1
|
Mohammadi Y, Ranjbaran J, Mamashli M, Marzuni HZ, Dashtgard A, Mohsenizadeh SM. Investigating the effects of the Omicron variant of COVID-19 on sperm parameters and serum levels of male sexual hormones: Prospective observational study. New Microbes New Infect 2024; 60-61:101432. [PMID: 38800713 PMCID: PMC11126988 DOI: 10.1016/j.nmni.2024.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background With the progress and prevalence of COVID-19, concerns have arisen regarding its impact on men's sexual health. Therefore, this study was conducted with the aim of examining the effects of COVID-19 on serum levels of sex hormones and semen. Methods Sixty participants who met the study inclusion criteria enrolled in this study between January and April 2022. The individuals were divided into three groups (n = 20): healthy, COVID-19 positive, and recovered from COVID-19. Blood and semen samples were collected from the participants. Serum levels of sex hormones and semen were evaluated both macroscopically and microscopically. Results Our study results showed that the most common symptoms observed in the COVID-19 group were cough (100 %), fever (100 %), fatigue (95 %), and runny nose (90 %). Serum levels of sex hormones (testosterone, FSH, and prolactin) in the COVID-19 group were significantly decreased compared to the healthy group. Microscopic examination of semen revealed significant differences in vitality, progressive, and motile parameters among the three groups, with a decrease observed in the COVID-19 group. Conclusion These results indicate that COVID-19 may have a negative impact on men's sexual health, potentially affecting hormone production and sperm quality. Further research is needed to determine the long-term effects of COVID-19 on male fertility and to explore potential treatment options.
Collapse
Affiliation(s)
- Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbaran
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Mamashli
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hadi Zare Marzuni
- Department of Nursing, Qaen School of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Dashtgard
- Department of Nursing, Qaen School of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Mostafa Mohsenizadeh
- Department of Nursing, Qaen School of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
2
|
Immune outcomes of Zika virus infection in nonhuman primates. Sci Rep 2020; 10:13069. [PMID: 32747639 PMCID: PMC7400481 DOI: 10.1038/s41598-020-69978-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
Although the Zika virus (ZIKV) epidemic is subsiding, immune responses that are important for controlling acute infection have not been definitively characterized. Nonhuman primate (NHP) models were rapidly developed to understand the disease and to test vaccines, and these models have since provided an understanding of the immune responses that correlate with protection during natural infection and vaccination. Here, we infected a small group of male rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques with a minimally passaged Brazilian ZIKV isolate and used multicolor flow cytometry and transcriptional profiling to describe early immune patterns following infection. We found evidence of strong innate antiviral responses together with induction of neutralizing antibodies and T cell responses. We also assessed the relative importance of CD8 T cells in controlling infection by carrying out CD8 T cell depletion in an additional two animals of each species. CD8 depletion appeared to dysregulate early antiviral responses and possibly increase viral persistence, but the absence of CD8 T cells ultimately did not impair control of the virus. Together, these data describe immunological trends in two NHP species during acute ZIKV infection, providing an account of early responses that may be important in controlling infection.
Collapse
|
3
|
Vishvkarma R, Rajender S. Could SARS-CoV-2 affect male fertility? Andrologia 2020; 52:e13712. [PMID: 32578263 PMCID: PMC7361071 DOI: 10.1111/and.13712] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
We performed this systematic review to evaluate the possibility of an impact of SARS-CoV-2 infection on male fertility. SARS-CoV-2 enters the cells with the help of ACE2; therefore, testicular expression of ACE2 was analysed from transcriptome sequencing studies and our unpublished data. Literature suggested that SARS-CoV-1 (2002-2004 SARS) had a significant adverse impact on testicular architecture, suggesting a high possibility of the impact of SARS-CoV-2 as well. Out of two studies on semen samples from COVID-19 affected patients, one reported the presence of SARS-CoV-2 in the semen samples while the other denied it, raising conflict about its presence in the semen samples and the possibility of sexual transmission. Our transcriptome sequencing studies on rat testicular germ cells showed ACE expression in rat testicular germ cells. We also found ACE2 expression in transcriptome sequencing data for human spermatozoa, corroborating its presence in the testicular germ cells. Transcriptome sequencing data from literature search revealed ACE2 expression in the germ, Sertoli and Leydig cells. The presence of ACE2 on almost all testicular cells and the report of a significant impact of previous SARS coronavirus on testes suggest that SARS-CoV-2 is highly likely to affect testicular tissue, semen parameters and male fertility.
Collapse
Affiliation(s)
- Rahul Vishvkarma
- Reproductive Biology Laboratory, Central Drug Research Institute, Lucknow, India
| | - Singh Rajender
- Reproductive Biology Laboratory, Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Schwarz ER, Oliveira LJ, Bonfante F, Pu R, Pozor MA, Maclachlan NJ, Beachboard S, Barr KL, Long MT. Experimental Infection of Mid-Gestation Pregnant Female and Intact Male Sheep with Zika Virus. Viruses 2020; 12:v12030291. [PMID: 32156037 PMCID: PMC7150993 DOI: 10.3390/v12030291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus that causes birth defects, persistent male infection, and sexual transmission in humans. The purpose of this study was to continue the development of an ovine ZIKV infection model; thus, two experiments were undertaken. In the first experiment, we built on previous pregnant sheep experiments by developing a mid-gestation model of ZIKV infection. Four pregnant sheep were challenged with ZIKV at 57–64 days gestation; two animals served as controls. After 13–15 days (corresponding with 70–79 days of gestation), one control and two infected animals were euthanized; the remaining animals were euthanized at 20–22 days post-infection (corresponding with 77–86 days of gestation). In the second experiment, six sexually mature, intact, male sheep were challenged with ZIKV and two animals served as controls. Infected animals were serially euthanized on days 2–6 and day 9 post-infection with the goal of isolating ZIKV from the male reproductive tract. In the mid-gestation study, virus was detected in maternal placenta and spleen, and in fetal organs, including the brains, spleens/liver, and umbilicus of infected fetuses. Fetuses from infected animals had visibly misshapen heads and morphometrics revealed significantly smaller head sizes in infected fetuses when compared to controls. Placental pathology was evident in infected dams. In the male experiment, ZIKV was detected in the spleen, liver, testes/epididymides, and accessory sex glands of infected animals. Results from both experiments indicate that mid-gestation ewes can be infected with ZIKV with subsequent disruption of fetal development and that intact male sheep are susceptible to ZIKV infection and viral dissemination and replication occurs in highly vascular tissues (including those of the male reproductive tract).
Collapse
Affiliation(s)
- Erika R. Schwarz
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Lilian J. Oliveira
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Instituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Ruiyu Pu
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Malgorzata A. Pozor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - N. James Maclachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Sarah Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Kelli L. Barr
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA;
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
- Correspondence:
| |
Collapse
|
5
|
Arévalo Romero H, Vargas Pavía TA, Velázquez Cervantes MA, Flores Pliego A, Helguera Repetto AC, León Juárez M. The Dual Role of the Immune Response in Reproductive Organs During Zika Virus Infection. Front Immunol 2019; 10:1617. [PMID: 31354746 PMCID: PMC6637308 DOI: 10.3389/fimmu.2019.01617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus is a mosquito-borne viral disease that emerged as a significant health problem in the Americas after an epidemic in 2015. Especially concerning are cases where Zika is linked to the development of brain abnormalities in newborns. Unlike other flaviviruses, Zika can be transmitted sexually, increasing the potential for intraspecies infection. Several reports show that the virus can persist for months in the testis of males after clearance of viremia, and that females are highly susceptible to infection via sexual transmission. The most common route of sexual transmission is male-to-female, which suggests that the mechanism driving persistence of Zika in the testis is essential for dissemination. The immune system plays an essential role in Zika infection. In females, a robust response inhibits the virus to control the infection. In males, however, the immunological response to Zika infection correlates with viral persistence. Thus, the immune system may have a dual role in sexually transmitted pathogenesis. The mechanism by which the immune system allows the virus to enter an immune-privileged site while continuing to disseminate is unclear. In this mini-review, we highlight advances in our knowledge of sexually transmitted Zika virus pathogenesis and the possible mechanisms mounted by the immune system that control or exacerbate the infection.
Collapse
Affiliation(s)
- Haruki Arévalo Romero
- Laboratory of Immunology and Molecular Microbiology, Multidisciplinary Academic Division of Jalpa de Méndez, Department of Genomics, University Juárez Autonomous of Tabasco, Jalpa de Méndez, Mexico
| | - Tania A Vargas Pavía
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Manuel A Velázquez Cervantes
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Arturo Flores Pliego
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Addy C Helguera Repetto
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Moises León Juárez
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| |
Collapse
|
6
|
Borges ED, Vireque AA, Berteli TS, Ferreira CR, Silva AS, Navarro PA. An update on the aspects of Zika virus infection on male reproductive system. J Assist Reprod Genet 2019; 36:1339-1349. [PMID: 31147867 PMCID: PMC6642278 DOI: 10.1007/s10815-019-01493-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is mainly transmitted through Aedes mosquito bites, but sexual and post-transfusion transmissions have been reported. During acute infection, ZIKV is detectable in most organs and body fluids including human semen. Although it is not currently epidemic, there is a concern that the virus can still reemerge since the male genital tract might harbor persistent reservoirs that could facilitate viral transmission over extended periods, raising concerns among public health and assisted reproductive technologies (ART) experts and professionals. So far, the consensus is that ZIKV infection in the testes or epididymis might affect sperm development and, consequently, male fertility. Still, diagnostic tests have not yet been adapted to resource-restricted countries. This manuscript provides an updated overview of the cellular and molecular mechanisms of ZIKV infection and reviews data on ZIKV persistence in semen and associated risks to the male reproductive system described in human and animal models studies. We provide an updated summary of the impact of the recent ZIKV outbreak on human-ART, weighing on current recommendations and diagnostic approaches, both available and prospective, with special emphasis on mass spectrometry-based biomarker discovery. In the light of the identified gaps in our accumulated knowledge on the subject, we highlight the importance for couples seeking ART to follow the constantly revised guidelines and the need of specific ZIKV diagnosis tools for semen screening to contain ZIKV virus spread and make ART safer.
Collapse
Affiliation(s)
- E D Borges
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Invitra - Assisted Reproductive Technologies LTD, Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, 14056-680, Brazil.
| | - A A Vireque
- Invitra - Assisted Reproductive Technologies LTD, Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, 14056-680, Brazil
| | - T S Berteli
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - C R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - A S Silva
- Department of Social Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - P A Navarro
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institutes of Hormones and Woman's Health, CNPq, Brasilia, Brazil
| |
Collapse
|
7
|
Yoshikawa FSY, Sato MN. What are the implications of silent replication in fetal and newborn monocytes for Zika therapeutic development? Future Virol 2019. [DOI: 10.2217/fvl-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Fábio Seiti Yamada Yoshikawa
- Laboratório de Investigação em Dermatologia e Imunodeficiências LIM56, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Notomi Sato
- Laboratório de Investigação em Dermatologia e Imunodeficiências LIM56, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas ICBUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|