1
|
Abidizadegan M, Peltomaa E, Ilina P, Tammela P, Blomster J. Cryptophytes as potential source of natural antimicrobials for food preservation. Front Microbiol 2024; 15:1462696. [PMID: 39391605 PMCID: PMC11465241 DOI: 10.3389/fmicb.2024.1462696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Cryptophytes are a promising source of bioactive compounds that have not been fully explored. This research investigated the antimicrobial activity of total phenolic compounds (TPC) and exopolysaccharides (EPS) extracted from several cryptophytes against a range of harmful foodborne bacteria and fungi. To measure the minimum inhibitory concentration (MIC) value, the broth microdilution method was used. In the antibacterial evaluation of TPC, the MIC ranged between 31.25 and 500 μg/mL, while for the antifungal activity test, it varied from 31.25 to 125 μg/mL. In the antibacterial activity test of EPS, the MIC values ranged from 125 to 1,000 μg/mL, whereas in the antifungal susceptibility test, it ranged between 62.5 and 1,000 μg/mL. The most resistant pathogen against TPC was Escherichia coli, while Campylobacter jejuni was the most susceptible. In the case of EPS, the most resistant pathogen was Salmonella Typhimurium, while Aspergillus versicolor exhibited the highest susceptibility. Overall, in terms of antimicrobial activity, TPC was more effective than EPS. Finally, the tolerance level (TL) for TPC and EPS was ≤4 in all tested samples, indicating their bactericidal/fungicidal mechanism of action. In conclusion, TPC and EPS isolated from cryptophytes demonstrated remarkable antimicrobial properties and ability to fully eradicate pathogens, and could be considered as natural preservatives in the food industry.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Ecosystem and Environmental Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elina Peltomaa
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystem and Environmental Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Bechar A, Er-Rahmani S, Hassi M, Sadiki M, El Abed S, Ouaddi O, Tizar F, Alouani M, Ibnsouda Koraichi S. The effect of Dunaliella salina extracts on the adhesion of Pseudomonas aeruginosa to 3D printed polyethylene terephthalate and polylactic acid. BIOFOULING 2024; 40:447-466. [PMID: 39034852 DOI: 10.1080/08927014.2024.2380404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of Dunaliella salina were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against Pseudomonas aeruginosa. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of P. aeruginosa toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that P. aeruginosa adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.
Collapse
Affiliation(s)
- Azzeddine Bechar
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Hassi
- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Science, Agadir, Morocco
- Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Moulay Sadiki
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Soumya El Abed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Oumaima Ouaddi
- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Science, Agadir, Morocco
| | - Fatima Tizar
- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Science, Agadir, Morocco
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Alouani
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Science, Ibn Zohr University, Agadir, Morocco
- Faculty of Applied Science, Ait Melloul, Ibn Zohr University, Agadir, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2024:1-29. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
4
|
Ilieva Y, Zaharieva MM, Najdenski H, Kroumov AD. Antimicrobial Activity of Arthrospira (Former Spirulina) and Dunaliella Related to Recognized Antimicrobial Bioactive Compounds. Int J Mol Sci 2024; 25:5548. [PMID: 38791586 PMCID: PMC11122404 DOI: 10.3390/ijms25105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
With the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we comprehensively outline the antimicrobial activity of one genus of cyanobacteria (Arthrospira, formerly Spirulina) and of eukaryotic microalgae (Dunaliella). Both, especially Arthrospira, are mostly used as nutraceuticals and as a source of antioxidants for health supplements, cancer therapy and cosmetics. Their diverse bioactive compounds provide other bioactivities and potential for various medical applications. Their antibacterial and antifungal activity vary in a broad range and are strain specific. There are strains of Arthrospira platensis with very potent activity and minimum inhibitory concentrations (MICs) as low as 2-15 µg/mL against bacterial fish pathogens including Bacillus and Vibrio spp. Arthrospira sp. has demonstrated an inhibition zone (IZ) of 50 mm against Staphylococcus aureus. Remarkable is the substantial amount of in vivo studies of Arthrospira showing it to be very promising for preventing vibriosis in shrimp and Helicobacter pylori infection and for wound healing. The innovative laser irradiation of the chlorophyll it releases can cause photodynamic destruction of bacteria. Dunaliella salina has exhibited MIC values lower than 300 µg/mL and an IZ value of 25.4 mm on different bacteria, while Dunaliella tertiolecta has demonstrated MIC values of 25 and 50 μg/mL against some Staphylococcus spp. These values fulfill the criteria for significant antimicrobial activity and sometimes are comparable or exceed the activity of the control antibiotics. The bioactive compounds which are responsible for that action are fatty acids including PUFAs, polysaccharides, glycosides, peptides, neophytadiene, etc. Cyanobacteria, such as Arthrospira, also particularly have antimicrobial flavonoids, terpenes, alkaloids, saponins, quinones and some unique-to-them compounds, such as phycobiliproteins, polyhydroxybutyrate, the peptide microcystin, etc. These metabolites can be optimized by using stress factors in a two-step process of fermentation in closed photobioreactors (PBRs).
Collapse
Affiliation(s)
| | | | | | - Alexander Dimitrov Kroumov
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.); (H.N.)
| |
Collapse
|
5
|
Androutsopoulou C, Makridis P. Antibacterial Activity against Four Fish Pathogenic Bacteria of Twelve Microalgae Species Isolated from Lagoons in Western Greece. Microorganisms 2023; 11:1396. [PMID: 37374898 DOI: 10.3390/microorganisms11061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Microalgae may produce a range of high-value bioactive substances, making them a promising resource for various applications. In this study, the antibacterial activity of twelve microalgae species isolated from lagoons in western Greece was examined against four fish pathogenic bacteria (Vibrio anguillarum, Aeromonas veronii, Vibrio alginolyticus, and Vibrio harveyi). Two experimental approaches were used to evaluate the inhibitory effect of microalgae on pathogenic bacteria. The first approach used bacteria-free microalgae cultures, whereas the second approach used filter-sterilized supernatant from centrifuged microalgae cultures. The results demonstrated that all microalgae had inhibitory effects against pathogenic bacteria in the first approach, particularly 4 days after inoculation, where Asteromonas gracilis and Tetraselmis sp. (red var., Pappas) exhibited the highest inhibitory activity, reducing bacterial growth by 1 to 3 log units. In the second approach, Tetraselmis sp. (red var., Pappas) showed significant inhibition against V. alginolyticus between 4 and 25 h after inoculation. Moreover, all tested cyanobacteria exhibited inhibitory activity against V. alginolyticus between 21 and 48 h after inoculation. Statistical analysis was performed using the independent samples t-test. These findings suggested that microalgae produce compounds with antibacterial activity, which could be useful in aquaculture.
Collapse
Affiliation(s)
| | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics. Mar Drugs 2022; 20:md20120781. [PMID: 36547928 PMCID: PMC9781844 DOI: 10.3390/md20120781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The unicellular green microalga Dunaliella is a potential source of a wide range of nutritionally important compounds applicable to the food industry. The aim of this study was to assess the effect of Dunaliella salina dried biomass on the growth and adherence of 10 strains of Lactobacillus, Lacticaseibacillus, and Bifidobacterium. The immunomodulatory, antioxidant, and cytotoxic effects of D. salina on human peripheral mononuclear cells and simulated intestinal epithelial cell lines Caco-2 and HT-29 were evaluated. Furthermore, the hypocholesterolemic effects of the microalgae on lipid metabolism in rats fed a high-fat diet were analyzed. The addition of D. salina biomass had a positive effect on the growth of nine out of 10 probiotics and promoted the adherence of three bifidobacteria strains to human cell lines. The antioxidant and immunomodulatory properties of D. salina were concentration-dependent. The inflammatory cytokines (TNF-α and IL-6) were significantly increased following Dunaliella stimulation at the lowest concentration (0.5% w/v). Eight week supplementation of D. salina to the diet of hypercholesteromic rats significantly decreased the serum concentrations of LDL-C, VLDL, IDL-B, and IDL-C. D. salina is not cytotoxic in intestinal cell models; it promotes adherence of selected bifidobacteria, it affords immunomodulatory and antioxidant effects, and its addition to diets may help decrease atherosclerosis risk factors.
Collapse
|
7
|
Song M, Lei Y, Ali A, Xu Y, Sheng K, Huang T, Huang J, Huang M. Inhibitory effect of licorice extract on the germination and outgrowth of Paraclostridium bifermentans spores. Front Microbiol 2022; 13:1076144. [PMID: 36532483 PMCID: PMC9755857 DOI: 10.3389/fmicb.2022.1076144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Paraclostridium bifermentans is responsible for spoilage properties in vacuum-packaged meat. Ordinary heat treatment techniques are ineffective to control the extremely heat-resistant spores of P. bifermentans. Therefore, finding a new strategy to prevent the contamination of P. bifermentans spores in vacuum-packaged meat is challenging. METHODS In this study, P. bifermentans was isolated from the vacuum-packaged chicken, and the inhibitory effects of licorice extract on the germination and outgrowth of P. bifermentans spores, as well as the key bioactive components in the licorice extract involved in inhibiting spore activity, were investigated. RESULTS The spores induced by combination-nutrient-germinant (150 mmol/L L-alanine and 20 mmol/L inosine, co-AI) did not germinate when the concentration of licorice extract was ≥ 3.13 mg/ml. The germination of P. bifermentans spores induced by non-nutrient-germinant (8 mmol/L dipicolinic acid, DPA) was completely prevented by licorice extract at least 1.56 mg/ml. While the outgrowth of P. bifermentans spores was inhibited at a concentration of 0.39 mg/ml. Licorice extract did not seem to damage the non-germinated spores but blocked the germinant sensing. Licorice extract prevented the outgrowing spores from becoming vegetable cells by disrupting the inner membrane. Furthermore, the results obtained from LC-MS data analysis exhibited 15 key bioactive compounds in licorice extract, such as glycyrrhizic acid, liquiritin, etc. Among them, glycyrrhizic acid and liquiritin apioside exerted efficient inhibitory properties on the germination and outgrowth of P. bifermentans spores. DISCUSSION This present study demonstrated that licorice extract can be used as a promising inhibitor of spores and provides a new method to control the residual P. bifermentans spores in meat products. Meanwhile, this study exhibits a baseline for the better understanding of the potential application of licorice extracts to control the P. bifermentans spores in meat products.
Collapse
Affiliation(s)
- Mengmeng Song
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Lei
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ahtisham Ali
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yan Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kairan Sheng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., Nanjing, China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Cai J, Wang S, Gao Y, Wang Q. Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods 2022; 11:foods11111585. [PMID: 35681334 PMCID: PMC9180537 DOI: 10.3390/foods11111585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infected by Pectobacterium carotovorum subsp. carotovorum (Pcc), the quality of Chinese cabbage could severely decline. Using chemical bactericides to control Pcc could cause food safety problems. Thus, we investigated the optimum extraction conditions, antibacterial activity, chemical compounds and antibacterial mechanism of Polygonum orientale L. essential oil (POEO) against Pcc in order to search a new way to control Pcc. The optimum extraction conditions of POEO (soaking time 2.6 h, extraction time 7.7 h and ratio of liquid to solid 10.3 mL/g) were optimized by response surface methodology. The minimum inhibitory concentration (MIC) of POEO against Pcc was 0.625 mg/mL. The control efficiency of protective activity of POEO against Pcc was 74.67~92.67%, and its curative activity was 76.00~93.00%. Then, 29 compounds were obtained by GC-MS; the prime compounds of POEO were phytol, phytone, n-pentacosane, 1-octen-3-ol and β-ionone. It was verified that, compared with control samples, POEO destroyed cell morphology. It increased surface potential, increased hydrophobicity, damaged cell walls, destroyed the integrity and permeability of cell membrane, reduced membrane potential (MP), and changed membrane protein conformation. It inhibited the activities of pyruvate kinase (PK), succinate dehydrogenase (SDH) and adenosine triphosphatase (ATPase). Briefly, the results of this study demonstrate that POEO showed effective inhibitory activity against Pcc, thus POEO could have potential application in controlling Pcc.
Collapse
Affiliation(s)
- Jin Cai
- Institute of Applied Chemistry, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
- Correspondence:
| | - Shiqin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Yichen Gao
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| | - Qi Wang
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| |
Collapse
|
9
|
Stirk WA, van Staden J. Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnol Adv 2022; 59:107977. [DOI: 10.1016/j.biotechadv.2022.107977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
|
10
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
11
|
Wang J, Hu X, Chen J, Wang T, Huang X, Chen G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022; 11:foods11040502. [PMID: 35205979 PMCID: PMC8871089 DOI: 10.3390/foods11040502] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Junbin Chen
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
- Correspondence: ; Tel.: +1-865-974-6257
| |
Collapse
|
12
|
Stirk WA, Bálint P, Vambe M, Kulkarni MG, van Staden J, Ördög V. Effect of storage on plant biostimulant and bioactive properties of freeze-dried Chlorella vulgaris biomass. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:3797-3806. [PMID: 34539078 PMCID: PMC8439366 DOI: 10.1007/s10811-021-02596-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Microalgae are potential plant biostimulants and biocontrol agents. A major hurdle towards their commercialization is the production of large volumes of biomass at the correct time of year. Secondary metabolites are unstable and the "shelf-life" of bioactive microalgal biomass needs to be investigated. The aim of the study was to investigate the effects of storage conditions on freeze-dried microalgae to determine how long the biomass retained its growth promoting and bioactive properties under various temperature and light conditions. Chlorella vulgaris biomass was stored in the dark at - 70 °C, 10 °C, and 25 °C and in the light at 25 °C. Samples were tested every 3-4 months for 15 months. Storage time significantly influenced the rate of change in the bioactivity in the C. vulgaris biomass with storage temperature also having some effect. Rooting activity decreased in the mungbean rooting assay over time up to 12 months and then increased slightly. Antimicrobial activity increased against Staphylococcus aureus and Escherichia coli for up to 12 months and then declined. Antioxidant activity measured in the DPPH assay remained relatively stable for up to 12 months and then significantly decreased with longer storage. The change in bioactivity over time was attributed to the gradual breakdown of the rigid cell wall of C. vulgaris, thereby improving extraction efficiency but exposing the secondary metabolites to oxygen, thus quickening their degradation. Biomass produced for commercial purposes requires preliminary validation as the results of the present study showed that bioactive compounds are susceptible to degradation over time. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02596-9.
Collapse
Affiliation(s)
- Wendy A. Stirk
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, P/Bag X 01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Péter Bálint
- Department of Plant Sciences, Faculty of Agricultural and Food Sciences, Széchenyi István University, Kolbai K. Str. 8, 9200 Mosonmagyaróvár, Hungary
| | - McMaster Vambe
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, P/Bag X 01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Manoj G. Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, P/Bag X 01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, P/Bag X 01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Vince Ördög
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, P/Bag X 01, Scottsville, Pietermaritzburg, 3209 South Africa
- Department of Plant Sciences, Faculty of Agricultural and Food Sciences, Széchenyi István University, Kolbai K. Str. 8, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|