AL, Al-Reshoodi FM, Alajel S. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982-2024) and food safety criteria. Gut Pathog 2024; 16:57. [PMID: 39370525 PMCID: PMC11457481 DOI: 10.1186/s13099-024-00641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Classification of pathogenic E. coli has been focused either in mammalian host or infection site, which offers limited resolution. This review presents a comprehensive framework for classifying all E. coli branches within a single, unifying figure. This approach integrates established methods based on virulence factors, serotypes and clinical syndromes, offering a more nuanced and informative perspective on E. coli pathogenicity. The presence of the LEE island in pathogenic E. coli is a key genetic marker differentiating EHEC from STEC strains. The coexistence of stx and eae genes within the bacterial genome is a primary characteristic used to distinguish STEC from other pathogenic E. coli strains. The presence of the inv plasmid, Afa/Dr adhesins, CFA-CS-LT-ST and EAST1 are key distinguishing features for identifying pathogenic E. coli strains belonging to EIEC, DAEC, ETEC and EAEC pathotypes respectively. Food microbiological criteria differentiate pathogenic E. coli in food matrices. 'Zero-tolerance' applies to most ready-to-eat (RTE) foods due to high illness risk. Non-RTE foods' roles may allow limited E. coli presence, which expose consumers to potential risk; particularly from the concerning Shiga toxin-producing E. coli (STEC) strains, which can lead to life-threatening complications in humans, including haemolytic uremic syndrome (HUS) and even death in susceptible individuals. These findings suggest that decision-makers should consider incorporating the separate detection of STEC serotypes into food microbiological criteria, in addition to existing enumeration methods. Contamination of STEC is mainly linked to food consumption, therefore, outbreaks of E. coli STEC has been reviewed here and showed a link also to water as a potential contamination route. Since their discovery in 1982, over 39,787 STEC cases associated with 1,343 outbreaks have been documented. The majority of these outbreaks occurred in the Americas, followed by Europe, Asia and Africa. The most common serotypes identified among the outbreaks were O157, the 'Big Six' (O26, O45, O103, O111, O121, and O145), and other serotypes such as O55, O80, O101, O104, O116, O165, O174 and O183. This review provides valuable insights into the most prevalent serotypes implicated in STEC outbreaks and identifies gaps in microbiological criteria, particularly for E. coli non-O157 and non-Big Six serotypes.
Collapse
Affiliation(s)
| | - Othman I Aljurayyad
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | - Reham Yahya
- Clinical Infection and Microbiology Basic Sciences Department, King Saudi Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, P.O. Box 3661, 11481, Riyadh, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Saleh D Alshahrani
- Department of Public Health Department, Ministry of Interior, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
2
|
Bechtold V, Petzl W, Huber-Schlenstedt R, Sorge US. Distribution of Bovine Mastitis Pathogens in Quarter Milk Samples from Bavaria, Southern Germany, between 2014 and 2023-A Retrospective Study. Animals (Basel) 2024; 14:2504. [PMID: 39272289 PMCID: PMC11394622 DOI: 10.3390/ani14172504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The objective of this study was to investigate the distribution of mastitis pathogens in quarter milk samples (QMSs) submitted to the laboratory of the Bavarian Animal Health Service (TGD) between 2014 and 2023 in general, in relation to the clinical status of the quarters, and to analyze seasonal differences in the detection risk. Each QMS sent to the TGD during this period was analyzed and tested using the California Mastitis Test (CMT). Depending on the result, QMSs were classified as CMT-negative, subclinical, or clinical if the milk character showed abnormalities. Mastitis pathogens were detected in 19% of the QMSs. Non-aureus staphylococci (NAS) were the most common species isolated from the culture positive samples (30%), followed by Staphylococcus (S.) aureus (19%), Streptococcus (Sc.) uberis (19%), and Sc. dysgalactiae (9%). In culture-positive QMSs from CMT-negative and subclinically affected quarters, the most frequently isolated pathogens were NAS (44% and 27%, respectively), followed by S. aureus (25% and 17%, respectively) and Sc. uberis (8% and 22%, respectively). In QMSs from clinically affected quarters, the most frequently isolated pathogens were Sc. uberis (32%), S. aureus (13%), Sc. dysgalactiae (11%), and Escherichia (E.) coli (11%). The distribution of NAS and Sc. uberis increased throughout the study period, while that of S. aureus decreased. From June to October, QMSs from subclinically affected quarters increased and environmental pathogens, such as Sc. uberis, were detected more frequently. In conclusion, this study highlights the dynamic nature of the distribution of mastitis pathogens, influenced by mastitis status and seasonal factors. Environmental pathogens still play an important role, especially in clinical mastitis and seasonal dependency, with the number of positive samples continuing to increase. It is therefore essential to continue mastitis control measures and to regularly monitor the spread of mastitis pathogens in order to track trends and adapt targeted prevention measures.
Collapse
Affiliation(s)
- Verena Bechtold
- Department of Udder Health and Milk Quality, Bavarian Animal Health Services, 85586 Poing, Germany
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University Munich, 85764 Oberschleissheim, Germany
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University Munich, 85764 Oberschleissheim, Germany
| | | | - Ulrike S Sorge
- Department of Udder Health and Milk Quality, Bavarian Animal Health Services, 85586 Poing, Germany
| |
Collapse
|
3
|
Nery Garcia BL, Dantas STA, da Silva Barbosa K, Mendes Mitsunaga T, Butters A, Camargo CH, Nobrega DB. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics (Basel) 2024; 13:391. [PMID: 38786120 PMCID: PMC11117280 DOI: 10.3390/antibiotics13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an imminent threat to global public health, driven in part by the widespread use of antimicrobials in both humans and animals. Within the dairy cattle industry, Gram-negative coliforms such as Escherichia coli and Klebsiella pneumoniae stand out as major causative agents of clinical mastitis. These same bacterial species are frequently associated with severe infections in humans, including bloodstream and urinary tract infections, and contribute significantly to the alarming surge in antimicrobial-resistant bacterial infections worldwide. Additionally, mastitis-causing coliforms often carry AMR genes akin to those found in hospital-acquired strains, notably the extended-spectrum beta-lactamase genes. This raises concerns regarding the potential transmission of resistant bacteria and AMR from mastitis cases in dairy cattle to humans. In this narrative review, we explore the distinctive characteristics of antimicrobial-resistant E. coli and Klebsiella spp. strains implicated in clinical mastitis and human infections. We focus on the molecular mechanisms underlying AMR in these bacterial populations and critically evaluate the potential for interspecies transmission. Despite some degree of similarity observed in sequence types and mobile genetic elements between strains found in humans and cows, the existing literature does not provide conclusive evidence to assert that coliforms responsible for mastitis in cows pose a direct threat to human health. Finally, we also scrutinize the existing literature, identifying gaps and limitations, and propose avenues for future research to address these pressing challenges comprehensively.
Collapse
Affiliation(s)
- Breno Luis Nery Garcia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Stéfani Thais Alves Dantas
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Kristian da Silva Barbosa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Thatiane Mendes Mitsunaga
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Alyssa Butters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | | | - Diego Borin Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
4
|
Hoque MN, Faisal GM, Jerin S, Moyna Z, Islam MA, Talukder AK, Alam MS, Das ZC, Isalm T, Hossain MA, Rahman ANMA. Unveiling distinct genetic features in multidrug-resistant Escherichia coli isolated from mammary tissue and gut of mastitis induced mice. Heliyon 2024; 10:e26723. [PMID: 38434354 PMCID: PMC10904246 DOI: 10.1016/j.heliyon.2024.e26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in lactating mammals. We hypothesized that E. coli from the gut and mammary glands may have similar genomic characteristics in the causation of mastitis. To test this hypothesis, we used whole genome sequencing to analyze two multidrug resistant E. coli strains isolated from mammary tissue (G2M6U) and fecal sample (G6M1F) of experimentally induced mastitis mice. Both strains showed resistance to multiple (>7) antibiotics such as oxacillin, aztreonam, nalidixic acid, streptomycin, gentamicin, cefoxitin, ampicillin, tetracycline, azithromycin and nitrofurantoin. The genome of E. coli G2M6U had 59 antimicrobial resistance genes (ARGs) and 159 virulence factor genes (VFGs), while the E. coli G6M1F genome possessed 77 ARGs and 178 VFGs. Both strains were found to be genetically related to many E. coli strains causing mastitis and enteric diseases originating from different hosts and regions. The G6M1F had several unique ARGs (e.g., QnrS1, sul2, tetA, tetR, emrK, blaTEM-1/105, and aph(6)-Id, aph(3″)-Ib) conferring resistance to certain antibiotics, whereas G2M6U had a unique heat-stable enterotoxin gene (astA) and 7192 single nucleotide polymorphisms. Furthermore, there were 43 and 111 unique genes identified in G2M6U and G6M1F genomes, respectively. These results indicate distinct differences in the genomic characteristics of E. coli strain G2M6U and G6M1F that might have important implications in the pathophysiology of mammalian mastitis, and treatment strategies for mastitis in dairy animals.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Shobnom Jerin
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh
| | - Anup Kumar Talukder
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | | | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Tofazzal Isalm
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - M. Anwar Hossain
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Nasar Md Aminoor Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|