1
|
Wang K, Wang Y, Yang L, Li J, Li P, Yang C, Jia L, Qiu S, Song H, Li P. Genomic analysis of an acute gastroenteritis outbreak caused by rotavirus C in Hebei, China. Virol J 2024; 21:242. [PMID: 39358760 PMCID: PMC11448206 DOI: 10.1186/s12985-024-02486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Rotavirus group C is an important cause of sporadic cases and outbreaks of gastroenteritis worldwide. Whole-Genome sequences of human rotavirus C (RVC) in public databases are limited. We performed genome sequencing to analyze a RVC outbreak of acute gastroenteritis in China. Samples from 22 patients were screened for pathogens using RT-PCR, and six samples were positive for rotavirus. Whole-Genome sequencing analysis showed that the outbreak strain SJZ217 belongs to the G4-P[2]-I2-R2-C2-M3-A2-N2-T2-E2-H2 genotype and shares almost identical genomic sequences with Chungnam isolated in Korea. Phylogenetic analysis revealed strain SJZ217 also fell into a cluster with rotavirus C strains from Japan and Europe. Reassortment in the VP4 fragment was observed. These results helped to understand the genetic diversity and possible spread of RVC strains.
Collapse
Affiliation(s)
- Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Yun Wang
- Tianjin Binhai New Area Center for Disease Control and Prevention, Tianjin, 300450, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Peihan Li
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Leili Jia
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
2
|
Li Y, Wang S, Liang F, Teng S, Wang F. Prevalence and genetic diversity of rotavirus among children under 5 years of age in China: a meta-analysis. Front Immunol 2024; 15:1364429. [PMID: 38690265 PMCID: PMC11058642 DOI: 10.3389/fimmu.2024.1364429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Background This meta-analysis was performed to assess the prevalence and circulating strains of rotavirus (RV) among Chinese children under 5 years of age after the implantation of the RV vaccine. Material and methods Studies published between 2019 and 2023, focused on RV-based diarrhea among children less than 5 years were systematically reviewed using PubMed, Embase, Web of Science, CNKI, Wanfang and SinoMed Data. We synthesized their findings to examine prevalence and genetic diversity of RV after the RV vaccine implementation using a fixed-effects or random-effects model. Results Seventeen studies met the inclusion criteria for this meta-analysis. The overall prevalence of RV was found to be 19.00%. The highest infection rate was noted in children aged 12-23months (25.79%), followed by those aged 24-35 months (23.91%), and 6-11 months (22.08%). The serotype G9 emerged as the most predominant RV genotype, accounting for 85.48% of infections, followed by G2 (7.70%), G8 (5.74%), G1 (4.86%), and G3 (3.21%). The most common P type was P[8], representing 64.02% of RV cases. Among G-P combinations, G9P[8] was the most frequent, responsible for 78.46% of RV infections, succeeded by G8P[8] (31.22%) and G3P[8] (8.11%). Conclusion Despite the variation of serotypes observed in China, the G1, G2, G3, G8 and G9 serotypes accounted for most RV strains. The genetic diversity analysis highlights the dynamic nature of RV genotypes, necessitating ongoing surveillance to monitor changes in strain distribution and inform future vaccine strategies.
Collapse
Affiliation(s)
- Yue Li
- Department of Immunization Program, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Sijie Wang
- Shanghai Institute of Major Infectious Disease and Biosafety, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MoE&MoH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Liang
- Department of Immunization Program, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Sashuang Teng
- Department of Immunization Program, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Fei Wang
- Central Administrative Office, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
3
|
Potgieter RL, Mwangi PN, Mogotsi MT, Uwimana J, Mutesa L, Muganga N, Murenzi D, Tusiyenge L, Seheri ML, Steele AD, Mwenda JM, Nyaga MM. Genomic Analysis of Rwandan G9P[8] Rotavirus Strains Pre- and Post-RotaTeq ® Vaccine Reveals Significant Distinct Sub-Clustering in a Post-Vaccination Cohort. Viruses 2023; 15:2321. [PMID: 38140562 PMCID: PMC10747556 DOI: 10.3390/v15122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Although the introduction of rotavirus vaccines has substantially contributed to the reduction in rotavirus morbidity and mortality, concerns persist about the re-emergence of variant strains that might alter vaccine effectiveness in the long term. The G9 strains re-emerged in Africa during the mid-1990s and have more recently become predominant in some countries, such as Ghana and Zambia. In Rwanda, during the 2011 to 2015 routine surveillance period, G9P[8] persisted during both the pre- and post-vaccine periods. The pre-vaccination cohort was based on the surveillance period of 2011 to 2012, and the post-vaccination cohort was based on the period of 2013 to 2015, excluding 2014. The RotaTeq® vaccine that was first introduced in Rwanda in 2012 is genotypically heterologous to Viral Protein 7 (VP7) G9. This study elucidated the whole genome of Rwandan G9P[8] rotavirus strains pre- and post-RotaTeq® vaccine introduction. Fecal samples from Rwandan children under the age of five years (pre-vaccine n = 23; post-vaccine n = 7), conventionally genotyped and identified as G9P[8], were included. Whole-genome sequencing was then performed using the Illumina® MiSeq platform. Phylogenetic analysis and pair-wise sequence analysis were performed using MEGA6 software. Distinct clustering of three post-vaccination study strains was observed in all 11 gene segments, compared to the other Rwandan G9P[8] study strains. Specific amino acid differences were identified across the gene segments of these three 2015 post-vaccine strains. Important amino acid differences were identified at position N242S in the VP7 genome segment of the three post-vaccine G9 strains compared to the other G9 strains. This substitution occurs at a neutralization epitope site and may slightly affect protein interaction at that position. These findings indicate that the Rwandan G9P[8] strains revealed a distinct sub-clustering pattern among post-vaccination study strains circulating in Rwanda, with changes at neutralization epitopes, which may play a role in neutralization escape from vaccine candidates. This emphasizes the need for continuous whole-genome surveillance to better understand the evolution and epidemiology of the G9P[8] strains post-vaccination.
Collapse
Affiliation(s)
- Robyn-Lee Potgieter
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Jeannine Uwimana
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Leon Mutesa
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Narcisse Muganga
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Didier Murenzi
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Lisine Tusiyenge
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (M.L.S.); (A.D.S.)
| | - A. Duncan Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (M.L.S.); (A.D.S.)
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| |
Collapse
|
4
|
Cao M, Yuan F, Ma X, Ma J, Ma X, Chen H, Zhang W, Zhao J, Kuai W. Surveillance of human Group A rotavirus in Ningxia, China (2015-2021): Emergence and prevalence of G9P[8]-E2 and G3P[8]-E2 genotypes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105469. [PMID: 37331499 DOI: 10.1016/j.meegid.2023.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Group A rotaviruses (RVA) are the primary pathogens of acute gastroenteritis. Currently, two live attenuated RVA vaccines, LLR and RotaTeq, have been introduced into mainland China but are not included in the national immunization program. Because of the unknown genetic evolution of group A rotavirus in an all-age population in Ningxia, China, we monitored the epidemiological characteristics and circulating genotypes of RVA as a reference for developing vaccine strategies. METHODS We conducted seven years of consecutive surveillance of RVA based on stool samples from patients with acute gastroenteritis in sentinel hospitals in Ningxia, China, from 2015 to 2021. Reverse transcription quantitative polymerase chain reaction(RT-qPCR) was used to detect RVA in stool samples. Genotyping and phylogenetic analysis of VP7, VP4 and NSP4 genes were performed by reverse transcription-polymerase chain reaction(RT-PCR) and nucleotide sequence determination. RESULTS RVA was detected in 16.58% (1436/8662) of 8662 stool samples. The positive rates were 7.17% (201/2805) and 21.09% (1235/5857) in adults and children, respectively. The most affected age group was infants and children aged 12-23 months, with a positive rate of 29.53% (p < 0.05). A significant winter/spring seasonality was observed. 23.29% positive rate in 2020 was the highest in 7 years (p < 0.05). The region with the highest positive rate in the adult group was Yinchuan, and the children's group was Guyuan. A total of 9 genotype combinations were found to be distributed in Ningxia. The dominant genotype combinations in this region gradually changed from G9P[8]-E1, G3P[8]-E1, G1P[8]-E1 to G9P[8]-E1, G9P[8]-E2, and G3P[8]-E2 during these seven years. Rare strains (e.g., G9P[4]-E1, G3P[9]-E3 and G1P[8]-E2) were occasionally detected during the study. CONCLUSIONS During the study period, changes in the significant RVA circulating genotype combinations and the emergence of reassortment strains were observed, particularly the emergence and prevalence of G9P[8]-E2, G3P[8]-E2 reassortants in the region. These results indicate the importance of continuous monitoring of the molecular evolution and recombination characteristics of RVA, and should not be limited to G/P genotyping but should consider multi-gene fragment co-analysis and whole genome sequencing.
Collapse
Affiliation(s)
- Min Cao
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Fang Yuan
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xueping Ma
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Jiangtao Ma
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xuemin Ma
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Hui Chen
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Wei Zhang
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Jianhua Zhao
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Wenhe Kuai
- Ningxia Center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China.
| |
Collapse
|
5
|
Jiao Y, Han T, Qi X, Gao Y, Zhao J, Zhang Y, Li B, Zhang Z, Du J, Sun L. Human rotavirus strains circulating among children in the capital of China (2018-2022)_ predominance of G9P[8] and emergence ofG8P[8]. Heliyon 2023; 9:e18236. [PMID: 37554825 PMCID: PMC10404872 DOI: 10.1016/j.heliyon.2023.e18236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE This study aimed to update the genetic diversity of Rotavirus (RV) infections in children under five years old in Beijing, China. METHODS A 5-year active hospital-based surveillance for sporadic acute gastroenteritis (AGE) from January 2018 to December 2022 in the capital of China was performed. A total of 748 fecal samples from AGE patients were collected for followed by RV antigen detection by ELSIA, RNA detection by reverse transcription PCR, G/P genotyping and phylogenetic analyzing. RESULTS RV antigen was detected in 11.0% of the collected samples, with 54 samples confirmed to be RV RNA positive. G9 and G8 genotypes were identified in 43 (79.6%) and 7 (13.0%) samples, respectively, all of which were allocated to P[8]. The predominant G/P combination was G9P[8] (79.6%), following by G8P[8] (13.0%), G4P[8] (5.6%) and G3P[8] (1.9%). A significant change in G/P-type distribution was observed, with the G9P[8] being predominant from 2018 to 2021, followed by the emergence of an uncommon G8P[8] genotype, which was first reported in 2021 and became predominant in 2022. Blast analysis showed that one G1 isolate had a high similarity of 99.66% on nucleotide acid with RotaTeq vaccine strain with only one amino acid difference L150V. Additionally, one P[8] isolate was clustered into a branch together with RotaTeq vaccine strain G6P[8]. CONCLUSIONS The study reveals that G8P[8] has become the predominant genotype in pediatric outpatients in China for the first time, indicating a significant change in the composition of RV genetic diversity. The importance of RVA genotyping in surveillance is emphasized, as it provides the basis for new vaccine application and future vaccine efficacy evaluation.
Collapse
Affiliation(s)
- Yang Jiao
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Taoli Han
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiao Qi
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yan Gao
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jianhong Zhao
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yue Zhang
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Beibei Li
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zheng Zhang
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jialiang Du
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lingli Sun
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| |
Collapse
|
6
|
Zhou X, Wang Y, Chen N, Pang B, Liu M, Cai K, Kobayashi N. Surveillance of Human Rotaviruses in Wuhan, China (2019-2022): Whole-Genome Analysis of Emerging DS-1-like G8P[8] Rotavirus. Int J Mol Sci 2023; 24:12189. [PMID: 37569563 PMCID: PMC10419309 DOI: 10.3390/ijms241512189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Yuanhong Wang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Beibei Pang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Manqing Liu
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
7
|
Amit LN, John JL, Mori D, Chin AZ, Mosiun AK, Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch Virol 2023; 168:173. [PMID: 37269384 DOI: 10.1007/s00705-023-05803-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Rotaviruses are major causative agents of acute diarrhea in children under 5 years of age in Malaysia. However, a rotavirus vaccine has not been included in the national vaccination program. To date, only two studies have been carried out in the state of Sabah, Malaysia, although children in this state are at risk of diarrheal diseases. Previous studies showed that 16%-17% of cases of diarrhea were caused by rotaviruses and that equine-like G3 rotavirus strains are predominant. Because the prevalence of rotaviruses and their genotype distribution vary over time, this study was conducted at four government healthcare facilities from September 2019 through February 2020. Our study revealed that the proportion of rotavirus diarrhea increased significantly to 37.2% (51/137) after the emergence of the G9P[8] genotype in replacement of the G12P[8] genotype. Although equine-like G3P[8] strains remain the predominant rotaviruses circulating among children, the Sabahan G9P[8] strain belonged to lineage VI and was phylogenetically related to strains from other countries. A comparison of the Sabahan G9 strains with the G9 vaccine strains used in the RotaSiil and Rotavac vaccines revealed several mismatches in neutralizing epitopes, indicating that these vaccines might not be effective in Sabahan children. However, a vaccine trial may be necessary to understand the precise effects of vaccination.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
8
|
The Effect of Virus-Specific Vaccination on Laboratory Infection Markers of Children with Rotavirus-Associated Acute Gastroenteritis. Vaccines (Basel) 2023; 11:vaccines11030580. [PMID: 36992164 DOI: 10.3390/vaccines11030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Rotavirus (RV) is one of the most common and important causes of acute gastroenteritis (AGE) in newborns and children worldwide. The aim of this study was to evaluate the effect of the RV vaccine on the natural history of RV infections using the neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), and systemic immune inflammatory index (SII) as hematological indexes, clinical findings, and hospitalization. Method: Children aged 1 month to 5 years who were diagnosed with RV AGE between January 2015 and January 2022 were screened, and 630 patients were included in the study. The SII was calculated by the following formula: neutrophil × platelet/lymphocyte. Results: Fever and hospitalization were significantly higher and breastfeeding was significantly lower in the RV-unvaccinated group than in the RV-vaccinated group. The NLR, PLR, SII, and CRP were significantly higher in the RV-unvaccinated group (p < 0.05). The NLR, PLR, and SII were significantly higher both in the non-breastfed group than in the breastfed group and in the hospitalized group than in the not hospitalized group (p < 0.05). CRP was not significantly different in either the hospitalization group or the breastfeeding group (p > 0.05). SII and PLR were significantly lower in the RV-vaccinated group than in the RV-unvaccinated group in both the breastfed and non-breastfed subgroups. For NLR and CRP, while there was no significant difference according to RV vaccination status in the breastfed group, there was a significant difference in the non-breastfed group (p value: <0.001; <0.001). Conclusions: Despite the low level of vaccine coverage, the introduction of RV vaccination had a positive impact on the incidence of RV-positive AGE and related hospitalizations in children. These results showed that breastfed and vaccinated children were less prone to inflammation because their NLR, PLR, and SII ratios were lower. The vaccine does not prevent the disease 100%. However, it can prevent severe disease with exsiccation or death.
Collapse
|
9
|
Velikzhanina EI, Sashina TA, Morozova OV, Epifanova NV, Novikova NA. [Variability of genes encoding nonstructural proteins of rotavirus А (Reoviridae: Rotavirus: Rotavirus A) genotype G9P[8] during the period of dominance in the territory of Nizhny Novgorod (central part of Russia) (2011-2020)]. Vopr Virusol 2023; 67:475-486. [PMID: 37264837 DOI: 10.36233/0507-4088-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION In Russia, rotavirus A is the main cause of severe viral gastroenteritis in young children. The molecular features that allow a rotavirus of a particular genotype to gain an evolutionary advantage remain unclear, therefore, the study of the genetic diversity of rotaviruses based on genes encoding nonstructural proteins (NSPs) responsible for the reproduction of the virus in the cell is an urgent task. OBJECTIVE To study the genetic diversity of rotaviruses of genotype G9P[8], which dominated Nizhny Novgorod in 20112020, based on genes encoding nonstructural proteins. MATERIALS AND METHODS Rotavirus-positive samples were subjected to PCR-genotyping and sequencing of NSP1 NSP5 genes. Phylogenetic analysis was carried out in the MEGA X program. RESULTS In the period 20112020, G9P[8] rotaviruses with four variants of the NSP2 gene were co-circulating in Nizhny Novgorod. New alleles were noted in 2012 (N1-a-III), 2016 (N1-a-IV) and in 2019 (N1-a-II). The appearance of new variants of other genes occurred in 2014 (E1-3, NSP4), 2018 (T1-a3-III, NSP3) and in 2019 (A1-b-II, NSP1). NSP2 gene had the most variable amino acid sequence (16 substitutions), 2 to 7 substitutions were observed in NSP1, NSP3 and NSP4, NSP5 was conservative. DISCUSSION The results obtained are consistent with the literature data and indicate the participation of NSP genes in maintaining the heterogeneity of the rotavirus population. CONCLUSION Until 2018, the genetic diversity of rotaviruses in Nizhny Novgorod was determined by the circulation of strains carrying several alleles of the NSP2 gene and conservative genes NSP1, NSP3NSP5. By the end of the study period, new variants of the genotype G9P[8] were formed in the population, carrying previously unknown combinations of alleles of nonstructural genes.
Collapse
Affiliation(s)
- E I Velikzhanina
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - T A Sashina
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - O V Morozova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - N V Epifanova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - N A Novikova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| |
Collapse
|
10
|
Kachooei A, Tava Koli A, Minaeian S, Hosseini M, Jalilvand S, Latifi T, Arashkia A, Ataei-Pirkooh A, Shoja Z. Molecular characterization of rotavirus infections in children less than 5 years of age with acute gastroenteritis in Tehran, Iran, 2021-2022: Emergence of uncommon G9P[4] and G9P[8] rotavirus strains. J Med Virol 2023; 95:e28529. [PMID: 36698258 DOI: 10.1002/jmv.28529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The present study was conducted to monitor the genotypes of circulating species A rotavirus (RVA) in Iran and investigate genetic linkages between specific RVA VP7, VP4, VP6, and NSP4 segments. For this purpose, 48 RVA strains were detected during the 2021-2022 seasons. The two combinations of G9P[4] and G9P[8] RVA strains were predominant. However, several other combinations of RVA also were detected. Based on the distribution of I and E genotypes (46 strains) with respect to G and P, the most common strains were G9P[4]-I2-E2 (19.5%), G9P[4]-I2-E1 (6.5%), G9P[4]-I1-E1 (4.3%), G9P[8]-I1-E1 (19.5%), and G9P[8]-I2-E2 (10.9%), which were followed by several other combinations of G and P RVA strains with different pattern of I-E genotypes and also emerging, rare and uncommon strains. The present study described the continued circulation of G9 strains with the emergence of uncommon G9P[4] and G9P[8] reassortants with three and two different I-E genotypes, respectively, which have not been reported previously in Iran. Our findings indicated that these uncommon strains exhibited a unique genotype pattern comprising a mixture of genogroup 1 and 2 genes and suggest the need for further analysis of rare, uncommon, and emerging strains of RVA at all 11 gene segments to determine intergenogroup and intragenotype reassortments.
Collapse
Affiliation(s)
- Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Tava Koli
- Rsearch Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hosseini
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.,Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.,Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Fujii Y. [Changes in rotavirus epidemic strains]. Uirusu 2023; 73:33-44. [PMID: 39343518 DOI: 10.2222/jsv.73.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rotavirus is a major cause of gastroenteritis in infants and is widely prevalent throughout the world regardless of the hygienic environment. However, it is not easy to understand the overall picture of rotavirus epidemic because of the great variety of genotypes and the large inter-seasonal and regional differences in the prevalent strains. Fortunately, the rotavirus vaccines now widely used around the world are highly effective and safe. The number of rotavirus gastroenteritis cases is declining dramatically, especially in high-income countries. In Japan, rotavirus vaccines have been included in the routine vaccination program since October 2020. Additionally, the impact of the SARS-CoV-2 pandemic control measures on the rotavirus epidemic was also very significant. These synergistic effects have resulted in few rotavirus outbreaks in recent years. Nevertheless, rotavirus is unlikely to be completely eradicated, and indeed a small number of sporadic cases continue to be reported. It will continue to be important to maintain high vaccination coverage and to continuously investigate prevalent strains. This review will provide an overview of the rotavirus epidemic situation in Japan and abroad. Annual changes in domestic epidemic strains that have been revealed by steady research to date will also be presented.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology 2, National Institute of Infectious Diseases
| |
Collapse
|
12
|
Gutierrez MB, de Assis RMS, Arantes I, Fumian TM. Full genotype constellations analysis of unusual DS-1-like G12P[6] and G6P[8] rotavirus strains detected in Brazil, 2019. Virology 2022; 577:74-83. [PMID: 36323046 DOI: 10.1016/j.virol.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.
Collapse
Affiliation(s)
- Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ighor Arantes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil.
| |
Collapse
|
13
|
Liu X, Wang M, Li S, Li J, Xiao J, Li H, Zhang Q, Kong X, Wang H, Li D, Duan Z. Genomic and evolutionary characteristics of G9P[8], the dominant group a rotavirus in China (2016–2018). Front Microbiol 2022; 13:997957. [PMID: 36187963 PMCID: PMC9522900 DOI: 10.3389/fmicb.2022.997957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
G9P[8] became the predominant rotavirus A (RVA) genotype in China in 2012. To evaluate its genetic composition at the whole-genome level, 115 G9P[8] RVA strains isolated from children under 5 years old were sequenced and characterized. All 13 strains in 2016 and 2017 and an additional 54 strains in 2018 were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. The other 48 strains in 2018 were all genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1, with the NSP4 gene characterized as a DS-1-like genotype. The time of the most recent common ancestor (tMRCA) and evolution rates of the VP7, VP4, and NSP4 (E1 and E2) genes of these strains were estimated by Bayesian evolutionary dynamics analysis. We estimated the evolution rates (nt substitutions per site per year) as 1.38 × 10–3 [the 95% highest posterior density (HPD) was 1.09–1.72 × 10–3] for VP7, 0.87 × 10–3 (95% HPD: 0.75–1.00 × 10–3) for VP4, 0.56 × 10–3 (95% HPD: 0.41–0.73 × 10–3) for NSP4-E1, and 1.35 × 10–3 (95% HPD: 0.92–1.86 × 10–3) for NSP4-E2. The tMRCA was estimated to be 1935.4 (95% HPD: 1892.4–1961.3) for VP7, 1894.3 (95% HPD: 1850.5–1937.8) for VP4, 1929.4 (95% HPD: 1892.4–1961.3) for NSP4-E1, and 1969.2 (95% HPD: 1942.2–1985.3) for NSP4-E2. The baseline genetic information in this study is expected to improve our understanding of the genomic and evolutionary characteristics of the rotavirus genome. Furthermore, it will provide a basis for the development of next-generation rotavirus vaccines for humans.
Collapse
Affiliation(s)
- Xiafei Liu
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Mengxuan Wang
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Shan Li
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingxin Li
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Jinbo Xiao
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Huiying Li
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Qing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Xiangyu Kong
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Hong Wang
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Dandi Li
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
- *Correspondence: Dandi Li,
| | - Zhaojun Duan
- Chinese Center for Disease Control and Prevention, National Institute for Viral Diseases Control and Prevention, Beijing, China
- Zhaojun Duan,
| |
Collapse
|
14
|
Shen S, Ren S, Chen L, Xue J, Shao X, Zhang T, Zhao G. Rotavirus Infection in Children <5 Years of Age in Suzhou, China, 2013-2019: Disease Burden, Genotype Distribution and Seasonality. Pediatr Infect Dis J 2022; 41:375-380. [PMID: 35067641 PMCID: PMC8997692 DOI: 10.1097/inf.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study aimed to determine the disease burden and strain distribution of rotavirus in children with diarrhea <5 years old in Suzhou, China. METHODS The study was conducted among children with diarrhea <5 years old at Suzhou University Affiliated Children's Hospital from 2013 to 2019. Rotavirus antigen was detected in clinical laboratory and then sent to Suzhou Centers for Disease Control and Prevention for further molecular analysis. Group A rotavirus (RVA) was detected through enzyme-linked immunosorbent assays, and G-genotype and P-genotype of RVA were tested using reverse transcription-polymerase chain reaction. RESULTS Of a total of 198,130 children with diarrhea, 70,813 (35.7%) were positive for RVA; RVA-related diarrhea was detected in 7798 (20.7%, n = 7798/37,710) inpatients and 63,015 (39.3%, n = 63,015/160,420) outpatients. Most children (92.0%, n = 65,171/70,813) positive for RVA were found as children <3 years old. Children 12-35 months old were reported as the highest prevalence among all age groups. The seasonal peak of RVA was in the autumn and winter. Among all 673 RVA strains genotyped, the G9P[8] strain was reported to be persistently predominant in the pediatric population from 2013 to 2019. CONCLUSIONS The burden of diarrhea disease due to rotavirus infection remains high in Suzhou.
Collapse
Affiliation(s)
- Si Shen
- From the Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Shaolong Ren
- From the Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Liling Chen
- Department of Infectious Disease Prevention and Control, Suzhou Centers for Disease Control and Prevention
| | - Jian Xue
- Department of Clinical Laboratory, Suzhou University Affiliated Children’s Hospital, Suzhou, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Suzhou University Affiliated Children’s Hospital, Suzhou, China
| | - Tao Zhang
- From the Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Genming Zhao
- From the Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
15
|
Tian Y, Gao Z, Li W, Liu B, Chen Y, Jia L, Yan H, Wang Q. Group A rotavirus prevalence and genotypes among adult outpatients with diarrhea in Beijing, China, 2011-2018. J Med Virol 2021; 93:6191-6199. [PMID: 34028862 DOI: 10.1002/jmv.27100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022]
Abstract
Group A rotavirus (RVA) is one of the most common causes of severe diarrhea in children worldwide. However, RVA is also an important pathogen causing adult diarrhea, with higher infection rates in older patients. To provide evidence for rotavirus epidemic control and to inform vaccine development, we analyzed the molecular epidemiology of RVA among adult outpatients with diarrhea in Beijing from 2011 to 2018. Stool specimens were collected monthly from 14 districts. RVA was detected using enzyme-linked immunosorbent assay and real-time reverse-transcription polymerase chain reaction (RT-PCR). Genotyping of rotavirus was performed using multiplex semi-nested RT-PCR. Phylogenetic analysis was performed using maximum likelihood methods implemented in MEGA software (version 6.06). Logistic regression and chi-square tests were used to assess differences among age groups, districts, years, and genotype distributions. The prevalence of rotavirus was 10.16% (1310 of 12,893) among adult outpatients with diarrhea from 2011 to 2018 in Beijing. The highest prevalence (13.74%, 600 of 4367) was observed among those aged 41 to 65 years. November, December, and January had the highest positive detection rates. In 2011, G3P[8] and G9P[8] were the dominant genotypes. Starting from 2012, G9P[8] became the dominant genotype. Most G9 strains belonged to the G9-VI clade. Most P[8] strains belonged to the P[8]-III clade. RVA is a major cause of adult diarrhea in Beijing. Continuous molecular surveillance is needed, and transmission of rotavirus between children and adults should be investigated further.
Collapse
Affiliation(s)
- Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Weihong Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanwei Chen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| |
Collapse
|