1
|
Ishimoto CK, Paulino BN, Neri-Numa IA, Bicas JL. The blue palette of life: A comprehensive review of natural bluish colorants with potential commercial applications. Food Res Int 2024; 196:115082. [PMID: 39614567 DOI: 10.1016/j.foodres.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Considering the growing interest for safer, environmentally friendly and healthier products, the search for natural colorants to replace their synthetic has been raised. This is particularly challenging for the rare and usually unstable bluish coloring substances. This comprehensive review describes several bluish pigments which can be obtained from natural sources (plants and mostly microorganisms), covering less known molecules to well established compounds (although no focus is given for anthocyanins). Key information about each compound, including sources, extraction procedures, properties, and potential applications, are presented. Despite many studies on these molecules, toxicological and stability studies are still lacking for many of them. Therefore, this text also discusses the regulatory requirements for approving new coloring substances. Given the increasing robustness of scientific data supporting the biological activities attributed to many of these pigments, it is possible to envisage that some of them may be commercially available for industrial applications in different fields, not only in traditional food or cosmetic uses but in pharmaceutical formulations as well.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Bruno Nicolau Paulino
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Iramaia Angelica Neri-Numa
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Hassanpour H, Naeimi H. Fabrication and characterization of inorganic-organic hybrid copper ferrite anchored on chitosan Schiff base as a reusable green catalyst for the synthesis of indeno[1,2- b]indolone derivatives. RSC Adv 2024; 14:17296-17305. [PMID: 38812959 PMCID: PMC11134323 DOI: 10.1039/d3ra08705k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
This study presents a description of the catalytic synthesis of indeno[1,2-b]indolone derivatives. In this method, initially, a Schiff base compound was synthesized from the reaction of acetylacetone with 2-hydroxyaniline. Then, the prepared Schiff base was immobilized on chelated magnetic copper ferrite nanoparticles with a chitosan surface to design and prepare the CuFe2O4@CS-SB nanocomposite. Further, the one-pot multi-component cyclization reaction of aniline, dimedone and ninhydrin was conducted using the synthesized nanocomposite as a heterogeneous acid catalyst in water solvent under thermal conditions. In this reaction, the products were obtained in excellent yields and short reaction times, and the catalyst could be recycled and reused six times without any loss in product yields. By conducting FT-IR spectroscopy, 1H NMR spectroscopy, XRD, FE-SEM, TGA, elemental mapping scanning, EDX and BET analyses, the structure of the nanocatalyst was characterized. In addition, for the identification of organic compounds, FT-IR, 1H NMR, and 13C NMR spectroscopies and melting point analysis were used, which confirmed the synthesis of this class of derivatives.
Collapse
Affiliation(s)
- Hannaneh Hassanpour
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 I.R. Iran +983155912397 +983155912388
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 I.R. Iran +983155912397 +983155912388
| |
Collapse
|
3
|
Cichero E, Francesconi V, Casini B, Casale M, Kanov E, Gerasimov AS, Sukhanov I, Savchenko A, Espinoza S, Gainetdinov RR, Tonelli M. Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays. Pharmaceuticals (Basel) 2023; 16:1632. [PMID: 38004497 PMCID: PMC10674299 DOI: 10.3390/ph16111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.
Collapse
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Valeria Francesconi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Monica Casale
- Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, 16148 Genoa, Italy;
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey S. Gerasimov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| |
Collapse
|
4
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Tang Z, Hong G, Hu C, Wang Q, Zhong Y, Gong Y, Yang P, Wang L. La(OTf) 3 facilitated self-condensation of 2-indolylmethanol: construction of highly substituted indeno[1,2- b]indoles. Org Biomol Chem 2021; 19:10337-10342. [PMID: 34553205 DOI: 10.1039/d1ob01517f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Lewis acid-promoted self-condensation of 2-indolylmethanols has been revealed. On treatment with La(OTf)3, highly substituted indeno[1,2-b]indole derivatives have been synthesized by using easily accessible 2-indolylmethanols with up to 94% yields. The utility of this method is further highlighted by evaluating the initial photophysical properties of some prepared products, indicating that the protocol may have potential applications in the construction of novel fluorescent materials.
Collapse
Affiliation(s)
- Zhicong Tang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Gang Hong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Chen Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yi Zhong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yu Gong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Peng Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
6
|
Birus R, El-Awaad E, Ballentin L, Alchab F, Aichele D, Ettouati L, Götz C, Le Borgne M, Jose J. 4,5,7-Trisubstituted indeno[1,2-b]indole inhibits CK2 activity in tumor cells equivalent to CX-4945 and shows strong anti-migratory effects. FEBS Open Bio 2021; 12:394-411. [PMID: 34873879 PMCID: PMC8804612 DOI: 10.1002/2211-5463.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022] Open
Abstract
Highly pleiotropic and constitutively active protein kinase CK2 is a key target in cancer therapy, but only one small-molecule inhibitor has reached clinical trials-CX-4945. In this study, we present the indeno[1,2-b]indole derivative 5-isopropyl-4-methoxy-7-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (5a-2) that decreased the intracellular CK2 activity in A431, A549, and LNCaP tumor cell lines analogous to CX-4945 (> 75% inhibition at 20 µm) and similarly blocked CK2-specific Akt phosphorylation in LNCaP cells. Cellular uptake analysis demonstrated higher intracellular concentrations of 5a-2 (408.3 nm) compared with CX-4945 (119.3 nm). This finding clarifies the comparable effects of both compounds on the intracellular CK2 activity despite their different inhibitory potency in vitro [IC50 = 25 nm (5a-2) and 3.7 nm (CX-4945)]. Examination of the effects of both CK2 inhibitors on cancer cells using live-cell imaging revealed notable differences. Whereas CX-4945 showed a stronger pro-apoptotic effect on tumor cells, 5a-2 was more effective in inhibiting tumor cell migration. Our results showed that 49% of intracellular CX-4945 was localized in the nuclear fraction, whereas 71% of 5a-2 was detectable in the cytoplasm. The different subcellular distribution, and thus the site of CK2 inhibition, provides a possible explanation for the different cellular effects. Our study indicates that investigating CK2 inhibition-mediated cellular effects in relation to the subcellular sites of CK2 inhibition may help to improve our understanding of the preferential roles of CK2 within different cancer cell compartments.
Collapse
Affiliation(s)
- Robin Birus
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Ehab El-Awaad
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Laurens Ballentin
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Faten Alchab
- EEA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie-ISPB, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, France.,Faculty of Pharmacy, Manara University, Latakia, Syria
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Laurent Ettouati
- CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie, ISPB, Université Lyon 1, Université de Lyon, France
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| |
Collapse
|
7
|
Debnath S, Lu M, Liang L, Shi Y. A Tandem Nucleophilic Aminopalladation and Carbene Insertion Sequence for Indole Fused Polycycles. Org Lett 2021; 23:7118-7122. [PMID: 34491766 DOI: 10.1021/acs.orglett.1c02512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient tandem nucleophilic aminopalladation and carbene insertion sequence is described for the synthesis of indole fused polycycles. The reaction process provides a variety of substituted indeno[1,2-b]indoles in up to 99% yields.
Collapse
Affiliation(s)
- Sudarshan Debnath
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Mei Lu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Lingli Liang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Natural Compounds Isolated from Stachybotrys chartarum Are Potent Inhibitors of Human Protein Kinase CK2. Molecules 2021; 26:molecules26154453. [PMID: 34361605 PMCID: PMC8347608 DOI: 10.3390/molecules26154453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
A large number of secondary metabolites have been isolated from the filamentous fungus Stachybotrys chartarum and have been described before. Fourteen of these natural compounds were evaluated in vitro in the present study for their inhibitory activity towards the cancer target CK2. Among these compounds, stachybotrychromene C, stachybotrydial acetate and acetoxystachybotrydial acetate turned out to be potent inhibitors with IC50 values of 0.32 µM, 0.69 µM and 1.86 µM, respectively. The effects of these three compounds on cell proliferation, growth and viability of MCF7 cells, representing human breast adenocarcinoma as well as A427 (human lung carcinoma) and A431 (human epidermoid carcinoma) cells, were tested using EdU assay, IncuCyte® live-cell imaging and MTT assay. The most active compound in inhibiting MCF7 cell proliferation was acetoxystachybotrydial acetate with an EC50 value of 0.39 µM. In addition, acetoxystachybotrydial acetate turned out to inhibit the growth of all three cell lines completely at a concentration of 1 µM. In contrast, cell viability was impaired only moderately, to 37%, 14% and 23% in MCF7, A427 and A431 cells, respectively.
Collapse
|
9
|
Haidar S, Jürgens F, Aichele D, Jose J. In Silico and In Vitro Studies of Natural Compounds as Human CK2 Inhibitors. Curr Comput Aided Drug Des 2021; 17:323-331. [PMID: 32160849 DOI: 10.2174/1573409916666200311150744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/26/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Casein Kinase 2 (CK2) is a ubiquitous cellular serine-threonine kinase with broad spectrum of substrates. This enzyme is widely expressed in eukaryotic cells and is overexpressed in different human cancers. Thus, the inhibition of CK2 can induce the physiological process of apoptosis leading to tumor cell death. OBJECTIVES Selecting natural inhibitors toward the target enzyme using database mining. METHODS With our continuous effort to discover new compounds with CK2 inhibitory effect, several commercial natural databases were searched using molecular modeling approach and the selected compounds were evaluated in vitro. RESULTS Three compounds were selected as candidates and evaluated in vitro using CK2 holoenzyme, their effect on three cancer cell lines was determined. The selected candidates were weak inhibitors toward the target enzyme, only one compound showed moderate effect on cell viability. CONCLUSION Several natural databases were screened, compounds were selected and tested in vitro. Despite the unexpected low inhibitory activity of the tested compounds, this study can help in directing the search of potent CK2 inhibitors and better understand the binding requirements of the ATP competitive inhibitors.
Collapse
Affiliation(s)
- Samer Haidar
- Institute for Pharmaceutical and Medicinal Chemistry, Pharma Campus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Franziska Jürgens
- Institute for Pharmaceutical and Medicinal Chemistry, Pharma Campus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Dagmar Aichele
- Institute for Pharmaceutical and Medicinal Chemistry, Pharma Campus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| | - Joachim Jose
- Institute for Pharmaceutical and Medicinal Chemistry, Pharma Campus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany
| |
Collapse
|
10
|
Gao YQ, Hou Y, Chen J, Zhen Y, Xu D, Zhang H, Wei H, Xie W. Asymmetric synthesis of 9-alkyl tetrahydroxanthenones via tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid. Org Biomol Chem 2021; 19:348-354. [PMID: 33300926 DOI: 10.1039/d0ob02140g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical molecules, in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongbo Wei
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China. and Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Righetti G, Casale M, Tonelli M, Liessi N, Fossa P, Pedemonte N, Millo E, Cichero E. New Insights into the Binding Features of F508del CFTR Potentiators: A Molecular Docking, Pharmacophore Mapping and QSAR Analysis Approach. Pharmaceuticals (Basel) 2020; 13:ph13120445. [PMID: 33291847 PMCID: PMC7762081 DOI: 10.3390/ph13120445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. To combat this disease, many life-prolonging therapies are required and deeply investigated, including the development of the so-called cystic fibrosis transmembrane conductance regulator (CFTR) modulators, such as correctors and potentiators. Combination therapy with the two series of drugs led to the approval of several multi-drug effective treatments, such as Orkambi, and to the recent promising evaluation of the triple-combination Elexacaftor-Tezacaftor-Ivacaftor. This scenario enlightened the effectiveness of the multi-drug approach to pave the way for the discovery of novel therapeutic agents to contrast CF. The recent X-crystallographic data about the human CFTR in complex with the well-known potentiator Ivacaftor (VX-770) opened the possibility to apply a computational study aimed to explore the key features involved in the potentiator binding. Herein, we discussed molecular docking studies performed onto the chemotypes so far discussed in the literature as CFTR potentiator, reporting the most relevant interactions responsible for their mechanism of action, involving Van der Waals interactions and π–π stacking with F236, Y304, F305 and F312, as well as H-bonding F931, Y304, S308 and R933. This kind of positioning will stabilize the effective potentiator at the CFTR channel. These data have been accompanied by pharmacophore analyses, which promoted the design of novel derivatives endowed with a main (hetero)aromatic core connected to proper substituents, featuring H-bonding moieties. A highly predictive quantitative-structure activity relationship (QSAR) model has been developed, giving a cross-validated r2 (r2cv) = 0.74, a non-cross validated r2 (r2ncv) = 0.90, root mean square error (RMSE) = 0.347, and a test set r2 (r2pred) = 0.86. On the whole, the results are expected to gain useful information to guide the further development and optimization of new CFTR potentiators.
Collapse
Affiliation(s)
- Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
| | - Monica Casale
- Department of Pharmacy, Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
| | - Nara Liessi
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; (N.L.); (E.M.)
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
- Correspondence: (P.F.); (E.C.); Tel.: +39-010-353-8238 (P.F.); +39-010-353-8370 (E.C.); Fax: +39-010-353-8399 (P.F.); +39-010-353-8399 (E.C.)
| | | | - Enrico Millo
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 9, 16132 Genoa, Italy; (N.L.); (E.M.)
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (G.R.); (M.T.)
- Correspondence: (P.F.); (E.C.); Tel.: +39-010-353-8238 (P.F.); +39-010-353-8370 (E.C.); Fax: +39-010-353-8399 (P.F.); +39-010-353-8399 (E.C.)
| |
Collapse
|
12
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
13
|
Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110391. [PMID: 33202687 PMCID: PMC7697893 DOI: 10.3390/ph13110391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1–16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.
Collapse
|
14
|
Nifant'ev IE, Ivchenko PV. Synthesis of Heteroarene‐Fused Cyclopentadienes and Related Compounds Suitable for Metallocene Preparation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ilya E. Nifant'ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS Leninsky pr. 22 119991 Moscow Russian Federation
- Department of Chemistry M.V. Lomonosov Moscow University Leninskie gory 1–3 119991 Moscow Russian Federation
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS Leninsky pr. 22 119991 Moscow Russian Federation
- Department of Chemistry M.V. Lomonosov Moscow University Leninskie gory 1–3 119991 Moscow Russian Federation
| |
Collapse
|
15
|
Protopopov MV, Vdovin VS, Starosyla SA, Borysenko IP, Prykhod'ko AO, Lukashov SS, Bilokin YV, Bdzhola VG, Yarmoluk SM. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg Chem 2020; 102:104062. [PMID: 32683178 DOI: 10.1016/j.bioorg.2020.104062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
In this work, we describe the design, synthesis and SAR studies of 2-benzylidenebenzofuran-3-ones (aurones), a new family of potent inhibitors of CK2. A series of aurones have been synthesized. These compounds are structurally related to the synthetic flavones and showed nanomolar activities towards CK2. Biochemical tests revealed that 20 newly synthesized compounds inhibited CK2 with IC50 values in the nanomolar range. Further property-based optimization of aurones was performed, yielding a series of CK2 inhibitors with enhanced lipophilic efficiency. The most potent compound 12m (BFO13) has CLipE = 4.94 (CLogP = 3.5; IC50 = 3.6 nM) commensurable with the best known inhibitors of CK2.
Collapse
Affiliation(s)
- M V Protopopov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | - V S Vdovin
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S A Starosyla
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - I P Borysenko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - A O Prykhod'ko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - S S Lukashov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Y V Bilokin
- OTAVA Ltd., 400 Applewood Crescent, Unit 100, Vaughan, Ontario L4K 0C3, Canada
| | - V G Bdzhola
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S M Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| |
Collapse
|
16
|
Hammad S, Bouaziz-Terrachet S, Meghnem R, Meziane D. Pharmacophore development, drug-likeness analysis, molecular docking, and molecular dynamics simulations for identification of new CK2 inhibitors. J Mol Model 2020; 26:160. [PMID: 32472293 DOI: 10.1007/s00894-020-04408-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein kinase 2 (CK2), an essential serine/threonine casein kinase, is considered an interesting target for cancer treatments. Different molecular modeling approaches such as pharmacophore modeling, molecular docking, and molecular dynamics simulations have been used to develop new CK2 inhibitors. This study presents a pharmacophore model that was generated by combining and merging the structure-based and ligand-based pharmacophore features and validated using receiver operating characteristic (ROC). Based on validation results revealing good predictive ability, this pharmacophore model was used as a three-dimensional query in a virtual screening simulation. Several compounds with different chemical scaffolds were retrieved as hits, which were further analyzed and refined using several molecular property filters. The obtained compounds were then filtered and compared to the crystallographic ligand on the basis of their predicted docking energies, binding mode, and interactions with CK2 active site residues. This step resulted in a compound with a high pharmacophore fit value and better docking energy. Molecular dynamics simulation indicated stable binding of the predicted compound to CK2 protein, characterized by root mean square deviation (RMSD) and root mean square fluctuation (RMSF) and hydrogen bond. Graphical abstract.
Collapse
Affiliation(s)
- Sara Hammad
- Department of Chemistry, Faculty of Sciences, University of Mouloud Maamri, Tizi Ouzou, Algeria.,Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumédiène, Algiers, Algeria
| | - Souhila Bouaziz-Terrachet
- Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumédiène, Algiers, Algeria. .,Department of Chemistry, Faculty of Sciences, University of Mohamed Bouguerra, Boumerdes, Algeria.
| | - Rosa Meghnem
- Department of Chemistry, Faculty of Sciences, University of Mouloud Maamri, Tizi Ouzou, Algeria.,Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumédiène, Algiers, Algeria
| | - Dalila Meziane
- Department of Chemistry, Faculty of Sciences, University of Mouloud Maamri, Tizi Ouzou, Algeria
| |
Collapse
|
17
|
Haidar S, Marminon C, Aichele D, Nacereddine A, Zeinyeh W, Bouzina A, Berredjem M, Ettouati L, Bouaziz Z, Le Borgne M, Jose J. QSAR Model of Indeno[1,2- b]indole Derivatives and Identification of N-isopentyl-2-methyl-4,9-dioxo-4,9-Dihydronaphtho[2,3- b]furan-3-carboxamide as a Potent CK2 Inhibitor. Molecules 2019; 25:molecules25010097. [PMID: 31888043 PMCID: PMC6982966 DOI: 10.3390/molecules25010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/25/2022] Open
Abstract
Casein kinase II (CK2) is an intensively studied enzyme, involved in different diseases, cancer in particular. Different scaffolds were used to develop inhibitors of this enzyme. Here, we report on the synthesis and biological evaluation of twenty phenolic, ketonic, and para-quinonic indeno[1,2-b]indole derivatives as CK2 inhibitors. The most active compounds were 5-isopropyl-1-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4h and 1,3-dibromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4w with identical IC50 values of 0.11 µM. Furthermore, the development of a QSAR model based on the structure of indeno[1,2-b]indoles was performed. This model was used to predict the activity of 25 compounds with naphtho[2,3-b]furan-4,9-dione derivatives, which were previously predicted as CK2 inhibitors via a molecular modeling approach. The activities of four naphtho[2,3-b]furan-4,9-dione derivatives were determined in vitro and one of them (N-isopentyl-2-methyl-4,9-dioxo-4,9-dihydronaphtho[2,3-b]furan-3-carboxamide) turned out to inhibit CK2 with an IC50 value of 2.33 µM. All four candidates were able to reduce the cell viability by more than 60% after 24 h of incubation using 10 µM.
Collapse
Affiliation(s)
- Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
- Faculty of Pharmacy, 17 April street, Damascus University, Damascus P.O. Box 9411, Syria
| | - Christelle Marminon
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
| | - Abdelhamid Nacereddine
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Wael Zeinyeh
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Abdeslem Bouzina
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar—Annaba University, Box 12, Annaba 23000, Algeria;
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar—Annaba University, Box 12, Annaba 23000, Algeria;
| | - Laurent Ettouati
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Zouhair Bouaziz
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Marc Le Borgne
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
- Correspondence: ; Tel.: +49-251-8332200; Fax: +49-251-8332211
| |
Collapse
|
18
|
Oramas-Royo S, Haidar S, Amesty Á, Martín-Acosta P, Feresin G, Tapia A, Aichele D, Jose J, Estévez-Braun A. Design, synthesis and biological evaluation of new embelin derivatives as CK2 inhibitors. Bioorg Chem 2019; 95:103520. [PMID: 31887475 DOI: 10.1016/j.bioorg.2019.103520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
A new series of furan embelin derivatives was synthesized and characterized as ATP-competitive CK2 inhibitors. The new compounds were efficiently synthesized using a multicomponent approach from embelin (1), aldehydes and isonitriles through a Knoevenagel condensation/Michael addition/heterocyclization. Several compounds with inhibitory activities in the low micromolar or even submicromolar were identified. The most active derivative was compound 4l (2-(tert-butylamino)-3-(furan-3-yl)-5-hydroxy-6-undecylbenzofuran-4,7-dione) with an IC50 value of 0.63 μM. It turned out to be an ATP competitive CK2 inhibitor with a Ki value determined to be 0.48 μM. Docking studies allowed the identification of key ligand-CK2 interactions, which could help to further optimize this family of compounds as CK2 inhibitors.
Collapse
Affiliation(s)
- Sandra Oramas-Royo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstrasse 48, 48149 Münster, Germany; Faculty of Pharmacy, Damascus University, 17 April Street, Damascus, Syria
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain
| | - Pedro Martín-Acosta
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain
| | - Gabriela Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
19
|
Lebeau J, Petit T, Dufossé L, Caro Y. Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express 2019; 9:186. [PMID: 31748828 PMCID: PMC6868082 DOI: 10.1186/s13568-019-0912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fungal naphthoquinones, like red bikaverin, are of interest due to their growing applications in designing pharmaceutical products. Though considerable work has been done on the elucidation of bikaverin biosynthesis pathway in Fusarium fujikuroi, very few reports are available regarding its bioproduction in F. oxysporum. We are hereby proposing a putative metabolic pathway for bikaverin bioproduction in a wild F. oxysporum strain by cross-linking the pigment profiles we obtained under two different fermentation conditions with literature. Naphthoquinone pigments were extracted with a pressurized liquid extraction method, and characterized by HPLC–DAD and UHPLC-HRMS. The results led to the conclusions that the F. oxysporum LCP531 strain was able to produce bikaverin and its various intermediates, e.g., pre-bikaverin, oxo-pre-bikaverin, dinor-bikaverin, me-oxo-pre-bikaverin, and nor-bikaverin, in submerged cultures in various proportions. To our knowledge, this is the first report of the isolation of these five bikaverin intermediates from F. oxysporum cultures, providing us with steady clues for confirming a bikaverin metabolic pathway as well as some of its regulatory patterns in the F. oxysporum LCP531 strain, based on the previously reported model in F. fujikuroi. Interestingly, norbikaverin accumulated along with bikaverin in mycelial cells when the strain grew on simple carbon and nitrogen sources and additional cofactors. Along bikaverin production, we were able to describe the excretion of the toxin beauvericin as main extrolite exclusively in liquid medium containing complex nitrogen and carbon sources, as well as the isolation of ergosterol derivate in mycelial extracts, which have potential for pharmaceutical uses. Therefore, culture conditions were also concluded to trigger some specific biosynthetic route favoring various metabolites of interest. Such observation is of great significance for selective production of pigments and/or prevention of occurrence of others (aka mycotoxins).
Collapse
|
20
|
In Vitro and in Silico Evaluation of Bikaverin as a Potent Inhibitor of Human Protein Kinase CK2. Molecules 2019; 24:molecules24071380. [PMID: 30965682 PMCID: PMC6479664 DOI: 10.3390/molecules24071380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Protein kinase CK2 is an emerging target for therapeutic intervention in human diseases, particularly in cancer. Inhibitors of this enzyme are currently in clinical trials, indicating the druggability of human CK2. By virtual screening of the ZINC database, we found that the natural compound bikaverin can fit well in the ATP binding site of the target enzyme CK2. By further in vitro evaluation using CK2 holoenzyme, bikaverin turned to be a potent inhibitor with an IC50 value of 1.24 µM. In this work, the cell permeability of bikaverin was determined using a Caco-2 cell permeability assay as a prerequisite for cellular evaluation and the compound turned out to be cell permeable with a Papp- value of 4.46 × 10-6 cm/s. Bikaverin was tested for its effect on cell viability using a MTT assay and cell proliferation using an EdU assay in different cancer cell lines (MCF7, A427 and A431 cells). Cell viability and cell proliferation were reduced dramatically after treatment with 10 µM bikaverin for 24 h. Additionally the IncuCyte® live-cell imaging system was applied for monitoring the cytotoxicity of bikaverin in the three tested cancer cell lines. Finally, molecular dynamic studies were performed to clarify the ligand binding mode of bikaverin at the ATP binding site of CK2 and to identify the amino acids involved.
Collapse
|
21
|
Asahara H, Kawakami S, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Unsymmetrical Tetra-Acceptor-Substituted Alkenes as Polyfunctionalized Building Blocks: A Divergent Synthesis of Densely Functionalized Pyrrolizines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haruyasu Asahara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Shu Kawakami
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co., Ltd., Fujikawa-cho, Ihara-gun, Shizuoka 421-3306, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co., Ltd., Fujikawa-cho, Ihara-gun, Shizuoka 421-3306, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co., Ltd., Fujikawa-cho, Ihara-gun, Shizuoka 421-3306, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research Center for Material Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
22
|
Martín-Acosta P, Haider S, Amesty Á, Aichele D, Jose J, Estévez-Braun A. A new family of densely functionalized fused-benzoquinones as potent human protein kinase CK2 inhibitors. Eur J Med Chem 2018; 144:410-423. [DOI: 10.1016/j.ejmech.2017.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
|
23
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
24
|
An Updated View on an Emerging Target: Selected Papers from the 8th International Conference on Protein Kinase CK2. Pharmaceuticals (Basel) 2017; 10:ph10020033. [PMID: 28333082 PMCID: PMC5490390 DOI: 10.3390/ph10020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
|