1
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
2
|
Al-Balushi RA, Haque A, Saeed M, Al-Harthy T, Al-Hinaai M, Al-Hashmi S. Unlocking the Anticancer Potential of Frankincense Essential Oils (FEOs) Through Nanotechnology: A Review. Mol Biotechnol 2024; 66:3013-3024. [PMID: 37914864 DOI: 10.1007/s12033-023-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a group of heterogeneous diseases that occur when cells in the body proliferate and divide uncontrollably. As the current treatment modalities have pros and cons, the discovery of new chemotherapeutic agents with the least side effects is one of the most investigated research areas. In this context, plant-based natural products are a rich source of drugs and have served humanity for ages. Frankincense essential oils (FEOs) are among the most promising plant-based oils in Gulf countries. In addition to their high cultural value, FEOs are also famous for their engaging biological activities, including anti-cancerous. However, the practical application of FEOs is often hindered/by their low water solubility, limited bioavailability, high volatility, and sensitivity toward heat, humidity, light, or oxygen. Thus, a significant demand for technological advancement would improve their ability to target particular cells and tissues. Nanotechnology emerged as an exciting approach in this context. Through suitable nano-formulation (functionalization or encapsulation into a nanostructure), issues arising due to solubility, targeting capability, and delivery can be controlled.
Collapse
Affiliation(s)
- Rayya A Al-Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman.
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia.
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Thuraya Al-Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Mohammed Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Salim Al-Hashmi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| |
Collapse
|
3
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
4
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
5
|
Cappellucci G, Baini G, Miraldi E, Pauletto L, De Togni H, Raso F, Biagi M. Investigation on the Efficacy of Two Food Supplements Containing a Fixed Combination of Selected Probiotics and β-Glucans or Elderberry Extract for the Immune System: Modulation on Cytokines Expression in Human THP-1 and PBMC. Foods 2024; 13:458. [PMID: 38338593 PMCID: PMC10855234 DOI: 10.3390/foods13030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Several herbal and other natural products are used as ingredients in food supplements to strengthen immunity even if, very often, marketed products are proposed without a clear rationale or experimental evidence. In this study, we aimed to investigate the effect on human monocytes (THP-1) and on ex vivo human peripheral blood mononuclear cells (PBMC) of two formulations, one containing Bifidobacterium animalis subsp. lactis Bl-04® with β-glucans (for adults) and one containing Lactobacillus rhamnosus CRL1505 with elderberry extract (for children). We compared formulations with single ingredients, with bacterial lipopolysaccharide (LPS) and the drug pidotimod; cytokines expression level was evaluated testing different concentrations of samples at two exposure times. As expected, LPS caused a non-specific huge upregulation of cytokines expression both in THP-1 and in PBMC, whereas pidotimod mainly upregulated IL-2 in PBMC and IL-8 in THP-1. The two formulations showed a difference between a pro-inflammatory stimulus such as LPS, and also from an immunostimulant drug, such as pidotimod, as they mainly upregulated the expression of IL-6 and IL-10 in PBMC but not in THP-1, in a concentration-dependent mode. Probiotics were shown to play a major role, but β-glucans and elderberry extract exerted a synergistic activity. This work demonstrated that combining selected probiotics with other natural products having immunomodulatory properties is an interesting strategy to develop innovative formulations in the sector of food supplements.
Collapse
Affiliation(s)
- Giorgio Cappellucci
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.); (E.M.)
| | - Giulia Baini
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.); (E.M.)
| | - Elisabetta Miraldi
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.); (E.M.)
| | - Lara Pauletto
- Scientific Affairs Department Schwabe Pharma Italia, 39044 Egna, Italy; (L.P.); (H.D.T.); (F.R.)
| | - Heide De Togni
- Scientific Affairs Department Schwabe Pharma Italia, 39044 Egna, Italy; (L.P.); (H.D.T.); (F.R.)
| | - Floriana Raso
- Scientific Affairs Department Schwabe Pharma Italia, 39044 Egna, Italy; (L.P.); (H.D.T.); (F.R.)
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
6
|
Alghamdi AH, Ahmed AA, Bashir M, Abdalgadir H, Khalid A, Abdallah ME, Almaimani R, Refaat B, Abdalla AN. Cytotoxic activity, selectivity, and clonogenicity of fruits and resins of Saudi medicinal plants against human liver adenocarcinoma. Drug Target Insights 2024; 18:84-93. [PMID: 39450187 PMCID: PMC11500103 DOI: 10.33393/dti.2024.3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Background Edible fruits and resins provide various benefits to mankind including potential medicinal applications. This study aimed to determine the cytotoxicity, selectivity, and clonogenicity of fruits and exudates of certain Saudi medicinal plants (Anethum graveolens (BEP-09), Opuntia ficus-indica (L.) Miller (BEP-10), Boswellia serrata Roxb. ex Colebr. (BEP-11), and Commiphora myrrha (BEP-12)) against human liver adenocarcinoma (HepG2). Methods Initial cytotoxicity and cell line selectivity against different cell lines were screened using MTT assay. The most promising extract was subjected to gas chromatography-mass spectrometry (GC-MS) analysis to determine the main phytoconstituents. Clonogenicity was checked for the most active extract. Results The selected plants' fruits and resins possess a significant cytotoxic activity estimated as IC50. The fruit of BEP-10 was found to be the most active extract against liver cancer cells (IC50 = 2.82) comparable to both doxorubicin (IC50 = 1.40) and camptothecin (IC50 = 1.11). It showed a selectivity index of 4.47 compared to the normal human foetal lung fibroblast (MRC5) cells. BEP-10 showed a dose-dependent clonogenic effect against HepG2 cells comparable to the effect of doxorubicin. The GC-MS chromatogram of BEP-10 extract revealed the presence of eight small polar molecules, representing 73% of the total identified compounds and the rest three molecules (27%) were non-polar constituents. The furan derivatives represent the chief components in BEP-10 (16.3%), while the aldehyde 5-(hydroxymethyl)-2-furancarboxaldehyde was found to be the main molecule (13.2%). Conclusion The fruits of BEP-10 have a potential cytotoxic effect particularly against HepG2. The identified phytoconstituents in the tested plant extract might contribute to the investigated cytotoxic activity.
Collapse
Affiliation(s)
- Ali Hendi Alghamdi
- Surgery Department, Faculty of Medicine, Al-Baha University, Al Baha - Saudi Arabia
| | - Aimun A.E. Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Baha University, Al Baha - Saudi Arabia
- Pharmacology Department, Faculty of Pharmacy, Omdurman Islamic University, Khartoum - Sudan
| | - Mahadi Bashir
- Surgery Department, Faculty of Medicine, Al-Baha University, Al Baha - Saudi Arabia
| | - Haidar Abdalgadir
- Biology Department, Faculty of Science, Al-Baha University, Al Baha - Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan - Saudi Arabia
| | - Mohamed E. Abdallah
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah - Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah - Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah - Saudi Arabia
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah - Saudi Arabia
- Department of Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum - Sudan
| |
Collapse
|
7
|
Montserrat-de la Paz S, Villanueva-Lazo A, Millan F, Martin-Santiago V, Rivero-Pino F, Millan-Linares MC. Production and identification of immunomodulatory peptides in intestine cells obtained from hemp industrial by-products. Food Res Int 2023; 174:113616. [PMID: 37986471 DOI: 10.1016/j.foodres.2023.113616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hemp seeds have attracted the interest of the food industry recently, to be employed as functional food, considering their nutritional composition, highlighting the high content and quality of the proteins. In this study, ten hemp protein hydrolysates (HPHs) were obtained by enzymatic hydrolysis with two food-grade proteases from a hemp protein isolate and the inflammatory properties were evaluated in Caco-2 cell line. To this end, the gene expression and the release of proinflammatory and anti-inflammatory cytokines by Caco-2 cells stimulated with bacterial lipopolysaccharide and treated with HPHs at concentrations of 50 and 100 μg/mL were analyzed. The peptides contained in each HPH were identified and those with higher quality of the match in the spectrum were subjected to in silico analyses to determine which peptides were bioactive and contributing to the immunomodulatory activity of the hydrolysates. The results suggest that the immunomodulatory properties of these HPHs could have a beneficial effect at the level of the intestinal epithelium. The HPH20A and HPH60A + 15F exerted high immunomodulatory properties based on the cytokine levels release. The oligopeptides MAEKEGFEWVSF and GLHLPSYTNTPQLVYIVK were proposed as the most active ones. The potential of these peptides as nutraceuticals to prevent or pretreat intestinal inflammation is promising, though requires validation by in vivo assays.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| | - Alvaro Villanueva-Lazo
- Department of Food and Health, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millan
- Department of Food and Health, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, 41013 Seville, Spain
| | - Victoria Martin-Santiago
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain; Department of Food and Health, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, 41013 Seville, Spain
| |
Collapse
|
8
|
Pressi G, Rigillo G, Governa P, Borgonetti V, Baini G, Rizzi R, Guarnerio C, Bertaiola O, Frigo M, Merlin M, Paltrinieri S, Zambonin R, Pandolfo S, Biagi M. A Novel Perilla frutescens (L.) Britton Cell-Derived Phytocomplex Regulates Keratinocytes Inflammatory Cascade and Barrier Function and Preserves Vaginal Mucosal Integrity In Vivo. Pharmaceutics 2023; 15:240. [PMID: 36678869 PMCID: PMC9861994 DOI: 10.3390/pharmaceutics15010240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.
Collapse
Affiliation(s)
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | | | | | | | - Marco Frigo
- Aethera Biotech s.r.l., 36043 Camisano Vicentino, Italy
| | | | | | | | | | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| |
Collapse
|
9
|
BORGONETTI V, COCETTA V, BIAGI M, CARNEVALI I, GOVERNA P, MONTOPOLI M. Anti-inflammatory activity of a fixed combination of probiotics and herbal extract in an in-vitro model of intestinal inflammation by stimulating Caco-2 cells with LPS-conditioned THP-1 cells medium. Minerva Pediatr (Torino) 2022; 74:511-518. [DOI: 10.23736/s2724-5276.20.05765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Jeličić ML, Amidžić Klarić D, Kovačić J, Verbanac D, Mornar A. Accessing Lipophilicity and Biomimetic Chromatography Profile of Biologically Active Ingredients of Botanicals Used in the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2022; 15:ph15080965. [PMID: 36015114 PMCID: PMC9413514 DOI: 10.3390/ph15080965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, various procedures have been compared for the determination of lipophilicity, hydrophobicity, and plasma protein binding of curcuminoids, boswellic acids, andrographolides, and piperine as biologically active ingredients of botanicals used in IBD treatment. Our results have shown that IAM-HPLC assay is the most suitable one for lipophilicity determination of all analytes regardless of their class and botanical source. HSA-HPAC and AGP-HPAC assays revealed that all investigated compounds have a higher affinity for HSA which is the most abundant protein in human plasma. The high affinity of biologically active compounds to all biological structures (phospholipids and proteins) admonishes that their small portion is available for therapeutic effects in IBD patients. Our experimental research is complemented by various theoretical approaches based on different algorithms for pharmacokinetic properties prediction. The similarities between experimental and calculated values were evaluated using PCA and CA as a statistical tool. The statistical analysis implies that plasma protein binding is a complex process, and theoretical approaches still cannot fully replace experimental ones.
Collapse
Affiliation(s)
- Mario-Livio Jeličić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Daniela Amidžić Klarić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Jelena Kovačić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Ana Mornar
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
11
|
Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease. Inflamm Res 2022; 71:833-846. [PMID: 35637388 DOI: 10.1007/s00011-022-01577-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Exosomes derived from bone mesenchymal stem cells (BMSCs) are potential candidates for inflammatory bowel disease (IBD) treatment. The present study investigated the therapeutic effect and potential mechanism of BMSCs-derived exosomes on pyroptosis in IBD. METHODS We induced IBD in mice and cell models through dextran sulfate sodium (DSS) and LPS, respectively. The mRNA and protein expression levels were assessed by qRT-PCR, Western blotting, IF and IHC. The concentrations of IL-1β, IL-18 and TNFα were assessed using ELISA. ROS levels were determined using DCFH-DA staining. Cell proliferation of mIECs was analysed using an MTT assay. In addition, a flow cytometry assay was performed to detect pyroptosis. Finally, the binding relationship between miR-539-5p and NLRP3 was verified by a dual luciferase reporter gene assay. RESULTS Our results revealed that intraperitoneal injection of BMSCs-derived exosomes inhibited DSS-induced pyroptosis as well as IBD symptoms in mice. In addition, BMSCs-derived exosome treatment suppressed pyroptosis, ROS levels and the concentrations of proinflammatory cytokines (IL-1β, IL-18 and TNFα) in LPS-treated mIECs in a miR-539-5p-dependent manner. Further research found that miR-539-5p suppressed NLRP3 expression in mIECs by directly targeting NLRP3. As expected, pyroptosis in LPS-treated mIECs was significantly reduced by NLRP3 knockdown. In addition, NLRP3 silencing restored the inhibitory effect of exosomes derived from BMSCs transfected with miR-539-5p inhibitor on pyroptosis in LPS-treated mIECs. CONCLUSION The present study demonstrated that BMSCs-derived exosomal miR-539-5p suppresses pyroptosis through NLRP3/caspase-1 signalling to inhibit IBD progression.
Collapse
|
12
|
Effects of in vitro simulated digestion on the antioxidant activity of different Camellia sinensis (L.) Kuntze leaves extracts. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03864-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
AbstractThe stability of tea phenolic compounds is influenced by pH value and digestive processes. However, the complex mixture of constituents in tea may modulate the stability of these compounds during digestion. In this study, tea infusions obtained from green, black, and Oolong tea leaves were exposed to in vitro simulated gastrointestinal digestion, and the stability of ( +)-catechin, caffeine, (−)-epicatechin, epigallocatechin-3-gallate (EGCG), and gallic acid was compared to that of isolated compounds. Changes in antioxidant activity were also evaluated by means of DPPH assay and in a H2O2-induced in vitro oxidative stress model, using Caco-2 cells. The stability of teas antioxidant constituents was different when using teas extract, compared to the reference compound alone, with the total phenolic content being more stable in extracts containing them in higher amount. EGCG degradation correlated well with changes in the DPPH inhibition assay, confirming its pivotal role in the antioxidant activity of tea. Differently, the antioxidant effect in the in vitro cell-based model was much more related to the initial total phenolic content of the extracts, with green tea being more effective than black tea and Oolong tea. Moreover, the antioxidant activity of teas was strongly affected by gastrointestinal digestion. Taken together, these findings suggest a protective role of teas phytocomplex against gastrointestinal digestion of antioxidant constituents. In conclusion, the effect of gastrointestinal digestion on the antioxidant activity of tea should be taken into account, as this may be different from one extract to another and information on the stability of active constituents cannot be extrapolated from data obtained using single compounds.
Collapse
|
13
|
Seo SG, Ahn YJ, Jin MH, Kang NG, Cho HS. Curcuma longa enhances IFN-γ secretion by natural killer cells through cytokines secreted from macrophages. J Food Sci 2021; 86:3492-3504. [PMID: 34250593 DOI: 10.1111/1750-3841.15821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 12/01/2022]
Abstract
Interferon-γ (IFN-γ) regulates the human immune system. To study the interaction between macrophages and natural killer (NK) cells, we established a THP-1 macrophage-conditioned media. Among the 58 natural plant extracts tested, Curcuma longa exerted the strongest IFN-γ-enhancing effect in NK-92 cells through THP-1 macrophages. C. longa extract (CLE) enhanced IFN-γ secretion 2.3- and 4.2-fold at 50 and 100 µg/ml, respectively. Therefore, we evaluated its IFN-γ-enhancing effect in vitro. Although NK-92 cells did not produce IFN-γ following treatment with C. longa, enhanced IFN-γ secretion was observed after treatment with THP-1 macrophage-conditioned media. We hypothesized that the cytokines secreted by the CLE-treated THP-1 macrophages are responsible for stimulating NK-92 cells. Cytokine array results show upregulation of cytokines, including MIP-1α, CXCL-1, IL-1β, PAI-1, and TNF-α, in CLE-treated THP-1 macrophages. To determine the cytokines responsible for augmenting IFN-γ secretion, NK-92 cells were stimulated with MIP-1α, CXCL-1, IL-1β, or PAI-1. Enzyme-linked immunosorbent assay results show that all cytokines induced IFN-γ production, although the dose response was somewhat varied. High-performance liquid chromatography analysis of CLE revealed the concentrations of three active curcuminoids, curcumin, demethoxycurcumin, and bisdemethoxycurcumin, as 6.70%, 1.00%, and 0.95%, respectively. Their mixture (with concentrations comparable to their occurrence in CLE) exerted an effect similar to that of the whole CLE. Our findings reveal that CLE indirectly stimulated NK-92 cells to secrete IFN-γ, which is mediated by cytokines produced from THP-1 macrophages. Further, we identified three curcuminoids partly responsible for this IFN-γ-enhancing effect. Therefore, C. longa can be used as a functional food ingredient owing to its immune-boosting ability. PRACTICAL APPLICATION: This study demonstrates that CLE stimulates THP-1 macrophages to secrete cytokines, which can in turn stimulate IFN-γ production by NK-92 cells. A mixture of three curcuminoids present in the extract exerted effects similar to whole CLE, demonstrating that the curcuminoids are partly responsible for the IFN-γ-enhancing effect of C. longa. Since IFN-γ is a key regulator of human immune system, these results suggest the potential use of C. longa as an immune-boosting functional food ingredient.
Collapse
Affiliation(s)
- Sang Gwon Seo
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul, South Korea
| | - Young Je Ahn
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul, South Korea
| | - Mu Hyun Jin
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul, South Korea
| | - Nae Gyu Kang
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul, South Korea
| | - Ho Song Cho
- Science Research Park, LG Household and Healthcare Ltd., Gangseo-gu, Seoul, South Korea
| |
Collapse
|
14
|
Analysis of Boswellic Acid Contents and Related Pharmacological Activities of Frankincense-Based Remedies That Modulate Inflammation. Pharmaceuticals (Basel) 2021; 14:ph14070660. [PMID: 34358086 PMCID: PMC8308689 DOI: 10.3390/ph14070660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Extracts of frankincense, the gum resin of Boswellia species, have been extensively used in traditional folk medicine since ancient times and are still of great interest as promising anti-inflammatory remedies in Western countries. Despite their common therapeutic use and the intensive pharmacological research including studies on active ingredients, modes of action, bioavailability, pharmacokinetics, and clinical efficacy, frankincense preparations are available as nutraceuticals but have not yet approved as a drug on the market. A major issue of commercially available frankincense nutraceuticals is the striking differences in their composition and quality, especially related to the content of boswellic acids (BAs) as active ingredients, mainly due to the use of material from divergent Boswellia species but also because of different work-up and extraction procedures. Here, we assessed three frequently used frankincense-based preparations for their BA content and the interference with prominent pro-inflammatory actions and targets that have been proposed, that is, 5-lipoxygenase and leukotriene formation in human neutrophils, microsomal prostaglandin E2 synthase-1, and inflammatory cytokine secretion in human blood monocytes. Our data reveal striking differences in the pharmacological efficiencies of these preparations in inflammation-related bioassays which obviously correlate with the amounts of BAs they contain. In summary, high-quality frankincense extracts display powerful anti-inflammatory effectiveness against multiple targets which can be traced back to BAs as bioactive ingredients.
Collapse
|
15
|
Cocetta V, Governa P, Borgonetti V, Tinazzi M, Peron G, Catanzaro D, Berretta M, Biagi M, Manetti F, Dall'Acqua S, Montopoli M. Cannabidiol Isolated From Cannabis sativa L. Protects Intestinal Barrier From In Vitro Inflammation and Oxidative Stress. Front Pharmacol 2021; 12:641210. [PMID: 33995048 PMCID: PMC8115937 DOI: 10.3389/fphar.2021.641210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The relevance and incidence of intestinal bowel diseases (IBD) have been increasing over the last 50 years and the current therapies are characterized by severe side effects, making essential the development of new strategies that combine efficacy and safety in the management of human IBD. Herbal products are highly considered in research aimed at discovering new approaches for IBD therapy and, among others, Cannabis sativa L. has been traditionally used for centuries as an analgesic and anti-inflammatory remedy also in different gastrointestinal disorders. This study aims to investigate the effects of different C. sativa isolated compounds in an in vitro model of intestinal epithelium. The ability of treatments to modulate markers of intestinal dysfunctions was tested on Caco-2 intestinal cell monolayers. Our results, obtained by evaluation of ROS production, TEER and paracellular permeability measurements and tight junctions evaluation show Cannabidiol as the most promising compound against intestinal inflammatory condition. Cannabidiol is able to inhibit ROS production and restore epithelial permeability during inflammatory and oxidative stress conditions, suggesting its possible application as adjuvant in IBD management.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Mattia Tinazzi
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Gregorio Peron
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Daniela Catanzaro
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Monica Montopoli
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
16
|
Development and validation of a sensitive UHPLC-MS/MS method for the measurement of β-elemonic acid in rat plasma and tissues and its application to pharmacokinetics and tissue distribution study. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122566. [PMID: 33578281 DOI: 10.1016/j.jchromb.2021.122566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
β-Elemonic acid is one of the main active ingredients isolated from Boswellia carterii Birdw. which has been reported to exhibit potential anti-inflammatory and anti-cancer activities. There is few information about pharmacokinetics and tissue distribution of β-elemonic acid by now. In this study, an ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-MS/MS) method has been developed and validated to determine β-elemonic acid in rat plasma and various tissues after intragastric administration. Oleanolic acid was chosen as an internal standard (IS) and the plasma/tissue samples were pretreated with one-step liquid-liquid extraction. Chromatographic separation was accomplished on Eclipse Plus C18 analytical column (2.1 × 50 mm, 1.8 μm) utilizing a gradient mobile phase system consisting of water (with 0.1% ammonia-solution) and acetonitrile. β-Elemonic acid and IS were detected and quantified using negative electrospray ionization in multiple reaction monitoring (MRM) mode with transitions of m/z 453.3 → 423.5 for β-elemonic acid and m/z 455.3 → 407.6 for IS. β-Elemonic acid showed good linearity over the investigated concentration range (r > 0.9934) in rat plasma and tissue sample. The method was successfully applied for determination of β-elemonic acid in bio-samples. A bimodal phenomenon appeared in the plasma concentration-time curve of the β-elemonic acid. The highest tissue concentrations were found in the intestine including jejunum, ileum and colon.
Collapse
|
17
|
Mazzotta S, Governa P, Borgonetti V, Marcolongo P, Nanni C, Gamberucci A, Manetti F, Pessina F, Carullo G, Brizzi A, Aiello F. Pinocembrin and its linolenoyl ester derivative induce wound healing activity in HaCaT cell line potentially involving a GPR120/FFA4 mediated pathway. Bioorg Chem 2021; 108:104657. [PMID: 33556697 DOI: 10.1016/j.bioorg.2021.104657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Wound healing represents an urgent need from the clinical point of view. Several diseases result in wound conditions which are difficult to treat, such as in the case of diabetic foot ulcer. Starting from there, the medicinal research has focused on various targets over the years, including GPCRs as new wound healing drug targets. In line with this, GPR120, known to be an attractive target in type 2 diabetes drug discovery, was studied to finalize the development of new wound healing agents. Pinocembrin (HW0) was evaluated as a suitable compound for interacting with GPR120, and was hybridized with fatty acids, which are known endogenous GPR120 ligands, to enhance the wound healing potential and GPR120 interactions. HW0 and its 7-linolenoyl derivative (HW3) were found to be innovative wound healing agents. Immunofluorescence and functional assays suggested that their activity was mediated by GPR120, and docking simulations showed that the compounds could share the same pocket occupied by the known GPR120 agonist, TUG-891.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Pharmaceutical Sciences, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Nanni
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Federica Pessina
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences - DoE 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
18
|
Giacosa A, Riva A, Petrangolini G, Allegrini P, Fazia T, Bernardinelli L, Gasparri C, Faliva MA, Peroni G, Perna S, Rondanelli M. Symptomatic uncomplicated diverticular disease management: an innovative food-grade formulation of Curcuma longa and Boswellia serrata extracts. Drugs Context 2021; 9:dic-2020-9-2. [PMID: 33408751 PMCID: PMC7747791 DOI: 10.7573/dic.2020-9-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background The treatment of symptomatic uncomplicated colonic diverticular disease (SUDD) is still under debate, and new data show a pathogenic role of dysbiosis and low-grade inflammation in intestinal mucosa. Recent research has highlighted the anti-inflammatory effects of botanical extracts such as Curcuma longa L. and Boswellia serrata Roxb. ex Colebr. The aim of this work is to investigate the potential role of a new delivery formulation of the association of curcumin and boswellia phytosome extracts (CBP) in SUDD. Methods In a 30-day one-group longitudinal explanatory study, patients (men and women) were treated with an innovative association of CBP standardized extracts, 500 mg bid. Results Treatment of SUDD with the association of CBP was followed by a significant decrease in abdominal pain (p<0.0001). The study group showed that CBP supplementation was efficacious within 10 days and that efficacy was maintained almost constant until the 30th day of intervention. Conclusion A phytosome of curcumin and boswellia extracts may be useful for the relief of SUDD pain. However, controlled studies should be performed for final conclusions to be drawn.
Collapse
Affiliation(s)
- Attilio Giacosa
- Gastroenterology Unit, Policlinico di Monza, Monza, 20900 Italy.,CDI (Centro Diagnostico Italiano), Milan, 20147 Italy
| | - Antonella Riva
- Research and Development Unit, Indena SpA, Milan, 20139 Italy
| | | | | | - Teresa Fazia
- Department of Brain and Behavioral Science, University of Pavia, Pavia, 27100 Italy
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Science, University of Pavia, Pavia, 27100 Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, 27100 Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, 27100 Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, 27100 Italy
| | - Simone Perna
- Department of Biology, University of Bahrain, College of Science, Sakhir Campus P. O. Box, 32038 Kingdom of Bahrain
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, 27100 Italy.,Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia, 27100 Italy
| |
Collapse
|
19
|
Lamponi S, Baratto MC, Miraldi E, Baini G, Biagi M. Chemical Profile, Antioxidant, Anti-Proliferative, Anticoagulant and Mutagenic Effects of a Hydroalcoholic Extract of Tuscan Rosmarinus officinalis. PLANTS 2021; 10:plants10010097. [PMID: 33418860 PMCID: PMC7825123 DOI: 10.3390/plants10010097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize the chemical profile of an ethanolic extract of Tuscan Rosmarinus officinalis (Roex) and to determine its in vitro bioactivity. The content of phenolic and flavonoid compounds, hydroxycinnamic acids and triterpenoids was determined, and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis revealed that rosmarinic acid and other hydroxycinnamic derivatives were the main constituents of the extract. Roex demonstrated to have both antioxidant activity and the capability to scavenge hydrogen peroxide in a concentration dependent manner. Moreover, NIH3T3 mouse fibroblasts and human breast adenocarcinoma cells MDA-MB-231 viability was influenced by the extract with an IC50 of 2.4 × 10-1 mg/mL and 4.8 × 10-1 mg/mL, respectively. The addition of Roex to the culture medium of both the above cell lines, resulted also in the reduction of cell death after H2O2 pre-treatment. The Ames test demonstrated that Roex was not genotoxic towards both TA98 and TA100 strains, with and without S9 metabolic activation. The extract, by inactivating thrombin, showed to also have an anti-coagulating effect at low concentration values. All these biological activities exerted by Roex are tightly correlated to its phytochemical profile, rich in bioactive compounds.
Collapse
Affiliation(s)
- Stefania Lamponi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Correspondence: ; Tel.: +39-0577-234386; Fax: +39-0577-234254
| | - Maria Camilla Baratto
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy; (E.M.); (G.B.); (M.B.)
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy; (E.M.); (G.B.); (M.B.)
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy; (E.M.); (G.B.); (M.B.)
| |
Collapse
|
20
|
Kordulewska NK, Topa J, Tańska M, Cieślińska A, Fiedorowicz E, Savelkoul HFJ, Jarmołowska B. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients 2020; 13:E123. [PMID: 33396265 PMCID: PMC7824174 DOI: 10.3390/nu13010123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150-450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | - Małgorzata Tańska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, 6700 AH Wageningen, The Netherlands;
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.T.); (A.C.); (E.F.); (B.J.)
| |
Collapse
|
21
|
Zimmermann-Klemd AM, Reinhardt JK, Nilsu T, Morath A, Falanga CM, Schamel WW, Huber R, Hamburger M, Gründemann C. Boswellia carteri extract and 3-O-acetyl-alpha-boswellic acid suppress T cell function. Fitoterapia 2020; 146:104694. [PMID: 32712132 DOI: 10.1016/j.fitote.2020.104694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Resins from various Boswellia species have a long track record in different cultures as a treatment for inflammatory diseases. This study was designed to provide evidence for the anti-inflammatory capacity and medicinal use of Boswellia carteri (Burseraceae). A dichloromethane (DCM) extract of B. carteri gum resin and isolated compounds thereof were immunologically characterized. Flow cytometric-based analysis was performed to investigate the impact of B. carteri extract on proliferation, viability, and function of anti-CD3 and anti-CD28 activated human primary T cells. The secretion level of IL-2 and IFN-γ was determined by a bead array-based flow cytometric technique. HPLC-based activity profiling of the B. carteri extract identified active compounds. The impact of B. carteri extract and isolated compounds on the IL-2 transcription factor activity was addressed using specially designed Jurkat reporter cells. The extract of B. carteri suppressed the proliferation of human primary T lymphocytes in vitro in a concentration-dependent manner, without inducing cytotoxicity. Thereby, the B. carteri extract further reduced the degranulation capacity and cytokine secretion of stimulated human T cells. Transcription factor analysis showed that the immunosuppressive effects of the extract are based on specific NFAT-conditioned suppression within T cell signaling. Through HPLC-based activity profiling of the extract, 3-O-acetyl-alpha-boswellic acid was identified as the compound responsible for the NFAT-based mechanism. The recent study presents a scientific base for the immunosuppressive effects of B. carteri gum resin extract including a mode-of-action via the NFAT-conditioned suppression of T lymphocyte proliferation. The immunosuppressive effects of 3-O-acetyl-alpha-boswellic acid are depicted for the first time.
Collapse
Affiliation(s)
- Amy M Zimmermann-Klemd
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob K Reinhardt
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Thanasan Nilsu
- Kamnoetvidya Science Academy, Wang Chan, Rayong, Thailand
| | - Anna Morath
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chiara M Falanga
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Parisio C, Lucarini E, Micheli L, Toti A, Khatib M, Mulinacci N, Calosi L, Bani D, Di Cesare Mannelli L, Ghelardini C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int J Mol Sci 2020; 21:E4304. [PMID: 32560291 PMCID: PMC7353021 DOI: 10.3390/ijms21124304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
23
|
Biochemistry, Safety, Pharmacological Activities, and Clinical Applications of Turmeric: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7656919. [PMID: 32454872 PMCID: PMC7238329 DOI: 10.1155/2020/7656919] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Turmeric (Curcuma longa L.) is a popular natural drug, traditionally used for the treatment of a wide range of diseases. Its root, as its most popular part used for medicinal purposes, contains different types of phytochemicals and minerals. This review summarizes what is currently known on biochemistry, safety, pharmacological activities (mechanistically), and clinical applications of turmeric. In short, curcumin is considered as the fundamental constituent in ground turmeric rhizome. Turmeric possesses several biological activities including anti-inflammatory, antioxidant, anticancer, antimutagenic, antimicrobial, antiobesity, hypolipidemic, cardioprotective, and neuroprotective effects. These reported pharmacologic activities make turmeric an important option for further clinical research. Also, there is a discussion on its safety and toxicity.
Collapse
|
24
|
Paeoniflorin Prevents Intestinal Barrier Disruption and Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in Caco-2 Cell Monolayers. Inflammation 2020; 42:2215-2225. [PMID: 31473900 DOI: 10.1007/s10753-019-01085-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) in humans is closely related to bacterial infection and the disruption of the intestinal barrier. Paeoniflorin (PF), a bioactive compound from Paeonia lactiflora Pallas plants, exerts a potential effect of anti-inflammatory reported in various researches. However, the effect of PF on intestinal barrier function and its related mechanisms has not been identified. Here, we investigate the PF potential anti-inflammatory effect on lipopolysaccharide (LPS)-stimulated human Caco-2 cell monolayers and explore its underlying key molecular mechanism. In this context, PF significantly increased TEER value, decreased intestinal epithelium FITC-dextran flux permeability, and restored the expressions of occludin, ZO-1, and claudin5 in LPS-induced Caco-2 cell. In vitro, treatment of PF significantly inhibited LPS-induced expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). In addition, we found that PF suppressed nuclear factor kappa B (NF-κB) signaling via activating the Nrf2/HO-1 signaling pathways in ILPS-stimulated Caco-2 cells. Our findings indicate that PF has an inhibitory effect on endothelial injury. Our findings suggested that PF has an anti-inflammatory effect in ILPS-stimulated Caco-2 cells, which might be a potential therapeutic agent against IBD and intestinal inflammation.
Collapse
|
25
|
Carullo G, Governa P, Spizzirri UG, Biagi M, Sciubba F, Giorgi G, Loizzo MR, Di Cocco ME, Aiello F, Restuccia D. Sangiovese cv Pomace Seeds Extract-Fortified Kefir Exerts Anti-Inflammatory Activity in an In Vitro Model of Intestinal Epithelium Using Caco-2 Cells. Antioxidants (Basel) 2020; 9:E54. [PMID: 31936207 PMCID: PMC7022605 DOI: 10.3390/antiox9010054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease and food allergies are a growing topic in the field of nutrition science. Polyphenols, which are the most important secondary metabolites of plants, demonstrated to modulate the expression and/or production of numerous proteins, but also to regulate the intestinal ecosystem. In this context, our aim was the investigation of protective effects against the gastrointestinal mucosa of fortified milk kefir obtained by adding seeds extract from Sangiovese cv. Pomace. Methods: An ultrasound-assisted method was used to obtain the extracts. All the extracts were assayed for the antioxidant activity. The best extract was used as an additive of fermented milk kefir to obtain a fortified final product. Kefir samples were analyzed by NMR spectroscopy. The efficiency of the barrier functions was evaluated by measuring trans-epithelial electric resistance (TEER) using a voltmeter. Results: the enriched kefir (Ksgn) possesses higher antioxidant performances compared to the unfortified sample (Kwht). Kwht and Ksgn did not alter Caco-2 TEER in basal condition.
Collapse
Affiliation(s)
- Gabriele Carullo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione—Dipartimento di Eccellenza 2018-2022, Università della Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (G.C.); (U.G.S.); (M.R.L.); (D.R.)
| | - Paolo Governa
- Dipartimento di Biotecnologie, Chimica e Farmacia—Dipartimento di Eccellenza 2018-2022, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy; (P.G.); (G.G.)
| | - Umile Gianfranco Spizzirri
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione—Dipartimento di Eccellenza 2018-2022, Università della Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (G.C.); (U.G.S.); (M.R.L.); (D.R.)
| | - Marco Biagi
- Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università di Siena, Via Laterina 8, 53100 Siena, Italy;
| | - Fabio Sciubba
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy; (F.S.); (M.E.D.C.)
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia—Dipartimento di Eccellenza 2018-2022, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy; (P.G.); (G.G.)
| | - Monica Rosa Loizzo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione—Dipartimento di Eccellenza 2018-2022, Università della Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (G.C.); (U.G.S.); (M.R.L.); (D.R.)
| | - Maria Enrica Di Cocco
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy; (F.S.); (M.E.D.C.)
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione—Dipartimento di Eccellenza 2018-2022, Università della Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (G.C.); (U.G.S.); (M.R.L.); (D.R.)
| | - Donatella Restuccia
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione—Dipartimento di Eccellenza 2018-2022, Università della Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (G.C.); (U.G.S.); (M.R.L.); (D.R.)
| |
Collapse
|
26
|
Beyond the Biological Effect of a Chemically Characterized Poplar Propolis: Antibacterial and Antiviral Activity and Comparison with Flurbiprofen in Cytokines Release by LPS-Stimulated Human Mononuclear Cells. Biomedicines 2019; 7:biomedicines7040073. [PMID: 31546676 PMCID: PMC6966560 DOI: 10.3390/biomedicines7040073] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Bee propolis, especially Euro-Asian poplar propolis, is among the most well-known natural products traditionally used to treat pharyngitis and minor wounds. The aim of this research was to investigate the pharmacological properties responsible for poplar propolis effectiveness using, for the first time, different in vitro approaches applied to a chemically characterized sample. The anti-inflammatory activity was compared with flurbiprofen by determining pro-inflammatory cytokines released by lipopolysaccharide-stimulated human peripheral blood mononuclear cells (PBMC). The antibacterial activity against Gram+ and Gram- bacteria was assessed, as well as antiviral effects on H1N1 influenza a virus. Poplar propolis (5 and 25 µg/mL) exerted a concentration-dependent anti-inflammatory activity. In this range of concentrations, propolis effect was not inferior to flurbiprofen on cytokines released by lipopolysaccharide (LPS)-stimulated human PBMC. Poplar propolis was found to upregulate IL-6 and IL-1β in non-stimulated PBMC. S. aureus, S. pyogenes, and S. pneumoniae were the most susceptible bacterial strains with inhibitory concentrations ranging from 156 to 625 µg/mL. A direct anti-influenza activity was not clearly seen. Effective anti-inflammatory concentrations of propolis were significantly lower than the antibacterial and antiviral ones and results suggested that the anti-inflammatory activity was the most important feature of poplar propolis linked to its rationale use in medicine.
Collapse
|
27
|
Treatment for benign thyroid nodules with a combination of natural extracts. Mol Med Rep 2019; 20:2332-2338. [PMID: 31322200 PMCID: PMC6691239 DOI: 10.3892/mmr.2019.10453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Benign thyroid nodules are among the most common endocrine disorders. Recent advances in diagnostic imaging and pathology have significantly contributed to better risk stratification of thyroid nodules. However, current treatment options, beyond surgical approaches are limited. The following placebo-controlled study presents, to the best of our knowledge, the first results of a non-invasive therapy for benign thyroid nodules. The efficacy and safety of a supplement containing spirulina, curcumin and Boswellia in euthyroid patients with benign thyroid nodules, was assessed by a 3 month, double-blind, placebo-controlled study which was completed by 34 patients. Patients with benign (FNAB documented) single thyroid nodules between 2 and 5 cm were evaluated in a prospective placebo-controlled cross-over trial, across 12 weeks (3 visits with six-week intervals). At each visit, the target thyroid nodule was recorded in two dimensions. In addition, plasma levels of thyroid stimulating hormone, free thyroxine and copper were assessed. The mean initial nodule area at V1 was 4.38±3.14 cm2, at V2 3.87±2.79 cm2, and at V3 3.53±2.84 cm2; P<0.04. Administration of the active substances (n=34) was followed by a mean area decrease of 0.611 cm2±0.933 (SD), while placebo administration (n=29) was followed by a mean decrease of 0.178 cm2±0.515 (SD), (P=0.027). The presented findings suggest that the combination of spirulina-curcumin-Boswellia is effective in reducing the size of benign thyroid nodules. However, additional studies are needed in order to elucidate the exact mechanisms through which the suggested supplement facilitates a decrease in the size of benign thyroid nodules.
Collapse
|