1
|
Liu B, Meng C, Han S, Li Q, Miao X, Wang Z, Xu C, Kang X, Jiao X, Pan Z. Development of a 1-step multiplex PCR assay for the detection of S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis associated with poultry production. Poult Sci 2024; 103:104043. [PMID: 39043031 PMCID: PMC11318556 DOI: 10.1016/j.psj.2024.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Salmonellosis in poultry is detrimental to the advancement of the breeding industry and poses hazards to human health. Approximately 2,600 Salmonella varieties exist, among which S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis are prevalent serotypes in the poultry industry in recent years. They can also infect humans by contaminating poultry eggs and meat. Therefore, identifying these serotypes is crucial for successful preventive and control interventions. The White-Kauffmann-Le Minor scheme is time-consuming and requires expensive reagents. Whole-genome sequencing (WGS) and other molecular biology techniques require skilled technical staff. In comparison, the polymerase chain reaction (PCR) is more accurate, rapid, and inexpensive, thus proving suitable for widespread application in the poultry industry. Here, we selected 4 specific primers: lygD, mdh, ipaJ, and SIN_02055, which correspond to detecting S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, respectively. They were integrated into a 1-step multiplex PCR method. We optimized the PCR method by utilizing specificity test results to determine the optimal annealing temperature (57°C). The PCR method exhibited excellent sensitivity for genomic DNA and bacterial cultures. We used the developed method to determine 157 clinical Salmonella isolates from various stages of the poultry production chain. The results aligned with serotype data generated via WGS analysis, demonstrating the method's excellent accuracy. In conclusion, this study developed a 1-step multiplex PCR method that simultaneously identifies S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, allowing routine mass detection in the grass-root poultry industry.
Collapse
Affiliation(s)
- Bowen Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shunzi Han
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Qing Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Xinyuan Miao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Chen Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Ortega-Sanz I, Barbero-Aparicio JA, Canepa-Oneto A, Rovira J, Melero B. CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BMC Bioinformatics 2023; 24:291. [PMID: 37474912 PMCID: PMC10357626 DOI: 10.1186/s12859-023-05414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype .
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, 09006, Burgos, Spain
| | | | | | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, 09006, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, 09006, Burgos, Spain.
| |
Collapse
|
4
|
Huang YQ, Sun P, Chen Y, Liu HX, Hao GF, Song BA. Bioinformatics toolbox for exploring target mutation-induced drug resistance. Brief Bioinform 2023; 24:7026012. [PMID: 36738254 DOI: 10.1093/bib/bbad033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is increasingly among the main issues affecting human health and threatening agriculture and food security. In particular, developing approaches to overcome target mutation-induced drug resistance has long been an essential part of biological research. During the past decade, many bioinformatics tools have been developed to explore this type of drug resistance, and they have become popular for elucidating drug resistance mechanisms in a low cost, fast and effective way. However, these resources are scattered and underutilized, and their strengths and limitations have not been systematically analyzed and compared. Here, we systematically surveyed 59 freely available bioinformatics tools for exploring target mutation-induced drug resistance. We analyzed and summarized these resources based on their functionality, data volume, data source, operating principle, performance, etc. And we concisely discussed the strengths, limitations and application examples of these tools. Specifically, we tested some predictive tools and offered some thoughts from the clinician's perspective. Hopefully, this work will provide a useful toolbox for researchers working in the biomedical, pesticide, bioinformatics and pharmaceutical engineering fields, and a good platform for non-specialists to quickly understand drug resistance prediction.
Collapse
Affiliation(s)
- Yuan-Qin Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Ping Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Yi Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Huan-Xiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao 999078, SAR, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
5
|
White RT, Jelocnik M, Klukowski N, Haque MH, Sarker S. The first genomic insight into Chlamydia psittaci sequence type (ST)24 from a healthy captive psittacine host in Australia demonstrates evolutionary proximity with strains from psittacine, human, and equine hosts. Vet Microbiol 2023; 280:109704. [PMID: 36840991 DOI: 10.1016/j.vetmic.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Chlamydia psittaci is a zoonotic pathogen that infects birds, humans, and other mammals. Notably, recent studies suggested the human-to-human transmission of C. psittaci, and this pathogen also causes equine reproductive loss in Australia. Molecular studies in Australia to date have focused on and described clonal sequence type (ST)24 strains infecting horses, wild psittacine, and humans. In contrast, the genetic identity of C. psittaci strains from captive psittacine hosts is scarce. In 2022, C. psittaci was detected in the faeces of a healthy captive blue-fronted parrot (Amazona aestiva). Genomic DNA was extracted and underwent whole-genome sequencing. Here we report the 1,160,701 bp circular chromosome of C. psittaci strain BF_amazon_parrot13 and the 7,553 bp circular plasmid pCpsBF_amazon_parrot13. Initial in silico multi-locus sequence typing and ompA genotyping revealed that BF_amazon_parrot13 belongs to the clonal ST24 lineage and has an ompA genotype A. Further context involved the genomes of 31 published ST24 strains, utilising a single-nucleotide variant (SNV) based clustering approach. Despite temporal, host, and biogeographical separation, a core-genome SNV-based phylogeny revealed that BF_amazon_parrot13 clustered in a distinct subcluster with seven C. psittaci strains from equines in Australia (maximum pairwise distance of 13 SNVs). BF_amazon_parrot13 represents the first complete C. psittaci ST24 genome from a captive psittacine in Australia. Furthermore, by using whole-genome sequencing to coordinate surveillance, we can also learn more about the possible health risks and routes of chlamydia transmission among people, livestock, wild animals, and domesticated animals.
Collapse
Affiliation(s)
- Rhys T White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia; The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia; The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia.
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.
| | - Natalie Klukowski
- La Trobe University, School of Agriculture, Biomedicine and Environment, Department of Microbiology, Anatomy, Physiology and Pharmacology, Melbourne, Victoria 3086, Australia.
| | - Md Hakimul Haque
- Rajshahi University, Faculty of Veterinary and Animal Sciences, Department of Veterinary and Animal Sciences, Rajshahi 6205, Bangladesh.
| | - Subir Sarker
- La Trobe University, School of Agriculture, Biomedicine and Environment, Department of Microbiology, Anatomy, Physiology and Pharmacology, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
6
|
Li T, Yang Y, Yan R, Lan P, Liu H, Fu Y, Hua X, Jiang Y, Zhou Z, Yu Y. Comparing Core-genome MLST with PFGE and MLST for cluster analysis of Carbapenem-resistant Acinetobacter baumannii. J Glob Antimicrob Resist 2022; 30:148-151. [PMID: 35732264 DOI: 10.1016/j.jgar.2022.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Carbapenem-resistant Acinetobacter baumannii (CRAB) is a prevalent pathogen contributing to hospital infections. Pulsed-field gel electrophoresis, multilocus sequence typing and core-genome MLST are frequently used methods to illuminate the nosocomial transmission of CRAB. In this study, we compared the discriminatory power of the three typing methods. METHODS Antimicrobial susceptibility tests were performed by the broth microdilution and Vitek2 methods. PFGE, MLST and cgMLST were conducted to determine the clonality and phylogenetic relationship of the strains. Whole-genome sequence data were acquired by an Illumina HiSeq 2000, and cgMLST was analysed by the Ridom SeqSphere+ v7.2.3 software. RESULTS A total of 149 carbapenem-resistant A. baumannii isolates had 15 different PFGE profiles (A-O type), and 73 of the isolates had related subtypes (A1 and A2) accounting for the majority of type A isolates. The maximum-likelihood phylogenetic analysis based on the cgMLST genes grouped the same PFGE clonal pattern A into 9 different clusters. ST_Pasteur grouped all the strains into ST2, whereas ST_Oxford grouped the PFGE clonal pattern A isolates into 6 STs. In addition, the gdhB allele in the ST_Oxford scheme had two copies in 5 strains, which complicated the ST_Oxford typing. CONCLUSIONS In conclusion, cgMLST was more discriminant than PFGE and MLST. CgMLST is the most suitable and comprehensive method for genotyping A. baumannii in surveillance and epidemiological research.
Collapse
Affiliation(s)
- Tingting Li
- Department of Cinical Laboratory, The First People's Hospital of Linhai, Taizhou, Zhejiang, 318000, China
| | - Yunxing Yang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Rushuang Yan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
7
|
Gunasekara AWACWR, Rajapaksha LGTG, Tung TL. Whole-genome sequence analysis through online web interfaces: a review. Genomics Inform 2022; 20:e3. [PMID: 35399002 PMCID: PMC9002002 DOI: 10.5808/gi.20038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/01/2022] [Indexed: 11/20/2022] Open
Abstract
The recent development of whole-genome sequencing technologies paved the way for understanding the genomes of microorganisms. Every whole-genome sequencing (WGS) project requires a considerable cost and a massive effort to address the questions at hand. The final step of WGS is data analysis. The analysis of whole-genome sequence is dependent on highly sophisticated bioinformatics tools that the research personal have to buy. However, many laboratories and research institutions do not have the bioinformatics capabilities to analyze the genomic data and therefore, are unable to take maximum advantage of whole-genome sequencing. In this aspect, this study provides a guide for research personals on a set of bioinformatics tools available online that can be used to analyze whole-genome sequence data of bacterial genomes. The web interfaces described here have many advantages and, in most cases exempting the need for costly analysis tools and intensive computing resources.
Collapse
Affiliation(s)
- A W A C W R Gunasekara
- Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University, Jeonju 54596, Korea
| | - L G T G Rajapaksha
- Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University, Jeonju 54596, Korea
| | - T L Tung
- Department of Botany, Dagon University, 11422 Yangon, Myanmar
| |
Collapse
|
8
|
Price TK, Realegeno S, Mirasol R, Tsan A, Chandrasekaran S, Garner OB, Yang S. Validation, Implementation, and Clinical Utility of Whole Genome Sequence-Based Bacterial Identification in the Clinical Microbiology Laboratory. J Mol Diagn 2021; 23:1468-1477. [PMID: 34384892 DOI: 10.1016/j.jmoldx.2021.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
The application of next-generation sequencing extends from microbial identification to epidemiologic insight and antimicrobial resistance prediction. Despite this potential, the roadblock for clinical laboratories lies in implementation and validation of such complex technology and data analysis. Here, we describe a validation study using whole-genome sequencing (WGS) for pan-bacterial identification (ID) in a clinical laboratory setting, and discuss the clinical relevance. A diverse set of 125 bacterial isolates, including a subset of isolates without genus (25) and/or species (10) ID, were analyzed by de novo assembly and reference genome mapping. The 16S rRNA, rpoB, and groEL genes were used for ID. Using WGS, 100% (89 of 89) and 89% (79 of 89) of isolates were identified to the genus and species levels, respectively. WGS also provided improved results for the majority of isolates (25 of 35) that were reported originally with genus-only or descriptive IDs. Chart review identified cases in which improved genus and/or species level ID by WGS may have had a positive impact on patient care. Reasons included the use of an ineffective antibiotic owing to unclear ID, use of antibiotics when not clinically indicated, and help with an outbreak investigation. The implementation of next-generation sequencing in a clinical microbiology setting is a challenging but necessary task. Our study provides a model for the validation and implementation of bacterial ID by WGS in such a setting.
Collapse
Affiliation(s)
- Travis K Price
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Susan Realegeno
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Ruel Mirasol
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Allison Tsan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Sukantha Chandrasekaran
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
9
|
Lau KA, Gonçalves da Silva A, Theis T, Gray J, Ballard SA, Rawlinson WD. Proficiency testing for bacterial whole genome sequencing in assuring the quality of microbiology diagnostics in clinical and public health laboratories. Pathology 2021; 53:902-911. [PMID: 34274166 DOI: 10.1016/j.pathol.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 10/20/2022]
Abstract
The adoption of whole genome sequencing (WGS) data over the past decade for pathogen surveillance, and decision-making for infectious diseases has rapidly transformed the landscape of clinical microbiology and public health. However, for successful transition to routine use of these techniques, it is crucial to ensure the WGS data generated meet defined quality standards for pathogen identification, typing, antimicrobial resistance detection and surveillance. Further, the ongoing development of these standards will ensure that the bioinformatic processes are capable of accurately identifying and characterising organisms of interest, and thereby facilitate the integration of WGS into routine clinical and public health laboratory setting. A pilot proficiency testing (PT) program for WGS of infectious agents was developed to facilitate widely applicable standardisation and benchmarking standards for WGS across a range of laboratories. The PT participating laboratories were required to generate WGS data from two bacterial isolates, and submit the raw data for independent bioinformatics analysis, as well as analyse the data with their own processes and answer relevant questions about the data. Overall, laboratories used a diverse range of bioinformatics tools and could generate and analyse high-quality data, either meeting or exceeding the minimum requirements. This pilot has provided valuable insight into the current state of genomics in clinical microbiology and public health laboratories across Australia. It will provide a baseline guide for the standardisation of WGS and enable the development of a PT program that allows an ongoing performance benchmark for accreditation of WGS-based test processes.
Collapse
Affiliation(s)
| | - Anders Gonçalves da Silva
- Communicable Diseases Genomics Network (CDGN), Public Health Laboratory Network (PHLN), Australia; Microbiological Diagnostic Unit Public Health Laboratory (MDU PHL), The University of Melbourne at The Peter Doherty Institute for Immunity and Infection, Melbourne, Vic, Australia
| | | | - Joanna Gray
- RCPAQAP Biosecurity, St Leonards, NSW, Australia
| | - Susan A Ballard
- Communicable Diseases Genomics Network (CDGN), Public Health Laboratory Network (PHLN), Australia; Microbiological Diagnostic Unit Public Health Laboratory (MDU PHL), The University of Melbourne at The Peter Doherty Institute for Immunity and Infection, Melbourne, Vic, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD) SEALS Microbiology, NSW Health Pathology, SOMS, BABS, Women's and Children's, University of NSW, Australia
| |
Collapse
|
10
|
In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J Clin Microbiol 2020; 58:JCM.01269-20. [PMID: 32669379 PMCID: PMC7512150 DOI: 10.1128/jcm.01269-20] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause in humans of urinary tract infection and bacteremia. The previously published web tool VirulenceFinder (http://cge.cbs.dtu.dk/services/VirulenceFinder/) uses whole-genome sequencing (WGS) data for in silico characterization of E. coli isolates and enables researchers and clinical health personnel to quickly extract and interpret virulence-relevant information from WGS data. In this study, 38 ExPEC-associated virulence genes were added to the existing E. coli VirulenceFinder database. In total, 14,441 alleles were downloaded. A total of 1,890 distinct alleles were added to the database after removal of redundant sequences and analysis of the remaining alleles for open reading frames (ORFs). The database now contains 139 genes-of which 44 are related to ExPEC-and 2,826 corresponding alleles. Construction of the database included validation against 27 primer pairs from previous studies, a search for serotype-specific P fimbriae papA alleles, and a BLASTn confirmation of seven genes (etsC, iucC, kpsE, neuC, sitA, tcpC, and terC) not covered by the primers. The augmented database was evaluated using (i) a panel of nine control strains and (ii) 288 human-source E. coli strains classified by PCR as ExPEC and non-ExPEC. We observed very high concordance (average, 93.4%) between PCR and WGS findings, but WGS identified more alleles. In conclusion, the addition of 38 ExPEC-associated genes and the associated alleles to the E. coli VirulenceFinder database allows for a more complete characterization of E. coli isolates based on WGS data, which has become increasingly important considering the plasticity of the E. coli genome.
Collapse
|
11
|
Detection of low-frequency resistance-mediating SNPs in next-generation sequencing data of Mycobacterium tuberculosis complex strains with binoSNP. Sci Rep 2020; 10:7874. [PMID: 32398743 PMCID: PMC7217866 DOI: 10.1038/s41598-020-64708-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Accurate drug resistance detection is key for guiding effective tuberculosis treatment. While genotypic resistance can be rapidly detected by molecular methods, their application is challenged by mixed mycobacterial populations comprising both susceptible and resistant cells (heteroresistance). For this, next-generation sequencing (NGS) based approaches promise the determination of variants even at low frequencies. However, accurate methods for a valid detection of low-frequency variants in NGS data are currently lacking. To tackle this problem, we developed the variant detection tool binoSNP which allows the determination of low-frequency single nucleotide polymorphisms (SNPs) in NGS datasets from Mycobacterium tuberculosis complex (MTBC) strains. By taking a reference-mapped file as input, binoSNP evaluates each genomic position of interest using a binomial test procedure. binoSNP was validated using in-silico, in-vitro, and serial patient isolates datasets comprising varying genomic coverage depths (100-500×) and SNP allele frequencies (1-30%). Overall, the detection limit for low-frequency SNPs depends on the combination of coverage depth and allele frequency of the resistance-associated mutation. binoSNP allows for valid detection of resistance associated SNPs at a 1% frequency with a coverage ≥400×. In conclusion, binoSNP provides a valid approach to detect low-frequency resistance-mediating SNPs in NGS data from clinical MTBC strains. It can be implemented in automated, end-user friendly analysis tools for NGS data and is a step forward towards individualized TB therapy.
Collapse
|
12
|
Bruce SA, Schiraldi NJ, Kamath PL, Easterday WR, Turner WC. A classification framework for Bacillus anthracis defined by global genomic structure. Evol Appl 2020; 13:935-944. [PMID: 32431744 PMCID: PMC7232756 DOI: 10.1111/eva.12911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is a considerable global health threat affecting wildlife, livestock, and the general public. In this study, whole-genome sequence analysis of over 350 B. anthracis isolates was used to establish a new high-resolution global genotyping framework that is both biogeographically informative and compatible with multiple genomic assays. The data presented in this study shed new light on the diverse global dissemination of this species and indicate that many lineages may be uniquely suited to the geographic regions in which they are found. In addition, we demonstrate that plasmid genomic structure for this species is largely consistent with chromosomal population structure, suggesting vertical inheritance in this bacterium has contributed to its evolutionary persistence. This classification methodology is the first based on population genomic structure for this species and has potential use for local and broader institutions seeking to understand both disease outbreak origins and recent introductions. In addition, we provide access to a newly developed genotyping script as well as the full whole-genome sequence analyses output for this study, allowing future studies to rapidly employ and append their data in the context of this global collection. This framework may act as a powerful tool for public health agencies, wildlife disease laboratories, and researchers seeking to utilize and expand this classification scheme for further investigations into B. anthracis evolution.
Collapse
Affiliation(s)
- Spencer A. Bruce
- Department of Biological SciencesUniversity at Albany – State University of New YorkAlbanyNYUSA
| | - Nicholas J. Schiraldi
- Department of Information Technology ServicesUniversity at Albany – State University of New YorkAlbanyNYUSA
| | | | - W. Ryan Easterday
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | - Wendy C. Turner
- Department of Biological SciencesUniversity at Albany – State University of New YorkAlbanyNYUSA
| |
Collapse
|
13
|
Robertson J, Lin J, Wren-Hedgus A, Arya G, Carrillo C, Nash JHE. Development of a multi-locus typing scheme for an Enterobacteriaceae linear plasmid that mediates inter-species transfer of flagella. PLoS One 2019; 14:e0218638. [PMID: 31738764 PMCID: PMC6860452 DOI: 10.1371/journal.pone.0218638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/01/2019] [Indexed: 11/29/2022] Open
Abstract
Due to the public health importance of flagellar genes for typing, it is important to understand mechanisms that could alter their expression or presence. Phenotypic novelty in flagellar genes arise predominately through accumulation of mutations but horizontal transfer is known to occur. A linear plasmid termed pBSSB1 previously identified in Salmonella Typhi, was found to encode a flagellar operon that can mediate phase variation, which results in the rare z66 flagella phenotype. The identification and tracking of homologs of pBSSB1 is limited because it falls outside the normal replicon typing schemes for plasmids. Here we report the generation of nine new pBSSB1-family sequences using Illumina and Nanopore sequence data. Homologs of pBSSB1 were identified in 154 genomes representing 25 distinct serotypes from 67,758 Salmonella public genomes. Pangenome analysis of pBSSB1-family contigs was performed using roary and we identified three core genes amenable to a minimal pMLST scheme. Population structure analysis based on the newly developed pMLST scheme identified three major lineages representing 35 sequence types, and the distribution of these sequence types was found to span multiple serovars across the globe. This in silico pMLST scheme has shown utility in tracking and subtyping pBSSB1-family plasmids and it has been incorporated into the plasmid MLST database under the name “pBSSB1-family”.
Collapse
Affiliation(s)
- James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Janet Lin
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Amie Wren-Hedgus
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Gitanjali Arya
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Catherine Carrillo
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - John H. E. Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Hallmaier-Wacker LK, Lüert S, Gronow S, Spröer C, Overmann J, Buller N, Vaughan-Higgins RJ, Knauf S. A Metataxonomic Tool to Investigate the Diversity of Treponema. Front Microbiol 2019; 10:2094. [PMID: 31552004 PMCID: PMC6746968 DOI: 10.3389/fmicb.2019.02094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
The genus Treponema contains a number of human and animal pathogenic as well as symbiotic bacteria that are found in vastly different anatomical and environmental habitats. Our understanding of the species range, evolution, and biology of these important bacteria is still limited. To explore the diversity of treponemes, we established, validated, and tested a novel metataxonomic approach. As the informative nature of the hypervariable regions of the 16S rRNA gene differ, we first analyzed each variable region independently. Considering the in silico results obtained, we established and validated the sequencing of the V4-region of the 16S rRNA gene using known mixtures of Treponema species as well as a selected number of clinical samples. The metataxonomic approach was able to identify Treponema to a near-species level. We demonstrate that using a spirochete-specific enrichment, our method is applicable to complex microbial communities and large variety of biological samples. The metataxonomic approach described provides a useful method to unravel the full diversity and range of Treponema in various ecosystems.
Collapse
Affiliation(s)
- Luisa K Hallmaier-Wacker
- Neglected Tropical Diseases Work Group, Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Simone Lüert
- Neglected Tropical Diseases Work Group, Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Nicky Buller
- Animal Pathology - Bacteriology Laboratory, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Rebecca J Vaughan-Higgins
- Department of Conservation Medicine, College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Sascha Knauf
- Neglected Tropical Diseases Work Group, Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
15
|
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ. FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infect Dis 2019; 5:1279-1294. [PMID: 31268666 DOI: 10.1021/acsinfecdis.9b00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.
Collapse
|
16
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
18
|
Gideskog M, Melhus Å. Outbreak of Methicillin‐resistant Staphylococcus aureus in a Hospital Center for Children's and Women's Health in a Swedish County. APMIS 2019; 127:181-186. [DOI: 10.1111/apm.12929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Gideskog
- Department of Infection Control and Hygiene Linköping University Hospital Linköping Sweden
| | - Åsa Melhus
- Department of Infection Control and Hygiene Linköping University Hospital Linköping Sweden
- Department of Medical Sciences/Section of Clinical Microbiology Uppsala University Hospital Uppsala Sweden
| |
Collapse
|
19
|
Timme RE, Rand H, Sanchez Leon M, Hoffmann M, Strain E, Allard M, Roberson D, Baugher JD. GenomeTrakr proficiency testing for foodborne pathogen surveillance: an exercise from 2015. Microb Genom 2018; 4. [PMID: 29906258 PMCID: PMC6113870 DOI: 10.1099/mgen.0.000185] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathogen monitoring is becoming more precise as sequencing technologies become more affordable and accessible worldwide. This transition is especially apparent in the field of food safety, which has demonstrated how whole-genome sequencing (WGS) can be used on a global scale to protect public health. GenomeTrakr coordinates the WGS performed by public-health agencies and other partners by providing a public database with real-time cluster analysis for foodborne pathogen surveillance. Because WGS is being used to support enforcement decisions, it is essential to have confidence in the quality of the data being used and the downstream data analyses that guide these decisions. Routine proficiency tests, such as the one described here, have an important role in ensuring the validity of both data and procedures. In 2015, the GenomeTrakr proficiency test distributed eight isolates of common foodborne pathogens to participating laboratories, who were required to follow a specific protocol for performing WGS. Resulting sequence data were evaluated for several metrics, including proper labelling, sequence quality and new single nucleotide polymorphisms (SNPs). Illumina MiSeq sequence data collected for the same set of strains across 21 different laboratories exhibited high reproducibility, while revealing a narrow range of technical and biological variance. The numbers of SNPs reported for sequencing runs of the same isolates across multiple laboratories support the robustness of our cluster analysis pipeline in that each individual isolate cultured and resequenced multiple times in multiple places are all easily identifiable as originating from the same source.
Collapse
Affiliation(s)
- Ruth E Timme
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Maria Sanchez Leon
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Errol Strain
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Dwayne Roberson
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Joseph D Baugher
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
20
|
Kaptive Web: User-Friendly Capsule and Lipopolysaccharide Serotype Prediction for Klebsiella Genomes. J Clin Microbiol 2018; 56:JCM.00197-18. [PMID: 29618504 PMCID: PMC5971559 DOI: 10.1128/jcm.00197-18] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022] Open
Abstract
As whole-genome sequencing becomes an established component of the microbiologist's toolbox, it is imperative that researchers, clinical microbiologists, and public health professionals have access to genomic analysis tools for the rapid extraction of epidemiologically and clinically relevant information. For the Gram-negative hospital pathogens such as Klebsiella pneumoniae, initial efforts have focused on the detection and surveillance of antimicrobial resistance genes and clones. However, with the resurgence of interest in alternative infection control strategies targeting Klebsiella surface polysaccharides, the ability to extract information about these antigens is increasingly important. Here we present Kaptive Web, an online tool for the rapid typing of Klebsiella K and O loci, which encode the polysaccharide capsule and lipopolysaccharide O antigen, respectively. Kaptive Web enables users to upload and analyze genome assemblies in a web browser. The results can be downloaded in tabular format or explored in detail via the graphical interface, making it accessible for users at all levels of computational expertise. We demonstrate Kaptive Web's utility by analyzing >500 K. pneumoniae genomes. We identify extensive K and O locus diversity among 201 genomes belonging to the carbapenemase-associated clonal group 258 (25 K and 6 O loci). The characterization of a further 309 genomes indicated that such diversity is common among the multidrug-resistant clones and that these loci represent useful epidemiological markers for strain subtyping. These findings reinforce the need for rapid, reliable, and accessible typing methods such as Kaptive Web. Kaptive Web is available for use at http://kaptive.holtlab.net/, and the source code is available at https://github.com/kelwyres/Kaptive-Web.
Collapse
|
21
|
Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infect 2018; 25:82-86. [PMID: 29653190 DOI: 10.1016/j.cmi.2018.03.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Culture-based assays are currently the reference standard for drug susceptibility testing for Mycobacterium tuberculosis. They provide good sensitivity and specificity but are time consuming. The objective of this study was to evaluate whether whole genome sequencing (WGS), combined with software tools for data analysis, can replace routine culture-based assays for drug susceptibility testing of M. tuberculosis. METHODS M. tuberculosis cultures sent to the Finnish mycobacterial reference laboratory in 2014 (n = 211) were phenotypically tested by Mycobacteria Growth Indicator Tube (MGIT) for first-line drug susceptibilities. WGS was performed for all isolates using the Illumina MiSeq system, and data were analysed using five software tools (PhyResSE, Mykrobe Predictor, TB Profiler, TGS-TB and KvarQ). Diagnostic time and reagent costs were estimated for both methods. RESULTS The sensitivity of the five software tools to predict any resistance among strains was almost identical, ranging from 74% to 80%, and specificity was more than 95% for all software tools except for TGS-TB. The sensitivity and specificity to predict resistance to individual drugs varied considerably among the software tools. Reagent costs for MGIT and WGS were €26 and €143 per isolate respectively. Turnaround time for MGIT was 19 days (range 10-50 days) for first-line drugs, and turnaround time for WGS was estimated to be 5 days (range 3-7 days). CONCLUSIONS WGS could be used as a prescreening assay for drug susceptibility testing with confirmation of resistant strains by MGIT. The functionality and ease of use of the software tools need to be improved.
Collapse
|
22
|
Lohr B, Fingerle V, Norris DE, Hunfeld KP. Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives. Crit Rev Clin Lab Sci 2018; 55:219-245. [PMID: 29606016 DOI: 10.1080/10408363.2018.1450353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review is directed at physicians and laboratory personnel in private practice and clinics who treat and diagnose Lyme borreliosis (LB) in patients as part of their daily work. A major objective of this paper is to bring together background information on Borrelia (B.) burgdorferi sensu lato (s.l.) and basic clinical knowledge of LB, which is one of the most frequently reported vector-borne diseases in the Northern Hemisphere. The goal is to provide practical guidance for clinicians and for laboratory physicians, and scientists for a better understanding of current achievements and ongoing obstacles in the laboratory diagnosis of LB, an infectious disease that still remains one of the diagnostic chameleons of modern clinical medicine. Moreover, in bringing together current scientific information from guidelines, reviews, and original papers, this review provides recommendations for selecting the appropriate tests in relation to the patient's stage of disease to achieve effective, stage-related application of current direct and indirect laboratory methods for the detection of B. burgdorferi s.l. Additionally, the review aims to discuss the current state of the art concerning the diagnostic potential and limitations of the assays and test methods currently in use to optimize LB patient management and provide insight into the possible future prospects of this rapidly changing area of laboratory medicine.
Collapse
Affiliation(s)
- Benedikt Lohr
- a Institute for Laboratory Medicine, Microbiology & Infection Control , Northwest Medical Centre, Medical Faculty, Goethe University , Frankfurt/Main , Germany
| | - Volker Fingerle
- b Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) , Oberschleissheim , Germany
| | - Douglas E Norris
- c W. Harry Feinstone Department of Molecular Microbiology & Immunology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Klaus-Peter Hunfeld
- a Institute for Laboratory Medicine, Microbiology & Infection Control , Northwest Medical Centre, Medical Faculty, Goethe University , Frankfurt/Main , Germany
| |
Collapse
|
23
|
Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes – The way towards global harmonisation and data exchange. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Saltykova A, Wuyts V, Mattheus W, Bertrand S, Roosens NHC, Marchal K, De Keersmaecker SCJ. Comparison of SNP-based subtyping workflows for bacterial isolates using WGS data, applied to Salmonella enterica serotype Typhimurium and serotype 1,4,[5],12:i:. PLoS One 2018; 13:e0192504. [PMID: 29408896 PMCID: PMC5800660 DOI: 10.1371/journal.pone.0192504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/24/2018] [Indexed: 12/05/2022] Open
Abstract
Whole genome sequencing represents a promising new technology for subtyping of bacterial pathogens. Besides the technological advances which have pushed the approach forward, the last years have been marked by considerable evolution of the whole genome sequencing data analysis methods. Prior to application of the technology as a routine epidemiological typing tool, however, reliable and efficient data analysis strategies need to be identified among the wide variety of the emerged methodologies. In this work, we have compared three existing SNP-based subtyping workflows using a benchmark dataset of 32 Salmonella enterica subsp. enterica serovar Typhimurium and serovar 1,4,[5],12:i:- isolates including five isolates from a confirmed outbreak and three isolates obtained from the same patient at different time points. The analysis was carried out using the original (high-coverage) and a down-sampled (low-coverage) datasets and two different reference genomes. All three tested workflows, namely CSI Phylogeny-based workflow, CFSAN-based workflow and PHEnix-based workflow, were able to correctly group the confirmed outbreak isolates and isolates from the same patient with all combinations of reference genomes and datasets. However, the workflows differed strongly with respect to the SNP distances between isolates and sensitivity towards sequencing coverage, which could be linked to the specific data analysis strategies used therein. To demonstrate the effect of particular data analysis steps, several modifications of the existing workflows were also tested. This allowed us to propose data analysis schemes most suitable for routine SNP-based subtyping applied to S. Typhimurium and S. 1,4,[5],12:i:-. Results presented in this study illustrate the importance of using correct data analysis strategies and to define benchmark and fine-tune parameters applied within routine data analysis pipelines to obtain optimal results.
Collapse
Affiliation(s)
- Assia Saltykova
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | - Véronique Wuyts
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium
| | - Wesley Mattheus
- Bacterial Diseases Division, Communicable and Infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Sophie Bertrand
- Bacterial Diseases Division, Communicable and Infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Nancy H. C. Roosens
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB, Ghent, Belgium
- University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
25
|
Higgins PG, Prior K, Harmsen D, Seifert H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS One 2017; 12:e0179228. [PMID: 28594944 PMCID: PMC5464626 DOI: 10.1371/journal.pone.0179228] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
We have employed whole genome sequencing to define and evaluate a core genome multilocus sequence typing (cgMLST) scheme for Acinetobacter baumannii. To define a core genome we downloaded a total of 1,573 putative A. baumannii genomes from NCBI as well as representative isolates belonging to the eight previously described international A. baumannii clonal lineages. The core genome was then employed against a total of fifty-three carbapenem-resistant A. baumannii isolates that were previously typed by PFGE and linked to hospital outbreaks in eight German cities. We defined a core genome of 2,390 genes of which an average 98.4% were called successfully from 1,339 A. baumannii genomes, while Acinetobacter nosocomialis, Acinetobacter pittii, and Acinetobacter calcoaceticus resulted in 71.2%, 33.3%, and 23.2% good targets, respectively. When tested against the previously identified outbreak strains, we found good correlation between PFGE and cgMLST clustering, with 0–8 allelic differences within a pulsotype, and 40–2,166 differences between pulsotypes. The highest number of allelic differences was between the isolates representing the international clones. This typing scheme was highly discriminatory and identified separate A. baumannii outbreaks. Moreover, because a standardised cgMLST nomenclature is used, the system will allow inter-laboratory exchange of data.
Collapse
Affiliation(s)
- Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- * E-mail:
| | - Karola Prior
- Department for Periodontology and Restorative Dentistry, University Hospital Muenster, Muenster, Germany
| | - Dag Harmsen
- Department for Periodontology and Restorative Dentistry, University Hospital Muenster, Muenster, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
26
|
Validation and Implementation of Clinical Laboratory Improvements Act-Compliant Whole-Genome Sequencing in the Public Health Microbiology Laboratory. J Clin Microbiol 2017; 55:2502-2520. [PMID: 28592550 PMCID: PMC5527429 DOI: 10.1128/jcm.00361-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/26/2017] [Indexed: 11/24/2022] Open
Abstract
Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits.
Collapse
|
27
|
Abrams AJ, Trees DL. Genomic sequencing of Neisseria gonorrhoeae to respond to the urgent threat of antimicrobial-resistant gonorrhea. Pathog Dis 2017; 75:3106325. [PMID: 28387837 PMCID: PMC6956991 DOI: 10.1093/femspd/ftx041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2017] [Indexed: 01/02/2023] Open
Abstract
The development of resistance of Neisseria gonorrhoeae to available first-line antibiotics, including penicillins, tetracyclines, fluoroquinolones and cephalosporins, has led to the circulation of multidrug-resistant gonorrhea at a global scale. Advancements in high-throughput whole-genome sequencing (WGS) provide useful tools that can be used to enhance gonococcal detection, treatment and management capabilities, which will ultimately aid in the control of antimicrobial resistant gonorrhea worldwide. In this minireview, we discuss the application of WGS of N. gonorrhoeae to strain typing, phylogenomic, molecular surveillance and transmission studies. We also examine the application of WGS analyses to the public health sector as well as the potential usage of WGS-based transcriptomic and epigenetic methods to identify novel gonococcal resistance mechanisms.
Collapse
Affiliation(s)
- A. Jeanine Abrams
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA 30333, USA
| | - David L. Trees
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA 30333, USA
| |
Collapse
|
28
|
Schleusener V, Köser CU, Beckert P, Niemann S, Feuerriegel S. Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Sci Rep 2017; 7:46327. [PMID: 28425484 PMCID: PMC7365310 DOI: 10.1038/srep46327] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
Whole-genome sequencing (WGS) has the potential to accelerate drug-susceptibility testing (DST) to design appropriate regimens for drug-resistant tuberculosis (TB). Several recently developed automated software tools promise to standardize the analysis and interpretation of WGS data. We assessed five tools (CASTB, KvarQ, Mykrobe Predictor TB, PhyResSE, and TBProfiler) with regards to DST and phylogenetic lineage classification, which we compared with phenotypic DST, Sanger sequencing, and traditional typing results for a collection of 91 strains. The lineage classifications by the tools generally only differed in the resolution of the results. However, some strains could not be classified at all and one strain was misclassified. The sensitivities and specificities for isoniazid and rifampicin resistance of the tools were high, whereas the results for ethambutol, pyrazinamide, and streptomycin resistance were more variable. False-susceptible DST results were mainly due to missing mutations in the resistance catalogues that the respective tools employed for data interpretation. Notably, we also found cases of false-resistance because of the misclassification of polymorphisms as resistance mutations. In conclusion, the performance of current WGS analysis tools for DST is highly variable. Sustainable business models and a shared, high-quality catalogue of resistance mutations are needed to ensure the clinical utility of these tools.
Collapse
Affiliation(s)
- Viola Schleusener
- Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany
| | - Claudio U. Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Beckert
- Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel Site, Borstel Germany
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel Site, Borstel Germany
| | - Silke Feuerriegel
- Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel Site, Borstel Germany
| |
Collapse
|
29
|
Zhang Q, Jun SR, Leuze M, Ussery D, Nookaew I. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer. Sci Rep 2017; 7:40712. [PMID: 28102365 PMCID: PMC5244389 DOI: 10.1038/srep40712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
Abstract
The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral "tree of life". However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.
Collapse
Affiliation(s)
- Qian Zhang
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
| | - Se-Ran Jun
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael Leuze
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, TN 37831, USA
- Computational Biomolecular Modeling and Bioinformatics Group, Computer Science and Mathematics Division, Oak Ridge National Laboratories, Oak Ridge, TN 37831, USA
| | - David Ussery
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Intawat Nookaew
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
30
|
Guthrie JL, Gardy JL. A brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis. Ann N Y Acad Sci 2016; 1388:59-77. [PMID: 28009051 DOI: 10.1111/nyas.13273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Genomics is now firmly established as a technique for the investigation and reconstruction of communicable disease outbreaks, with many genomic epidemiology studies focusing on revealing transmission routes of Mycobacterium tuberculosis. In this primer, we introduce the basic techniques underlying transmission inference from genomic data, using illustrative examples from M. tuberculosis and other pathogens routinely sequenced by public health agencies. We describe the laboratory and epidemiological scenarios under which genomics may or may not be used, provide an introduction to sequencing technologies and bioinformatics approaches to identifying transmission-informative variation and resistance-associated mutations, and discuss how variation must be considered in the light of available clinical and epidemiological information to infer transmission.
Collapse
Affiliation(s)
- Jennifer L Guthrie
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer L Gardy
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.,Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Abstract
INTRODUCTION Current laboratory testing of Lyme borreliosis mostly relies on serological methods with known limitations. Diagnostic modalities enabling direct detection of pathogen at the onset of the clinical signs could overcome some of the limitations. Molecular methods detecting borrelial DNA seem to be the ideal solution, although there are some aspects that need to be considered. Areas covered: This review represent summary and discussion of the published data obtained from literature searches from PubMed and The National Library of Medicine (USA) together with our own experience on molecular diagnosis of Lyme disease. Expert commentary: Molecular methods are promising and currently serve as supporting diagnostic testing in Lyme borreliosis. Since the field of molecular diagnostics is under rapid development, molecular testing could become an important diagnostic modality.
Collapse
Affiliation(s)
- Eva Ružić-Sabljić
- a Institute of Microbiology ansd Immunology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Tjaša Cerar
- a Institute of Microbiology ansd Immunology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
32
|
Leyens L, Reumann M, Malats N, Brand A. Use of big data for drug development and for public and personal health and care. Genet Epidemiol 2016; 41:51-60. [DOI: 10.1002/gepi.22012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 07/27/2016] [Accepted: 09/21/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Lada Leyens
- Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT); Maastricht University; Maastricht the Netherlands
| | - Matthias Reumann
- Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT); Maastricht University; Maastricht the Netherlands
- IBM Research - Zurich Laboratory; Rüschlikon Switzerland
| | - Nuria Malats
- Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid Spain
| | - Angela Brand
- Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT); Maastricht University; Maastricht the Netherlands
- Faculty of Health, Medicine and Life Sciences; Maastricht University; Maastricht the Netherlands
| |
Collapse
|
33
|
Abstract
The number of large-scale genomics projects is increasing due to the availability of affordable high-throughput sequencing (HTS) technologies. The use of HTS for bacterial infectious disease research is attractive because one whole-genome sequencing (WGS) run can replace multiple assays for bacterial typing, molecular epidemiology investigations, and more in-depth pathogenomic studies. The computational resources and bioinformatics expertise required to accommodate and analyze the large amounts of data pose new challenges for researchers embarking on genomics projects for the first time. Here, we present a comprehensive overview of a bacterial genomics projects from beginning to end, with a particular focus on the planning and computational requirements for HTS data, and provide a general understanding of the analytical concepts to develop a workflow that will meet the objectives and goals of HTS projects.
Collapse
|
34
|
Thomsen MCF, Ahrenfeldt J, Cisneros JLB, Jurtz V, Larsen MV, Hasman H, Aarestrup FM, Lund O. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance. PLoS One 2016; 11:e0157718. [PMID: 27327771 PMCID: PMC4915688 DOI: 10.1371/journal.pone.0157718] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/05/2016] [Indexed: 11/18/2022] Open
Abstract
Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available.
Collapse
Affiliation(s)
| | - Johanne Ahrenfeldt
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800 Kgs. Lyngby, Denmark
| | - Jose Luis Bellod Cisneros
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800 Kgs. Lyngby, Denmark
| | - Vanessa Jurtz
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800 Kgs. Lyngby, Denmark
| | - Mette Voldby Larsen
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800 Kgs. Lyngby, Denmark
| | - Henrik Hasman
- National Food Institute, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Frank Møller Aarestrup
- National Food Institute, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ole Lund
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Leinweber K, Müller S, G Kroth P. A semi-automated, KNIME-based workflow for biofilm assays. BMC Microbiol 2016; 16:61. [PMID: 27052509 PMCID: PMC4823873 DOI: 10.1186/s12866-016-0676-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/21/2016] [Indexed: 01/08/2023] Open
Abstract
Background A current focus of biofilm research is the chemical interaction between microorganisms within the biofilms. Prerequisites for this research are bioassay systems which integrate reliable tools for the planning of experiments with robot-assisted measurements and with rapid data processing. Here, data structures that are both human- and machine readable may be particularly useful. Results In this report, we present several simplification and robotisation options for an assay of bacteria-induced biofilm formation by the freshwater diatom Achnanthidium minutissimum. We also tested several proof-of-concept robotisation methods for pipetting, as well as for measuring the biofilm absorbance directly in the multi-well plates. Furthermore, we exemplify the implementation of an improved data processing workflow for this assay using the Konstanz Information Miner (KNIME), a free and open source data analysis environment. The workflow integrates experiment planning files and absorbance read-out data, towards their automated processing for analysis. Conclusions Our workflow lead to a substantial reduction of the measurement and data processing workload, while still reproducing previously obtained results in the A. minutissimum biofilm assay. The methods, scripts and files we designed are described here, offering adaptable options for other medium-throughput biofilm screenings. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0676-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin Leinweber
- Zukunftskolleg, Universitätsstraße 10, Postbox 216, Konstanz, 78457, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstraße 10, Postbox 630, Konstanz, 78457, Germany. .,Department of Biology, University of Konstanz, Universitätsstraße 10, Postbox 611, Konstanz, 78457, Germany.
| | - Silke Müller
- Screening Center Konstanz, Universitätsstraße 10, Screening Facility, Konstanz, 78457, Germany
| | - Peter G Kroth
- Department of Biology, University of Konstanz, Universitätsstraße 10, Postbox 611, Konstanz, 78457, Germany
| |
Collapse
|
36
|
Abstract
Borrelia burgdorferisensu lato is the causative agent of Lyme borreliosis, multisystem disorder characterized by a wide spectrum of clinical manifestations. Different borrelia species can lead to distinct clinical presentations, but some species were associated with defined clinical manifestation likeBorrelia afzeliiwith skin manifestations,Borrelia gariniiwith central nervous system disorders andBorrelia burgdorferisensu stricto with Lyme arthritis.Ixodesticks represent the main vectors ofB. burgdorferisensu lato; wild animals, lizards and birds are the natural reservoir of borrelia. Genotyping of borrelia strains is of great importance for epidemiological, clinical, and evolutionary studies. Numerous methods are available for the genotyping ofB. burgdorferisensu lato based either on whole genome or PCR based typing. Typing methods differ in their approach and target, many of them were implemented more or less successfully for diagnostic purposes.
Collapse
|
37
|
Punina NV, Makridakis NM, Remnev MA, Topunov AF. Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 2015; 9:19. [PMID: 26243131 PMCID: PMC4525730 DOI: 10.1186/s40246-015-0037-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/03/2015] [Indexed: 01/07/2023] Open
Abstract
During the past two decades, the technological progress of whole-genome sequencing (WGS) had changed the fields of Environmental Microbiology and Biotechnology, and, currently, is changing the underlying principles, approaches, and fundamentals of Public Health, Epidemiology, Health Economics, and national productivity. Today’s WGS technologies are able to compete with conventional techniques in cost, speed, accuracy, and resolution for day-to-day control of infectious diseases and outbreaks in clinical laboratories and in long-term epidemiological investigations. WGS gives rise to an exciting future direction for personalized Genomic Epidemiology. One of the most vital and growing public health problems is the emerging and re-emerging of multidrug-resistant (MDR) bacterial infections in the communities and healthcare settings, reinforced by a decline in antimicrobial drug discovery. In recent years, retrospective analysis provided by WGS has had a great impact on the identification and tracking of MDR microorganisms in hospitals and communities. The obtained genomic data are also important for developing novel easy-to-use diagnostic assays for clinics, as well as for antibiotic and therapeutic development at both the personal and population levels. At present, this technology has been successfully applied as an addendum to the real-time diagnostic methods currently used in clinical laboratories. However, the significance of WGS for public health may increase if: (a) unified and user-friendly bioinformatics toolsets for easy data interpretation and management are established, and (b) standards for data validation and verification are developed. Herein, we review the current and future impact of this technology on diagnosis, prevention, treatment, and control of MDR infectious bacteria in clinics and on the global scale.
Collapse
Affiliation(s)
- N V Punina
- Bach Institute of Biochemistry, Russian Academy of Science, Moscow, 119071, Russia.
| | - N M Makridakis
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - M A Remnev
- The Federal State Unitary Enterprise All-Russia Research Institute of Automatics, Moscow, 127055, Russia
| | - A F Topunov
- Bach Institute of Biochemistry, Russian Academy of Science, Moscow, 119071, Russia
| |
Collapse
|
38
|
Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J Clin Microbiol 2015; 53:2410-26. [PMID: 25972421 PMCID: PMC4508402 DOI: 10.1128/jcm.00008-15] [Citation(s) in RCA: 629] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
Accurate and rapid typing of pathogens is essential for effective surveillance and outbreak detection. Conventional serotyping of Escherichia coli is a delicate, laborious, time-consuming, and expensive procedure. With whole-genome sequencing (WGS) becoming cheaper, it has vast potential in routine typing and surveillance. The aim of this study was to establish a valid and publicly available tool for WGS-based in silico serotyping of E. coli applicable for routine typing and surveillance. A FASTA database of specific O-antigen processing system genes for O typing and flagellin genes for H typing was created as a component of the publicly available Web tools hosted by the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org). All E. coli isolates available with WGS data and conventional serotype information were subjected to WGS-based serotyping employing this specific SerotypeFinder CGE tool. SerotypeFinder was evaluated on 682 E. coli genomes, 108 of which were sequenced for this study, where both the whole genome and the serotype were available. In total, 601 and 509 isolates were included for O and H typing, respectively. The O-antigen genes wzx, wzy, wzm, and wzt and the flagellin genes fliC, flkA, fllA, flmA, and flnA were detected in 569 and 508 genome sequences, respectively. SerotypeFinder for WGS-based O and H typing predicted 560 of 569 O types and 504 of 508 H types, consistent with conventional serotyping. In combination with other available WGS typing tools, E. coli serotyping can be performed solely from WGS data, providing faster and cheaper typing than current routine procedures and making WGS typing a superior alternative to conventional typing strategies.
Collapse
Affiliation(s)
- Katrine G Joensen
- National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Kgs. Lyngby, Denmark WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Anna M M Tetzschner
- WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Frank M Aarestrup
- National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Flemming Scheutz
- WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
39
|
PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data. J Clin Microbiol 2015; 53:1908-14. [PMID: 25854485 DOI: 10.1128/jcm.00025-15] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant tuberculosis poses a global threat, causing the deaths of hundreds of thousands of people annually. While whole-genome sequencing (WGS), with its unprecedented level of detail, promises to play an increasingly important role in diagnosis, data analysis is a daunting challenge. Here, we present a simple-to-use web service (free for academic use at http://phyresse.org). Delineating both lineage and resistance, it provides state-of-the-art methodology to life scientists and physicians untrained in bioinformatics. It combines elaborate data processing and quality control, as befits human diagnostics, with a treasure trove of validated resistance data collected from well-characterized samples in-house and worldwide.
Collapse
|
40
|
Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities. BMC Infect Dis 2015; 15:174. [PMID: 25887164 PMCID: PMC4392855 DOI: 10.1186/s12879-015-0902-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/13/2015] [Indexed: 11/10/2022] Open
Abstract
The advent of next-generation sequencing (NGS) has revolutionised public health microbiology. Given the potential impact of NGS, it is paramount to ensure standardisation of 'wet' laboratory and bioinformatic protocols and promote comparability of methods employed by different laboratories and their outputs. Therefore, one of the ambitious goals of the Global Microbial Identifier (GMI) initiative (http://www.globalmicrobialidentifier.org/) has been to establish a mechanism for inter-laboratory NGS proficiency testing (PT). This report presents findings from the survey recently conducted by Working Group 4 among GMI members in order to ascertain NGS end-use requirements and attitudes towards NGS PT. The survey identified the high professional diversity of laboratories engaged in NGS-based public health projects and the wide range of capabilities within institutions, at a notable range of costs. The priority pathogens reported by respondents reflected the key drivers for NGS use (high burden disease and 'high profile' pathogens). The performance of and participation in PT was perceived as important by most respondents. The wide range of sequencing and bioinformatics practices reported by end-users highlights the importance of standardisation and harmonisation of NGS in public health and underpins the use of PT as a means to assuring quality. The findings of this survey will guide the design of the GMI PT program in relation to the spectrum of pathogens included, testing frequency and volume as well as technical requirements. The PT program for external quality assurance will evolve and inform the introduction of NGS into clinical and public health microbiology practice in the post-genomic era.
Collapse
|
41
|
Draft Genome Sequence of the First Isolate of Extensively Drug-Resistant Mycobacterium tuberculosis in Ireland. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01002-14. [PMID: 25301651 PMCID: PMC4192383 DOI: 10.1128/genomea.01002-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive drug resistance is an emerging threat to the control of tuberculosis (TB) worldwide, even in countries with low TB incidence. We report the draft whole-genome sequence of the first reported extensively drug-resistant TB (XDR-TB) strain isolated in Ireland (a low-incidence setting) and describe a number of single-nucleotide variations that correlate with its XDR phenotype.
Collapse
|
42
|
Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 2014; 30:401-7. [PMID: 25096945 PMCID: PMC4156311 DOI: 10.1016/j.tig.2014.07.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Following recent improvements in sequencing technologies, whole-genome sequencing (WGS) is positioned to become an essential tool in the control of antibiotic resistance, a major threat in modern healthcare. WGS has already found numerous applications in this area, ranging from the development of novel antibiotics and diagnostic tests through to antibiotic stewardship of currently available drugs via surveillance and the elucidation of the factors that allow the emergence and persistence of resistance. Numerous proof-of-principle studies have also highlighted the value of WGS as a tool for day-to-day infection control and, for some pathogens, as a primary diagnostic tool to detect antibiotic resistance. However, appropriate data analysis platforms will need to be developed before routine WGS can be introduced on a large scale.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Matthew J Ellington
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK; Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK; Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|