1
|
Mazor Y, Engelmayer N, Nashashibi H, Rottenfußer L, Lev S, Binshtok AM. Attenuation of Colitis-Induced Visceral Hypersensitivity and Pain by Selective Silencing of TRPV1-Expressing Fibers in Rat Colon. Inflamm Bowel Dis 2024; 30:1843-1851. [PMID: 38478397 PMCID: PMC11447070 DOI: 10.1093/ibd/izae036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/04/2024]
Abstract
BACKGROUND Transient receptor potential vanilloid 1 (TRPV1) cation channels, expressed on nociceptors, are well established as key contributors to abdominal pain in inflammatory bowel disease (IBD). Previous attempts at blocking these channels have been riddled with side effects. Here, we propose a novel treatment strategy, utilizing the large pore of TRPV1 channels as a drug delivery system to selectively inhibit visceral nociceptors. METHODS We induced colitis in rats using intrarectal dinitrobenzene sulfonic acid. Visceral hypersensitivity, spontaneous pain, and responsiveness of the hind paws to noxious heat stimuli were examined before and after the intrarectal application of membrane-impermeable sodium channel blocker (QX-314) alone or together with TRPV1 channel activators or blockers. RESULTS Intrarectal co-application of QX-314 with TRPV1 channel activator capsaicin significantly inhibited colitis-induced gut hypersensitivity. Furthermore, in the model of colitis, but not in naïve rats, QX-314 alone was sufficient to reverse gut hypersensitivity. The blockade of TRPV1 channels prevented this effect of QX-314. Finally, applying QX-314 alone to the inflamed gut inhibited colitis-induced ongoing pain. CONCLUSIONS Selective silencing of gut nociceptors by a membrane-impermeable sodium channel blocker entering via exogenously or endogenously activated TRPV1 channels diminishes IBD-induced gut hypersensitivity. The lack of effect on naïve rats suggests a selective analgesic effect in the inflamed gut. Our results suggest that in the colitis model, TRPV1 channels are tonically active. Furthermore, our results emphasize the role of TRPV1-expressing nociceptive fibers in colitis-induced pain. These findings provide proof of concept for using charged activity blockers for the blockade of IBD-associated abdominal pain.
Collapse
Affiliation(s)
- Yoav Mazor
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Nurit Engelmayer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Halla Nashashibi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Rottenfußer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Do N, Zuo D, Kim M, Kim M, Ha HJ, Blumberg PM, Ann J, Hwang SW, Lee J. Discovery of Dual TRPA1 and TRPV1 Antagonists as Novel Therapeutic Agents for Pain. Pharmaceuticals (Basel) 2024; 17:1209. [PMID: 39338371 PMCID: PMC11435370 DOI: 10.3390/ph17091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Pain management remains a major challenge in medicine, highlighting the need for the development of new therapeutic agents. The transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ion channels that play key roles in pain perception. Targeting both TRPA1 and TRPV1 simultaneously with dual antagonists offers a promising approach to pain relief. In this study, we investigated a series of hybrid analogs of TRPA1 and TRPV1 antagonists to discover novel therapeutic agents for pain. Among these compounds synthesized by a condensation reaction forming 1,2,4-oxadiazole between the A- and C-regions, compound 50 exhibited substantial dual-acting antagonism to TRPA1 and TRPV1 with IC50 values of 1.42, 2.84, 2.13, and 5.02 μM for hTRPA1, mTRPA1, hTRPV1, and rTRPV1, respectively. In the formalin test, compound 50 demonstrated dose-dependent analgesic activity with an ED50 of 85.9 mg/kg in phase 1 and 21.6 mg/kg in phase 2, respectively, and was able to inhibit pain behavior completely at a dose of 100 mg/kg. This study presents the discovery and characterization of a novel dual TRPA1/TRPV1 antagonist, highlighting its potential as a therapeutic agent for pain management.
Collapse
Affiliation(s)
- Nayeon Do
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongxu Zuo
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Miri Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT, Seoul 08502, Republic of Korea
| | - Peter M Blumberg
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Gao J, Ma L, Yin Y, Chen Y, Li T. High casein concentration induces diarrhea through mTOR signal pathway inhibition in post-weaning piglets. Front Microbiol 2024; 15:1430511. [PMID: 39296287 PMCID: PMC11408176 DOI: 10.3389/fmicb.2024.1430511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 09/21/2024] Open
Abstract
Weaning is one of the most challenging periods in a pig's life, during which piglets suffer from nutrition and other issues. Post-weaning diarrhea is one of the major health problems in the pig industry, leading to high morbidity and mortality rates. Previous studies have demonstrated that both the source and concentration of proteins are closely associated with post-weaning diarrhea in piglets. This study was conducted to prevent and control post-weaning diarrhea by selecting different dietary protein concentrations. To eliminate interference from other protein sources, casein was used as the only protein source in this study. Fourteen piglets (weighing 8.43 ± 0.3 kg, weaned on the 28th day) were randomly assigned to two dietary protein groups: a low-protein group (LP, containing 17% casein) and a high-protein group (HP, containing 30% casein). The experiment lasted 2 weeks, during which all piglets had ad libitum access to food and water. Diarrhea was scored on a scale from 1 to 3 (where 1 indicates normal stools and 3 indicates watery diarrhea), and growth performance measurements were recorded daily. The results showed that the piglets in the HP group had persistent diarrhea during the whole study, whereas no diarrhea was observed among piglets in the control group. The body weights and feed intake were significantly lower in piglets in the HP group compared to those in the LP group (p < 0.05). The gastrointestinal pH was significantly higher in piglets in the HP group than those in the LP group (p < 0.05). The intestinal tract microorganisms of the piglets in both groups were significantly affected by the protein concentration of the diet. A diet with high casein concentration significantly reduced the microbiota diversity. Compared to the LP group, the 30% casein diet decreased the abundance of Firmicutes, Bacteroidetes, and Actinobacteria at the phylum level and the relative abundance of Ruminococcus at the genus level. Diarrhea-related mRNA abundances were analyzed by the real-time polymerase chain reaction (PCR) in the intestine of piglets, and the results showed that the HP concentration markedly decreased the expression of solute carriers (SLC, p < 0.05). The mammalian target of rapamycin-mTOR signaling pathway (p < 0.01) was activated in the HP group. In conclusion, a high-protein diet induced post-weaning diarrhea, decreased growth performance, increased gastrointestinal pH, and reduced expression of solute carrier proteins. However, the relationship between high dietary casein feed and post-weaning diarrhea remains unclear and needs to be explored further.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Groen SR, Keszthelyi D, Szallasi A, van Veghel JA, Alleleyn AME, Csekő K, Helyes Z, Samarska I, Grabsch HI, Masclee AAM, Weerts ZZRM. Gastric Carcinogenesis and Potential Role of the Transient Receptor Potential Vanilloid 1 (TRPV1) Receptor: An Observational Histopathological Study. Int J Mol Sci 2024; 25:8294. [PMID: 39125864 PMCID: PMC11312730 DOI: 10.3390/ijms25158294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The potential role of the transient receptor potential Vanilloid 1 (TRPV1) non-selective cation channel in gastric carcinogenesis remains unclear. The main objective of this study was to evaluate TRPV1 expression in gastric cancer (GC) and precursor lesions compared with controls. Patient inclusion was based on a retrospective review of pathology records. Patients were subdivided into five groups: Helicobacter pylori (H. pylori)-associated gastritis with gastric intestinal metaplasia (GIM) (n = 12), chronic atrophic gastritis (CAG) with GIM (n = 13), H. pylori-associated gastritis without GIM (n = 19), GC (n = 6) and controls (n = 5). TRPV1 expression was determined with immunohistochemistry and was significantly higher in patients with H. pylori-associated gastritis compared with controls (p = 0.002). TRPV1 expression was even higher in the presence of GIM compared with patients without GIM and controls (p < 0.001). There was a complete loss of TRPV1 expression in patients with GC. TRPV1 expression seems to contribute to gastric-mucosal inflammation and precursors of GC, which significantly increases in cancer precursor lesions but is completely lost in GC. These findings suggest TRPV1 expression to be a potential marker for precancerous conditions and a target for individualized treatment. Longitudinal studies are necessary to further address the role of TRPV1 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Sylvester R. Groen
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Daniel Keszthelyi
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary;
| | - Jara A. van Veghel
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Annick M. E. Alleleyn
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.C.); (Z.H.)
- HUN-REN Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.C.); (Z.H.)
- HUN-REN Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
| | - Iryna Samarska
- Department of Pathology, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (I.S.); (H.I.G.)
| | - Heike I. Grabsch
- Department of Pathology, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (I.S.); (H.I.G.)
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s University, University of Leeds, Leeds LS2 9JT, UK
| | - Ad A. M. Masclee
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| | - Zsa Zsa R. M. Weerts
- Department of Gastroenterology and Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6629 HX Maastricht, The Netherlands; (S.R.G.); (J.A.v.V.); (A.M.E.A.); (Z.Z.R.M.W.)
| |
Collapse
|
5
|
Tekulapally KR, Lee JY, Kim DS, Rahman MM, Park CK, Kim YH. Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets. Front Physiol 2024; 15:1413902. [PMID: 39022308 PMCID: PMC11251976 DOI: 10.3389/fphys.2024.1413902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in the respiratory and gastrointestinal tracts. Within the respiratory system, TRPA1 exhibits diverse distribution patterns across key cell types, including epithelial cells, sensory nerves, and immune cells. Its activation serves as a frontline sensor for inhaled irritants, triggering immediate protective responses, and influencing airway integrity. Furthermore, TRPA1 has been implicated in airway tissue injury, inflammation, and the transition of fibroblasts, thereby posing challenges in conditions, such as severe asthma and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough reflex, and bronchoconstriction, highlighting its role in both immediate defense mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may modulate the release of pro-inflammatory mediators, shaping the overall inflammatory landscape. In the gastrointestinal tract, the dynamic expression of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its multifaceted involvement. It plays a crucial role in gut motility, visceral pain perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both tracts is associated with various disorders such as asthma, Chronic Obstructive Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease. This review emphasizes the potential of TRPA1 as a therapeutic target and discusses the efficacy of TRPA1 antagonists in preclinical studies and their promise for addressing respiratory and gastrointestinal conditions. Understanding the intricate interactions and cross-talk of TRPA1 across different cell types provides insight into its versatile role in maintaining homeostasis in vital physiological systems, offering a foundation for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kavya Reddy Tekulapally
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Dong Seop Kim
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Md. Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
6
|
Baidoo N, Sanger GJ. The human colon: Evidence for degenerative changes during aging and the physiological consequences. Neurogastroenterol Motil 2024:e14848. [PMID: 38887160 DOI: 10.1111/nmo.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The incidence of constipation increases among the elderly (>65 years), while abdominal pain decreases. Causes include changes in lifestyle (e.g., diet and reduced exercise), disease and medications affecting gastrointestinal functions. Degenerative changes may also occur within the colo-rectum. However, most evidence is from rodents, animals with relatively high rates of metabolism and accelerated aging, with considerable variation in time course. In humans, cellular and non-cellular changes in the aging intestine are poorly investigated. PURPOSE To examine all available studies which reported the effects of aging on cellular and tissue functions of human isolated colon, noting the region studied, sex and age of tissue donors and study size. The focus on human colon reflects the ability to access full-thickness tissue over a wide age range, compared with other gastrointestinal regions. Details are important because of natural human variability. We found age-related changes within the muscle, in the enteric and nociceptor innervation, and in the submucosa. Some involve all regions of colon, but the ascending colon appears more vulnerable. Changes can be cell- and sublayer-dependent. Mechanisms are unclear but may include development of "senescent-like" and associated inflammaging, perhaps associated with increased mucosal permeability to harmful luminal contents. In summary, reduced nociceptor innervation can explain diminished abdominal pain among the elderly. Degenerative changes within the colon wall may have little impact on symptoms and colonic functions, because of high "functional reserve," but are likely to facilitate the development of constipation during age-related challenges (e.g., lifestyle, disease, and medications), now operating against a reduced functional reserve.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life Sciences, University of Westminster, London, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth J Sanger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Dvornikova KA, Platonova ON, Bystrova EY. The Role of TRP Channels in Sepsis and Colitis. Int J Mol Sci 2024; 25:4784. [PMID: 38731999 PMCID: PMC11084600 DOI: 10.3390/ijms25094784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
To date, several members of the transient receptor potential (TRP) channels which provide a wide array of roles have been found in the gastrointestinal tract (GI). The goal of earlier research was to comprehend the intricate signaling cascades that contribute to TRP channel activation as well as how these receptors' activity affects other systems. Moreover, there is a large volume of published studies describing the role of TRP channels in a number of pathological disorders, including inflammatory bowel disease (IBD) and sepsis. Nevertheless, the generalizability of these results is subject to certain limitations. For instance, the study of IBD relies on various animal models and experimental methods, which are unable to precisely imitate the multifactorial chronic disease. The diverse pathophysiological mechanisms and unique susceptibility of animals may account for the inconsistency of the experimental data collected. The main purpose of this study was to conduct a comprehensive review and analysis of existing studies on transient receptor potential (TRP) channels implicating specific models of colitis and sepsis, with particular emphasis on their involvement in pathological disorders such as IBD and sepsis. Furthermore, the text endeavors to evaluate the generalizability of experimental findings, taking into consideration the limitations posed by animal models and experimental methodologies. Finally, we also provide an updated schematic of the most important and possible molecular signaling pathways associated with TRP channels in IBD and sepsis.
Collapse
Affiliation(s)
| | | | - Elena Y. Bystrova
- I.P. Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia; (K.A.D.); (O.N.P.)
| |
Collapse
|
8
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
9
|
Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr Opin Pharmacol 2024; 75:102447. [PMID: 38471384 DOI: 10.1016/j.coph.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.
Collapse
Affiliation(s)
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
11
|
Robinson GI, Li D, Wang B, Rahman T, Gerasymchuk M, Hudson D, Kovalchuk O, Kovalchuk I. Psilocybin and Eugenol Reduce Inflammation in Human 3D EpiIntestinal Tissue. Life (Basel) 2023; 13:2345. [PMID: 38137946 PMCID: PMC10744792 DOI: 10.3390/life13122345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation plays a pivotal role in the development and progression of inflammatory bowel disease (IBD), by contributing to tissue damage and exacerbating the immune response. The investigation of serotonin receptor 2A (5-HT2A) ligands and transient receptor potential (TRP) channel ligands is of significant interest due to their potential to modulate key inflammatory pathways, mitigate the pathological effects of inflammation, and offer new avenues for therapeutic interventions in IBD. This study investigates the anti-inflammatory effects of 5-HT2A ligands, including psilocybin, 4-AcO-DMT, and ketanserin, in combination with TRP channel ligands, including capsaicin, curcumin, and eugenol, on the inflammatory response induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in human 3D EpiIntestinal tissue. Enzyme-linked immunosorbent assay was used to assess the expression of pro-inflammatory markers TNF-α, IFN-γ, IL-6, IL-8, MCP-1, and GM-CSF. Our results show that psilocybin, 4-AcO-DMT, and eugenol significantly reduce TNF-α and IFN-γ levels, while capsaicin and curcumin decrease these markers to a lesser extent. Psilocybin effectively lowers IL-6 and IL-8 levels, but curcumin, capsaicin, and 4-AcO-DMT have limited effects on these markers. In addition, psilocybin can significantly decrease MCP-1 and GM-CSF levels. While ketanserin lowers IL-6 and GM-CSF levels, there are no effects seen on TNF-α, IFN-γ, IL-8, or MCP-1. Although synergistic effects between 5-HT2A and TRP channel ligands are minimal in this study, the results provide further evidence of the anti-inflammatory effects of psilocybin and eugenol. Further research is needed to understand the mechanisms of action and the feasibility of using these compounds as anti-inflammatory therapies for conditions like IBD.
Collapse
Affiliation(s)
- Gregory Ian Robinson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tahiat Rahman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Darryl Hudson
- GoodCap Pharmaceuticals, 520 3rd Avenue SW, Suite 1900, Calgary, AB T2P 0R3, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
12
|
Cremin M, Tay EXY, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. PLoS Pathog 2023; 19:e1011576. [PMID: 38109366 PMCID: PMC10758261 DOI: 10.1371/journal.ppat.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Emmy Xue Yun Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
13
|
López-Estévez S, Aguilera M, Gris G, de la Puente B, Carceller A, Martínez V. Genetic and Pharmacological Blockade of Sigma-1 Receptors Attenuates Inflammation-Associated Hypersensitivity during Acute Colitis in CD1 Mice. Biomedicines 2023; 11:2758. [PMID: 37893131 PMCID: PMC10604167 DOI: 10.3390/biomedicines11102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Sigma-1 receptors (σ1Rs) are implicated in nociception, including pain sensitization, and inflammation. We assessed the role of σ1Rs on acute colitis-associated hypersensitivity using both genetic (constitutive knockout) and pharmacological blockade of the receptor. Colitis was induced in CD1 wild-type (WT) and σ1R KO mice (exposure to dextran sodium sulfate, 3%). A von Frey test was used to assess referred mechanosensitivity (abdominal and plantar withdrawal responses). The effects of the selective σ1R antagonists BD1063 and E-52862 were also assessed in WT animals. The expression of immune and sensory-related markers (RT-qPCR, Western blot) was assessed in the colon and lumbosacral spinal cord. The genetic ablation or pharmacological blockade of σ1Rs attenuated acute colonic inflammation in a similar manner. Mechanosensitivity was similar in WT and σ1R KO mice before colitis. In WT mice, but not in σ1R KO, colitis was associated with the development of referred mechanical hypersensitivity, manifested as a reduction in the withdrawal thresholds to mechanical probing (paw and abdominal wall). In WT mice, BD1063 and E-52862 blocked colitis-associated hypersensitivity. A genotype- and treatment-related differential regulation of sensory-related markers was detected locally (colon) and within the spinal cord. σ1Rs are involved in the development of acute intestinal inflammation and its associated referred mechanical hypersensitivity. The selective modulation of sensory-related pathways within the colon and spinal cord might be part of the underlying mechanisms. These observations support the pharmacological use of σ1R antagonists for the treatment of intestinal inflammation-induced hypersensitivity.
Collapse
Affiliation(s)
- Sergio López-Estévez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.L.-E.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.L.-E.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Georgia Gris
- Department of Pharmacology, Welab Barcelona, 08028 Barcelona, Spain; (G.G.); (B.d.l.P.); (A.C.)
| | - Beatriz de la Puente
- Department of Pharmacology, Welab Barcelona, 08028 Barcelona, Spain; (G.G.); (B.d.l.P.); (A.C.)
| | - Alicia Carceller
- Department of Pharmacology, Welab Barcelona, 08028 Barcelona, Spain; (G.G.); (B.d.l.P.); (A.C.)
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.L.-E.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| |
Collapse
|
14
|
Robinson GI, Li D, Wang B, Zahoruiko Y, Gerasymchuk M, Hudson D, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Serotonin Receptor and Transient Receptor Potential Channel Ligands in Human Small Intestinal Epithelial Cells. Curr Issues Mol Biol 2023; 45:6743-6774. [PMID: 37623246 PMCID: PMC10453699 DOI: 10.3390/cimb45080427] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Intestinal inflammation and dysbiosis can lead to inflammatory bowel diseases (IBD) and systemic inflammation, affecting multiple organs. Developing novel anti-inflammatory therapeutics is crucial for preventing IBD progression. Serotonin receptor type 2A (5-HT2A) ligands, including psilocybin (Psi), 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), and ketanserin (Ket), along with transient receptor potential (TRP) channel ligands like capsaicin (Cap), curcumin (Cur), and eugenol (Eug), show promise as anti-inflammatory agents. In this study, we investigated the cytotoxic and anti-inflammatory effects of Psi, 4-AcO-DMT, Ket, Cap, Cur, and Eug on human small intestinal epithelial cells (HSEIC). HSEIC were exposed to tumor necrosis factor (TNF)-α and interferon (IFN)-γ for 24 h to induce an inflammatory response, followed by treatment with each compound at varying doses (0-800 μM) for 24 to 96 h. The cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein expression by Western blot (WB) analysis. As single treatments, Psi (40 μM), Cur (0.5 μM), and Eug (50 μM) significantly reduced COX-2 levels without cytotoxic effects. When combined, Psi (40 μM) and Cur (0.5 μM) exhibited synergy, resulting in a substantial decrease in COX-2 protein levels (-28× fold change), although the reduction in IL-6 was less pronounced (-1.6× fold change). Psi (20 μM) and Eug (25 μM) demonstrated the most favorable outcomes, with significant decreases in COX-2 (-19× fold change) and IL-6 (-10× fold change) protein levels. Moreover, the combination of Psi and Eug did not induce cytotoxic effects in vitro at any tested doses. This study is the first to explore the anti-inflammatory potential of psilocybin and 4-AcO-DMT in the intestines while highlighting the potential for synergy between the 5-HT2A and TRP channel ligands, specifically Psi and Eug, in alleviating the TNF-α/IFN-γ-induced inflammatory response in HSEIC. Further investigations should evaluate if the Psi and Eug combination has the therapeutic potential to treat IBD in vivo.
Collapse
Affiliation(s)
- Gregory Ian Robinson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| | - Yeva Zahoruiko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| | - Darryl Hudson
- GoodCap Pharmaceuticals, Calgary, AB T2P 0R3, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (G.I.R.); (M.G.)
| |
Collapse
|
15
|
Macpherson AJ, Pachnis V, Prinz M. Boundaries and integration between microbiota, the nervous system, and immunity. Immunity 2023; 56:1712-1726. [PMID: 37557080 DOI: 10.1016/j.immuni.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The enteric nervous system is largely autonomous, and the central nervous system is compartmentalized behind the blood-brain barrier. Yet the intestinal microbiota shapes gut function, local and systemic immune responses, and central nervous system functions including cognition and mood. In this review, we address how the gut microbiota can profoundly influence neural and immune networks. Although many of the interactions between these three systems originate in the intestinal mucosa, intestinal function and immunity are modulated by neural pathways that connect the gut and brain. Furthermore, a subset of microbe-derived penetrant molecules enters the brain and regulates central nervous system function. Understanding how these seemingly isolated entities communicate has the potential to open up new avenues for therapies and interventions.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Cremin M, Tay E, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550772. [PMID: 37546968 PMCID: PMC10402119 DOI: 10.1101/2023.07.26.550772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with the neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of the TRPV1 channel in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Emmy Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
17
|
Venneri T, Giorgini G, Leblanc N, Flamand N, Borrelli F, Silvestri C, Di Marzo V. Altered endocannabinoidome bioactive lipid levels accompany reduced DNBS-induced colonic inflammation in germ-free mice. Lipids Health Dis 2023; 22:63. [PMID: 37189092 DOI: 10.1186/s12944-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.
Collapse
Affiliation(s)
- Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giada Giorgini
- Joint International Research Unit (JIRU) for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (MicroMeNu) between Université Laval and the Consiglio Nazionale delle Ricerche (CNR), Institute of Biomolecular Chemistry, Pozzuoli, NA, Italy
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Nadine Leblanc
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cristoforo Silvestri
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada.
- Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada.
| | - Vincenzo Di Marzo
- Joint International Research Unit (JIRU) for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (MicroMeNu) between Université Laval and the Consiglio Nazionale delle Ricerche (CNR), Institute of Biomolecular Chemistry, Pozzuoli, NA, Italy.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada.
- Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
18
|
TRPV1 is involved in abdominal hyperalgesia in a mouse model of lipopolysaccharide-induced peritonitis and influences the immune response via peripheral noradrenergic neurons. Life Sci 2023; 317:121472. [PMID: 36750138 DOI: 10.1016/j.lfs.2023.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
AIMS The transient receptor potential vanilloid subfamily 1 (TRPV1) not only plays a role as a nociceptor but also has some regulatory effects on the immune system. We investigated the effects of TRPV1 on abdominal pain and the immune system in lipopolysaccharide (LPS)-induced peritonitis and the association between TRPV1 and peripheral noradrenergic neurons. MAIN METHODS Experiments were performed in 8- to 14-week-old male wild-type (WT) and TRPV1 knockout (KO) mice. The mice were intraperitoneally injected with a non-lethal dose of LPS. Pain assessment and investigation of changes in the immune system were performed. Denervation of sympathetic nerves and the noradrenergic splenic nerve was induced by intraperitoneal administration of 6-hydroxydopamine. KEY FINDINGS The levels of serum cytokines were not significantly different in WT mice and TRPV1 KO mice. Abdominal mechanical hyperalgesia was greater in WT mice than in TRPV1 KO mice from 6 h to 3 days. The numbers of macrophages, neutrophils, dendritic cells, and CD4 T cells in the spleens of TRPV1 KO mice were significantly increased compared to those in WT mice 4 days after LPS administration. By noradrenergic denervation, the numbers of those cells in WT mice increased to levels comparable to those in TRPV1 KO mice. SIGNIFICANCE In LPS-induced peritonitis, abdominal inflammatory pain was transmitted via TRPV1. In addition, TRPV1 had an anti-inflammatory effect on the spleen in the late phase of peritonitis. This anti-inflammatory effect was thought to be mediated by activation of the sympathetic nervous system and/or noradrenergic splenic nerve induced by TRPV1 activation.
Collapse
|
19
|
Wichaidit A, Patinotham N, Nukaeow K, Kaewpitak A. Upregulation of transient receptor potential ankyrin 1 (TRPA1) but not transient receptor potential vanilloid 1 (TRPV1) during primary tooth carious progression. J Oral Biosci 2023; 65:24-30. [PMID: 36587734 DOI: 10.1016/j.job.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To quantify the changes in Transient Receptor Potential Ankyrin 1 (TRPA1) and Transient Receptor Potential Vanilloid 1 (TRPV1) expression throughout the process of inflammation induced by caries. METHODS Forty primary teeth were obtained from children requiring dental extractions under local or general anesthesia. The teeth were grouped according to three stages reflecting the progression of dental caries: nine with intact dentin, 15 with exposed dentin (but not to the extent of the pulp), and 16 with exposed pulp. Immunofluorescence was used to validate the presence of dental pulp inflammation by demonstrating a decrease in NF-κB nuclear translocation. The expression levels of TRPA1 and TRPV1 were quantified in the pulp horn and the subodontoblastic and midcoronal regions of the pulp. RESULTS The percentage of cells with NF-κB nuclear translocation was highest for teeth with intact dentin and decreased progressively during the progression of caries. TRPA1 expression was lowest in intact teeth and gradually increased as caries advanced. TRPV1 expression was similar in teeth with intact dentin, exposed dentin, and exposed pulp. CONCLUSION The differences in TRPA1 and TRPV1 expression in response to caries suggest that these receptors play unique roles in the immune response during the progression of caries and that the pathophysiology of inflammation in the dental pulp varies between the early and late stages of caries.
Collapse
Affiliation(s)
- Alisa Wichaidit
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Namthip Patinotham
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Kullanun Nukaeow
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Aunwaya Kaewpitak
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand.
| |
Collapse
|
20
|
Xie Z, Feng J, Hibberd TJ, Chen BN, Zhao Y, Zang K, Hu X, Yang X, Chen L, Brookes SJ, Spencer NJ, Hu H. Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity. Neuron 2023; 111:526-538.e4. [PMID: 36563677 PMCID: PMC9957938 DOI: 10.1016/j.neuron.2022.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Inflammatory and functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and obstructive bowel disorder (OBD) underlie the most prevalent forms of visceral pain. Although visceral pain can be generally provoked by mechanical distension/stretch, the mechanisms that underlie visceral mechanosensitivity in colon-innervating visceral afferents remain elusive. Here, we show that virally mediated ablation of colon-innervating TRPV1-expressing nociceptors markedly reduces colorectal distention (CRD)-evoked visceromotor response (VMR) in mice. Selective ablation of the stretch-activated Piezo2 channels from TRPV1 lineage neurons substantially reduces mechanically evoked visceral afferent action potential firing and CRD-induced VMR under physiological conditions, as well as in mouse models of zymosan-induced IBS and partial colon obstruction (PCO). Collectively, our results demonstrate that mechanosensitive Piezo2 channels expressed by TRPV1-lineage nociceptors powerfully contribute to visceral mechanosensitivity and nociception under physiological conditions and visceral hypersensitivity under pathological conditions in mice, uncovering potential therapeutic targets for the treatment of visceral pain.
Collapse
Affiliation(s)
- Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Neurogastroenterology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Xueming Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Xingliang Yang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lvyi Chen
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Simon J Brookes
- Neurogastroenterology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Maddah M, Hoseinian N, Pourfath M. An ensemble docking-based virtual screening according to different TRPV1 pore states toward identifying phytochemical activators. NEW J CHEM 2023. [DOI: 10.1039/d2nj04918j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identifying phytochemical activators for TRPV1 using ensemble-based virtual screening, machine learning, and MD simulation.
Collapse
Affiliation(s)
- Mina Maddah
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| | - Nadia Hoseinian
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Zhang H, Wang C, Zhang K, Kamau PM, Luo A, Tian L, Lai R. The role of TRPA1 channels in thermosensation. CELL INSIGHT 2022; 1:100059. [PMID: 37193355 PMCID: PMC10120293 DOI: 10.1016/j.cellin.2022.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/18/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Chengsan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lifeng Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
23
|
López‐Estévez S, López‐Torrellardona JM, Parera M, Martínez V. Long-lasting visceral hypersensitivity in a model of DSS-induced colitis in rats. Neurogastroenterol Motil 2022; 34:e14441. [PMID: 36239298 PMCID: PMC9787759 DOI: 10.1111/nmo.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Persistent visceral hypersensitivity is a key component of functional and inflammatory gastrointestinal diseases. Current animal models fail to fully reproduce the characteristics of visceral pain in humans, particularly as it relates to persistent hypersensitivity. This work explores the validity of DSS-induced colitis in rats as a model to mimic chronic intestinal hypersensitivity. METHODS Exposure to DSS (5% for 7 days) was used to induce colitis in rats. Thereafter, changes in viscerosensitivity (visceromotor responses to colorectal distension-CRD), the presence of somatic referred pain (mechanosensitivity of the hind paws, von Frey test) and the expression (qRT-PCR) of sensory-related markers (colon, lumbosacral DRGs, and lumbosacral spinal cord) were assessed at different times during the 35 days period after colitis induction. RESULTS Following colitis, a sustained increase in visceromotor responses to CRD were observed, indicative of the presence of visceral hypersensitivity. Responses in animals without colitis remained stable over time. In colitic animals, somatic referred hypersensitivity was also detected. DSS-induced colitis was associated to a differential expression of sensory-related markers (with both pro- and anti-nociceptive action) in the colon, lumbosacral DRGs and lumbosacral spinal cord; indicating the presence of peripheral and central sensitization. CONCLUSIONS AND INFERENCES DSS-induced colitis in rats is associated to the generation of a long-lasting state of visceral (colonic) hypersensitivity, despite clinical colitis resolution. This model reproduces the changes in intestinal sensitivity characteristics of inflammatory and functional gastrointestinal disorders in humans and can be used in the characterization of new pharmacological treatments against visceral pain.
Collapse
Affiliation(s)
- Sergio López‐Estévez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Marc Parera
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
24
|
Mucke HA. Patent Highlights April - May 2022. Pharm Pat Anal 2022; 11:139-145. [PMID: 36052651 DOI: 10.4155/ppa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
25
|
Zamri MHB, Ujihara Y, Nakamura M, Mofrad MRK, Sugita S. Decoding the Effect of Hydrostatic Pressure on TRPV1 Lower-Gate Conformation by Molecular-Dynamics Simulation. Int J Mol Sci 2022; 23:ijms23137366. [PMID: 35806371 PMCID: PMC9266826 DOI: 10.3390/ijms23137366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
In response to hydrostatic pressure, the cation channel transient receptor potential vanilloid 1 (TRPV1) is essential in signaling pathways linked to glaucoma. When activated, TRPV1 undergoes a gating transition from a closed to an open state that allows the influx of Ca2+ ions. However, the gating mechanism of TRPV1 in response to hydrostatic pressure at the molecular level is still lacking. To understand the effect of hydrostatic pressure on the activation of TRPV1, we conducted molecular-dynamics (MD) simulations on TRPV1 under different hydrostatic pressure configurations, with and without a cell membrane. The TRPV1 membrane-embedded model is more stable than the TPRV1-only model, indicating the importance of including the cell membrane in MD simulation. Under elevated pressure at 27.6 mmHg, we observed a more dynamic and outward motion of the TRPV1 domains in the lower-gate area than in the simulation under normal pressure at 12.6 mmHg. While a complete closed-to-open-gate transition was not evident in the limited course of our MD simulations, an increase in the channel radius at the lower gate was observed at 27.6 mmHg versus that at 12.6 mmHg. These findings provide novel information regarding the effect of hydrostatic pressure on TRPV1 channels.
Collapse
Affiliation(s)
- Muhammad Harith Bin Zamri
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Graduate School of Engineering, Nagoya 466-8555, Japan
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA;
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Correspondence: ; Tel.: +81-52-735-7125
| |
Collapse
|
26
|
López-Gómez L, Antón J, López-Tofiño Y, Pomana B, Uranga JA, Abalo R. Effects of Commercial Probiotics on Colonic Sensitivity after Acute Mucosal Irritation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116485. [PMID: 35682075 PMCID: PMC9180892 DOI: 10.3390/ijerph19116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
Gastrointestinal pathologies associated with abdominal pain, such as irritable bowel syndrome or inflammatory bowel disease, lack sufficiently effective treatments. In our study we have used a rat model of visceral pain (72 animals; n = 8–13 per experimental group) to analyze the consequences of intracolonic administration of the irritant acetic acid on visceral sensitivity, histology of the colonic wall, and inflammatory response. Moreover, we have studied the possible beneficial effects of a pretreatment with a commercial probiotic (Actimel®). Contrary to expectations, acetic acid application (7 cm proximal to the anus) decreased the nociceptive response to intracolonic mechanical stimulation, with a slight increase in the histological damage of colonic mucosa. The intensity of these changes depended on the concentration (4% or 0.6%) and the time of application (30 or 60 min). Pretreatment with probiotics (by daily gavage, for 1 week) normalized the values obtained in the visceral sensitivity test but revealed an increase in the number of macrophages. These results suggest a possible activation of inhibitory mechanisms early after colonic irritation, not previously described (which need further experimental confirmation), and the ability of probiotics to normalize the effects of acetic acid. In addition, pretreatment with probiotics has a direct effect on immune functions, stimulating macrophagic activity.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (J.A.); (Y.L.-T.); (B.P.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Jaime Antón
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (J.A.); (Y.L.-T.); (B.P.)
| | - Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (J.A.); (Y.L.-T.); (B.P.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Bianca Pomana
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (J.A.); (Y.L.-T.); (B.P.)
| | - José A. Uranga
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (J.A.); (Y.L.-T.); (B.P.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
- Correspondence: (J.A.U.); (R.A.)
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (J.A.); (Y.L.-T.); (B.P.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Society of Pain, 28046 Madrid, Spain
- Correspondence: (J.A.U.); (R.A.)
| |
Collapse
|
27
|
Chen YS, Lian YZ, Chen WC, Chang CC, Tinkov AA, Skalny AV, Chao JCJ. Lycium barbarum Polysaccharides and Capsaicin Inhibit Oxidative Stress, Inflammatory Responses, and Pain Signaling in Rats with Dextran Sulfate Sodium-Induced Colitis. Int J Mol Sci 2022; 23:ijms23052423. [PMID: 35269566 PMCID: PMC8910612 DOI: 10.3390/ijms23052423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease with chronic relapsing symptoms. This study investigated the effects of Lycium barbarum polysaccharides (LBP) and capsaicin (CAP) in dextran sulfate sodium (DSS)-induced UC rats. Rats were divided into normal, DSS-induced UC, and UC treated with 100 mg LBP/kg bw, 12 mg CAP/kg bw, or 50 mg LBP/kg bw and 6 mg CAP/kg bw. Rats were fed LBP or CAP orally by gavage for 4 weeks, and UC model was established by feeding 5% DSS in drinking water for 6 days during week 3. Oral CAP and mixture significantly reduced disease activity index. Oral LBP significantly decreased serum malondialdehyde, interleukin (IL)-6, colonic tumor necrosis factor (TNF)-α levels, and protein expression of transient receptor potential cation channel V1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1), but increased serum catalase activity. Oral CAP significantly suppressed serum IL-6, colonic TRPV1 and TRPA1 protein expression, but elevated IL-10 levels, serum superoxide dismutase and catalase activities. The mixture of LBP and CAP significantly reduced serum IL-6, colonic TNF-α and TRPA1 protein. In conclusion, administration of LBP and/or CAP attenuate DSS-induced UC symptoms through inhibiting oxidative stress, proinflammatory cytokines, and protein expression of TRPV1 and TRPA1.
Collapse
Affiliation(s)
- Yu-Shan Chen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
- Department of Dietetics, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Yu Zhi Lian
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
| | - Wen-Chao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan; (W.-C.C.); (C.-C.C.)
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan; (W.-C.C.); (C.-C.C.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 2–4 Bolshaya Pirogovskaya Street, 119435 Moscow, Russia; (A.A.T.); (A.V.S.)
- Institute of Bioelementology, Orenburg State University, Pobedy Avenue, 13, 460018 Orenburg, Russia
| | - Anatoly V. Skalny
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 2–4 Bolshaya Pirogovskaya Street, 119435 Moscow, Russia; (A.A.T.); (A.V.S.)
- Institute of Bioelementology, Orenburg State University, Pobedy Avenue, 13, 460018 Orenburg, Russia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 9 Yanvarya Street, 29, 460000 Orenburg, Russia
| | - Jane C.-J. Chao
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
- Master Program in Global Health and Development, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6548); Fax: +886-2-2737-3112
| |
Collapse
|
28
|
Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch 2022; 474:405-420. [PMID: 35157132 PMCID: PMC8924131 DOI: 10.1007/s00424-022-02667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.
Collapse
|
29
|
Functional Transient Receptor Potential Ankyrin 1 and Vanilloid 1 Ion Channels Are Overexpressed in Human Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031921. [PMID: 35163843 PMCID: PMC8836603 DOI: 10.3390/ijms23031921] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM-5 µM) and capsaicin (100 nM-45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.
Collapse
|
30
|
Saldana-Morales FB, Kim DV, Tsai MT, Diehl GE. Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes 2022; 13:1-14. [PMID: 33929291 PMCID: PMC8096330 DOI: 10.1080/19490976.2021.1916376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During both health and disease, a coordinated response between the epithelium, immune system, and enteric nervous system is required for proper intestinal function. While each system responds to a number of common stimuli, their coordinated responses support digestion as well as responses and recovery following injury or pathogenic infections. In this review, we discuss how individual responses to common signals work together to support these critical functions.
Collapse
Affiliation(s)
- Fatima B. Saldana-Morales
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Dasom V. Kim
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ming-Ting Tsai
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA,CONTACT Gretchen E. Diehl Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10021, USA. Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
31
|
Kumar V, Kumar V, Mahajan N, Kaur J, Devi K, Dharavath RN, Singh RP, Kondepudi KK, Bishnoi M. Mucin secretory action of capsaicin prevents high fat diet-induced gut barrier dysfunction in C57BL/6 mice colon. Biomed Pharmacother 2021; 145:112452. [PMID: 34808551 DOI: 10.1016/j.biopha.2021.112452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The gut barrier - including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dysbiosis, the more local effects on the host gut - particularly the gut barrier and mucus system remain elusive. To investigate the effect of capsaicin on the gut barrier and mucus production and to understand the involvement of mucus, bacteria, and TRPV1 in these phenomena, we employed a diet-induced obesity model in C57BL/6 mice, and capsaicin (2 mg/kg/day p.o.) or mucin (1 g/kg/day p.o.) as interventions, for 12 weeks. Parameters like weight gain, glucose homeostasis, TJPs expression, mucus staining, intestinal permeability etc were studied. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments were performed to explore the role of microbiota in the beneficial effects. Mucin feeding reflected several anti-obesity effects produced by capsaicin, suggesting that mucus modulation might play a crucial role in capsaicin-induced anti-obesity effects. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments pointed to TRPV1 modulation by bacteria besides capsaicin. Capsaicin, bacteria and the host mucus system seem to act in a cyclic cascade involving TRPV1, which can be activated by capsaicin and various bacteria. These findings provide new insight into the role of TRPV1 in maintaining a healthy gut environment.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ravinder Naik Dharavath
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Ravindra Pal Singh
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India.
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Humboldt Fellow (Experienced Researcher), Klinik für Anästhesiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankanstrasse, 91054 Erlangen, Germany.
| |
Collapse
|
32
|
Luu DD, Owens AM, Mebrat MD, Van Horn WD. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Temperature (Austin) 2021; 10:67-101. [PMID: 37187836 PMCID: PMC10177694 DOI: 10.1080/23328940.2021.1983354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Aerial M. Owens
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Mubark D. Mebrat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| |
Collapse
|
33
|
Manneck D, Braun H, Schrapers KT, Stumpff F. TRPV3 and TRPV4 as candidate proteins for intestinal ammonium absorption. Acta Physiol (Oxf) 2021; 233:e13694. [PMID: 34031986 DOI: 10.1111/apha.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Absorption of ammonia from the gut has consequences that range from encephalitis in hepatic disease to global climate change induced by nitrogenous excretions from livestock. Since patch clamp data show that certain members of the transient receptor potential (TRP) family are permeable to NH4 + , participation in ammonium efflux was investigated. METHODS Digesta, mucosa and muscular samples from stomach, duodenum, jejunum, ileum, caecum and colon of pigs were analysed via colourimetry, qPCR, Western blot, immunohistochemistry and Ussing chambers. RESULTS qPCR data show high duodenal expression of TRPV6. TRPM6 was highest in jejunum and colon, with expression of TRPM7 ubiquitous. TRPM8 and TRPV1 were below detection. TRPV2 was highest in the jejunum but almost non-detectable in the colon. TRPV4 was ubiquitously expressed by mucosal and muscular layers. TRPV3 mRNA was only found in the mucosa of the caecum and colon, organs in which NH4 + was highest (>7 mmol·L-1 ). Immunohistochemically, an apical expression of TRPV3 and TRPV4 could be detected in all tissues, with effects of 2-APB and GSK106790A supporting functional expression. In symmetrical NaCl Ringer, removal of mucosal Ca2+ and Mg2+ increased colonic short circuit current (Isc ) and conductance (Gt ) by 0.18 ± 0.06 µeq·cm-2 ·h-1 and 4.70 ± 0.85 mS·cm-2 (P < .05, N/n = 4/17). Application of mucosal NH4 Cl led to dose-dependent and divalent-sensitive increases in Gt and Isc , with effects highest in the caecum and colon. CONCLUSION We propose that TRP channels contribute to the intestinal transport of ammonium, with TRPV3 and TRPV4 promising candidate proteins. Pharmacological regulation may be possible.
Collapse
Affiliation(s)
- David Manneck
- Institute of Veterinary Physiology Freie Universität Berlin Berlin Germany
| | | | | | - Friederike Stumpff
- Institute of Veterinary Physiology Freie Universität Berlin Berlin Germany
| |
Collapse
|
34
|
Antonioli L, Pellegrini C, Fornai M, Benvenuti L, D’Antongiovanni V, Colucci R, Bertani L, Di Salvo C, Semeghini G, La Motta C, Giusti L, Zallocco L, Ronci M, Quattrini L, Angelucci F, Coviello V, Oh WK, Ha QTK, Németh ZH, Haskó G, Blandizzi C. Preclinical Development of FA5, a Novel AMP-Activated Protein Kinase (AMPK) Activator as an Innovative Drug for the Management of Bowel Inflammation. Int J Mol Sci 2021; 22:6325. [PMID: 34199160 PMCID: PMC8231528 DOI: 10.3390/ijms22126325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Acadesine (ACA), a pharmacological activator of AMP-activated protein kinase (AMPK), showed a promising beneficial effect in a mouse model of colitis, indicating this drug as an alternative tool to manage IBDs. However, ACA displays some pharmacodynamic limitations precluding its therapeutical applications. Our study was aimed at evaluating the in vitro and in vivo effects of FA-5 (a novel direct AMPK activator synthesized in our laboratories) in an experimental model of colitis in rats. A set of experiments evaluated the ability of FA5 to activate AMPK and to compare the efficacy of FA5 with ACA in an experimental model of colitis. The effects of FA-5, ACA, or dexamethasone were tested in rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis to assess systemic and tissue inflammatory parameters. In in vitro experiments, FA5 induced phosphorylation, and thus the activation, of AMPK, contextually to the activation of SIRT-1. In vivo, FA5 counteracted the increase in spleen weight, improved the colon length, ameliorated macroscopic damage score, and reduced TNF and MDA tissue levels in DNBS-treated rats. Of note, FA-5 displayed an increased anti-inflammatory efficacy as compared with ACA. The novel AMPK activator FA-5 displays an improved anti-inflammatory efficacy representing a promising pharmacological tool against bowel inflammation.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| | - Carolina Pellegrini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (C.L.M.); (L.Z.); (L.Q.); (F.A.); (V.C.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| | - Vanessa D’Antongiovanni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy;
| | - Lorenzo Bertani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| | - Giorgia Semeghini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (C.L.M.); (L.Z.); (L.Q.); (F.A.); (V.C.)
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Lorenzo Zallocco
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (C.L.M.); (L.Z.); (L.Q.); (F.A.); (V.C.)
| | - Maurizio Ronci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Quattrini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (C.L.M.); (L.Z.); (L.Q.); (F.A.); (V.C.)
| | - Francesco Angelucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (C.L.M.); (L.Z.); (L.Q.); (F.A.); (V.C.)
| | - Vito Coviello
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (C.L.M.); (L.Z.); (L.Q.); (F.A.); (V.C.)
| | - Won-Keun Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; (W.-K.O.); (Q.T.K.H.)
| | - Quy Thi Kim Ha
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; (W.-K.O.); (Q.T.K.H.)
| | - Zoltan H. Németh
- Department of Anesthesiology, Columbia University, New York City, NY 10027, USA; (Z.H.N.); (G.H.)
- Department of Surgery, Morristown Medical Center, Morristown, NJ 07960, USA
| | - Gyorgy Haskó
- Department of Anesthesiology, Columbia University, New York City, NY 10027, USA; (Z.H.N.); (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (L.B.); (V.D.); (C.D.S.); (G.S.); (C.B.)
| |
Collapse
|
35
|
Tochitsky I, Jo S, Andrews N, Kotoda M, Doyle B, Shim J, Talbot S, Roberson D, Lee J, Haste L, Jordan SM, Levy BD, Bean BP, Woolf CJ. Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker. Br J Pharmacol 2021; 178:3905-3923. [PMID: 33988876 DOI: 10.1111/bph.15531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Many pain-triggering nociceptor neurons express TRPV1 or TRPA1, cation-selective channels with large pores that enable permeation of QX-314, a cationic analogue of lidocaine. Co-application of QX-314 with TRPV1 or TRPA1 activators can silence nociceptors. In this study, we describe BW-031, a novel more potent cationic sodium channel inhibitor, and test whether its application alone can inhibit pain associated with tissue inflammation and whether this strategy can also inhibit cough. EXPERIMENTAL APPROACH We tested the ability of BW-031 to inhibit pain in three models of tissue inflammation:- inflammation in rat paws produced by complete Freund's adjuvant or by surgical incision and a mouse ultraviolet (UV) burn model. We tested the ability of BW-031 to inhibit cough induced by inhalation of dilute citric acid in guinea pigs. KEY RESULTS BW-031 inhibited Nav 1.7 and Nav 1.1 channels with approximately sixfold greater potency than QX-314 when introduced inside cells. BW-031 inhibited inflammatory pain in all three models tested, producing more effective and longer-lasting inhibition of pain than QX-314 in the mouse UV burn model. BW-031 was effective in reducing cough counts by 78%-90% when applied intratracheally under isoflurane anaesthesia or by aerosol inhalation in guinea pigs with airway inflammation produced by ovalbumin sensitization. CONCLUSION AND IMPLICATIONS BW-031 is a novel cationic sodium channel inhibitor that can be applied locally as a single agent to inhibit inflammatory pain. BW-031 can also effectively inhibit cough in a guinea pig model of citric acid-induced cough, suggesting a new clinical approach to treating cough.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nick Andrews
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Masakazu Kotoda
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Benjamin Doyle
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sebastien Talbot
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Départément de Pharmacologie et Physiologie, Université de Montréal, Montreal, Canada
| | - David Roberson
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jinbo Lee
- Sage Partner International, Andover, Massachusetts, USA
| | - Louise Haste
- Pharmacology Department, Covance Inc., Huntingdon, UK
| | | | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Rodríguez Basso A, Carranza A, Zainutti VM, Bach H, Gorzalczany SB. Pharmacologycal activity of peperina (Minthostachys verticillata) on gastrointestinal tract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113712. [PMID: 33352243 DOI: 10.1016/j.jep.2020.113712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Minthostachys verticillata (Griseb.) Epling (Lamiaceae), known as Peperina is a medicinal native plant, with a traditional use as a digestive, antispasmodic and antidiarrheic. AIM OF THE STUDY Despite its folkloric use, no scientific evaluation of this plant related to the gastrointestinal inflammatory process has been carried out to date. The present study aims to assess the effects of M. verticillata on gastrointestinal system in experimental models. MATERIALS AND METHODS M. verticillata (250 and 500 mg/kg) was orally tested in a colitis model induced by acetic acid. Colon weight/length ratio, oxidative stress (oxidized and reduced glutathione), histological changes using Alcian blue and hematoxylin & eosin staining and expression of IL1β, TNFα, iNOS, COX-2 were evaluated. The effect of the extract in three additional in vivo models were studied: intestinal motility and diarrhea induced by ricin oil, and visceral pain induced by intracolonic administration of capsaicin. Finally, the activity on concentration response curves of acetylcholine, calcium chloride, potassium and serotonin were achieved in isolated rat jejunum. RESULTS In the colitis model, M. verticillata induced a significant reduction in the colon weight/length ratio, oxidative stress and expression levels of IL-1β, iNOS and COX-2. Also, the extract diminished the severity of microscopic tissue damage and showed protective effect on goblet cells. Intestinal motility, diarrhea, visceral pain-related behaviors and referred hyperalgesia were significantly reduced when the animals were treated with the extract. Furthermore, in isolated jejunum, M. verticillata significantly reduced the contraction induced by serotonin and acetylcholine. Likewise, the extract non-competitively inhibited the response-concentration induced by CaCl2 and inhibited both low and high K+-induced contractions. CONCLUSIONS This is the first study to validate traditional use of M. verticillata for digestive disorders and demonstrated that its aqueous extract could represent a promising strategy in targeting the multifactorial pathophysiology of inflammatory bowel disease.
Collapse
Affiliation(s)
- A Rodríguez Basso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - A Carranza
- CONICET- Universidad de Buenos Aires. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - V M Zainutti
- Hospital Interzonal de Agudos "Evita", Río de Janeiro, 1910, B1824DL, Buenos Aires, Argentina
| | - H Bach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacobotánica y Museo de Farmacobotánica, Argentina
| | - S B Gorzalczany
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Huang Y, Wang C, Tian X, Mao Y, Hou B, Sun Y, Gu X, Ma Z. Pioglitazone Attenuates Experimental Colitis-Associated Hyperalgesia through Improving the Intestinal Barrier Dysfunction. Inflammation 2021; 43:568-578. [PMID: 31989391 PMCID: PMC7170986 DOI: 10.1007/s10753-019-01138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impaired intestinal mucosal integrity during colitis involves the peroxisome proliferator-activated receptor-γ (PPARγ), an important anti-inflammatory factor in intestinal mucosa homoeostasis, which is a potential target in colitis. Recurrent chronic pain is a vital pathogenetic feature of colitis. Nevertheless, potential functions of PPARγ in the colitis-associated hyperalgesia remain unclear. This study aimed to investigate biological roles of pioglitazone in relieving colitis-associated pain hypersensitivity by a PPARγ tight junction protein-dependent mechanism during the course of dextran sodium sulfate (DSS)-induced intestinal inflammation. The DSS-induced colitis model was generated in C57BL/6 mice. Changes in colitis induced the injury of intestinal mucosal barrier and hyperalgesia after a 6-day treatment of pioglitazone (25 mg/kg, IP injection) were assessed through immunofluorescent, hematoxylin and eosin (H&E) staining, western blot analysis, and determination of paw withdrawal mechanical threshold. A significant reduction of paw withdrawal mechanical threshold occurred after DSS treatment. Follow-up data showed that systematic administration of PPARγ agonist pioglitazone ameliorated the DSS-induced colitis and the development of colitis-associated hyperalgesia by repairing the intestinal mucosal barrier. The tight junction proteins ZO-1 and Claudin-5 were upregulated by PPARγ signaling, which in turn promoted the improvement of intestinal barrier function. Moreover, pioglitazone inhibited phosphorylation of ERK and NF-κB in the colon and decreased the levels of inflammatory cytokines in both colon spine tissues. Furthermore, systemically pioglitazone treatment inhibited the activation of microglia and astrocytes, as well as DSS-induced phosphorylation of NR2B subunit in spinal cord, which was correspondingly consistent with the pain behavior. Pioglitazone ameliorates DSS-induced colitis and attenuates colitis-associated mechanical hyperalgesia, with improving integrity of the intestinal mucosal barrier by directly upregulating tight junction proteins. The PPARγ-tight junction protein signaling might be a potential therapeutic target for the treatment of colitis-associated chronic pain.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Chenchen Wang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xinyu Tian
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yanting Mao
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Bailin Hou
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yu'e Sun
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xiaoping Gu
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| | - Zhengliang Ma
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| |
Collapse
|
38
|
Rizopoulos T, Assimakopoulou M. Transient receptor potential (TRP) channels in human colorectal cancer: evidence and perspectives. Histol Histopathol 2021; 36:515-526. [PMID: 33528023 DOI: 10.14670/hh-18-308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the civilized world. Transient receptor potential channels (TRPs) are a heterogeneous family of cation channels that play an important role in gastrointestinal physiology. TRPs have been linked with carcinogenesis in the colon and their role as potential therapeutic targets and prognostic biomarkers is under investigation.
Collapse
Affiliation(s)
- Theodoros Rizopoulos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
39
|
Sodhi RK, Singh R, Bansal Y, Bishnoi M, Parhar I, Kuhad A, Soga T. Intersections in Neuropsychiatric and Metabolic Disorders: Possible Role of TRPA1 Channels. Front Endocrinol (Lausanne) 2021; 12:771575. [PMID: 34912298 PMCID: PMC8666658 DOI: 10.3389/fendo.2021.771575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) are a huge burden to the patient, their family, and society. NPDs have been greatly associated with cardio-metabolic comorbidities such as obesity, type-2 diabetes mellitus, dysglycaemia, insulin resistance, dyslipidemia, atherosclerosis, and other cardiovascular disorders. Antipsychotics, which are frontline drugs in the treatment of schizophrenia and off-label use in other NPDs, also add to this burden by causing severe metabolic perturbations. Despite decades of research, the mechanism deciphering the link between neuropsychiatric and metabolic disorders is still unclear. In recent years, transient receptor potential Ankyrin 1 (TRPA1) channel has emerged as a potential therapeutic target for modulators. TRPA1 agonists/antagonists have shown efficacy in both neuropsychiatric disorders and appetite regulation and thus provide a crucial link between both. TRPA1 channels are activated by compounds such as cinnamaldehyde, allyl isothiocyanate, allicin and methyl syringate, which are present naturally in food items such as cinnamon, wasabi, mustard, garlic, etc. As these are present in many daily food items, it could also improve patient compliance and reduce the patients' monetary burden. In this review, we have tried to present evidence of the possible involvement of TRPA1 channels in neuropsychiatric and metabolic disorders and a possible hint towards using TRPA1 modulators to target appetite, lipid metabolism, glucose and insulin homeostasis and inflammation associated with NPDs.
Collapse
Affiliation(s)
- Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, University Grants Commission, Center of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, University Grants Commission, Center of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India
- *Correspondence: Anurag Kuhad, ; Tomoko Soga,
| | - Tomoko Soga
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Anurag Kuhad, ; Tomoko Soga,
| |
Collapse
|
40
|
Duo L, Wu T, Ke Z, Hu L, Wang C, Teng G, Zhang W, Wang W, Ge Q, Yang Y, Dai Y. Gain of Function of Ion Channel TRPV1 Exacerbates Experimental Colitis by Promoting Dendritic Cell Activation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:924-936. [PMID: 33251043 PMCID: PMC7666365 DOI: 10.1016/j.omtn.2020.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023]
Abstract
Dysregulated mucosal immunity plays an essential role in the pathophysiology of inflammatory bowel disease (IBD). Transient receptor potential vanilloid 1 (TRPV1) is a Ca2+-permeable ion channel that is implicated in modulating immune responses. However, its role in the pathogenesis of intestinal inflammation remains elusive. Here, we found that TRPV1 gain of function significantly increased the susceptibility of mice to experimental colitis, and that was associated with excessive recruitment of dendritic cells and enhanced Th17 immune responses in the lamina propria of colon. TRPV1 gain of function promoted dendritic cell activation and cytokine production upon inflammatory stimuli, and consequently enhanced dendritic cell-mediated Th17 cell differentiation. Further mechanistic studies showed that TRPV1 gain of function in dendritic cells enhanced activation of calcineurin/nuclear factor of activated T cells (NFATc2) signaling induced by inflammatory stimuli. Moreover, in patients with IBD, TRPV1 expression was increased in lamina propria cells of inflamed colon compared with healthy controls. Our findings identify an important role for TRPV1 in modulating dendritic cell activation and sustaining Th17 responses to inflammatory stimuli, which suggest that TRPV1 might be a potential therapeutic target in controlling mucosal immunity and IBD.
Collapse
Affiliation(s)
- Lina Duo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Department of Dermatology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Linghan Hu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chaohui Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Guigen Teng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Qing Ge
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yong Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
41
|
Giuliani C, Franceschi C, Luiselli D, Garagnani P, Ulijaszek S. Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Adv Nutr 2020; 11:1671-1685. [PMID: 32647890 PMCID: PMC7666896 DOI: 10.1093/advances/nmaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ecological sensing and inflammation have evolved to ensure optima between organism survival and reproductive success in different and changing environments. At the molecular level, ecological sensing consists of many types of receptors located in different tissues that orchestrate integrated responses (immune, neuroendocrine systems) to external and internal stimuli. This review describes emerging data on taste and chemosensory receptors, proposing them as broad ecological sensors and providing evidence that taste perception is shaped not only according to sense epitopes from nutrients but also in response to highly diverse external and internal stimuli. We apply a biological anthropological approach to examine how ecological sensing has been shaped by these stimuli through human evolution for complex interkingdom communication between a host and pathological and symbiotic bacteria, focusing on population-specific genetic diversity. We then focus on how these sensory receptors play a major role in inflammatory processes that form the basis of many modern common metabolic diseases such as obesity, type 2 diabetes, and aging. The impacts of human niche construction and cultural evolution in shaping environments are described with emphasis on consequent biological responsiveness.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Donata Luiselli
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Cultural Heritage (DBC), Laboratory of Ancient DNA (aDNALab), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Stanley Ulijaszek
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
43
|
Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2020; 42:389-417. [PMID: 33030712 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
|
44
|
Otagiri S, Ohnishi S, Ohara M, Fu Q, Yamamoto K, Yamamoto K, Katsurada T, Sakamoto N. Oleoylethanolamide Ameliorates Dextran Sulfate Sodium-Induced Colitis in Rats. Front Pharmacol 2020; 11:1277. [PMID: 32922296 PMCID: PMC7457075 DOI: 10.3389/fphar.2020.01277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Oleoylethanolamide (OEA) is an endogenous fatty acid ethanolamide known for its anti-inflammatory effects and its influence on gut microbiota composition; however, the effects of OEA in inflammatory bowel disease (IBD) remain unknown. During in vitro experiments, OEA downregulated the expression of tumor necrosis factor (TNF)-α and reduced phosphorylation of inhibitor of kappa (Iκ) Bα induced by lipopolysaccharide in human embryonic kidney cells. Moreover, OEA downregulated the expression of interleukin (IL)-8 and IL-1β and inhibited the phosphorylation of IκBα and p65 induced by TNF-α in human enterocytes (Caco-2). The effect of OEA in reducing the expression of IL-8 was blocked by the peroxisome proliferator-activated receptor (PPAR)-α antagonist. During in vivo experiments on rats, colitis was induced by the oral administration of 8% dextran sulfate sodium from day 0 through day 5, and OEA (20 mg/kg) was intraperitoneally injected once a day from day 0 for 6 days. OEA administration significantly ameliorated the reduction in body weight, the increase in disease activity index score, and the shortening of colon length. In rectums, OEA administration reduced the infiltration of macrophages and neutrophils and tended to reduce the histological score and the expression of inflammatory cytokines. Administration of OEA produced significant improvement in a colitis model, possibly by inhibiting the nuclear factor kappa B signaling pathway through PPAR-α receptors. OEA could be a potential new treatment for IBD.
Collapse
Affiliation(s)
- Shinsuke Otagiri
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
45
|
Upregulation of the TRPA1 Ion Channel in the Gastric Mucosa after Iodoacetamide-Induced Gastritis in Rats: A Potential New Therapeutic Target. Int J Mol Sci 2020; 21:ijms21165591. [PMID: 32764237 PMCID: PMC7460663 DOI: 10.3390/ijms21165591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Acute gastritis is often untreatable by acid secretion-inhibiting drugs. Understanding the protective mechanisms including the role of Transient Receptor Potential Ankyrin1 (TRPA1) and Vanilloid1 (TRPV1) channels localized on capsaicin-sensitive afferents and non-neuronal structures might identify novel therapeutic approaches. Therefore, we characterized a translational gastritis model using iodoacetamide (IAA) and investigated TRPA1/V1 expressions. Wistar rats and CD1, C57Bl/6J mice were exposed to IAA-containing (0.05, 0.1, 0.2, 0.3, 0.5%) drinking water for 7 or 14 days. Body weight and water consumption were recorded daily. Macroscopic lesions were scored, qualitative histopathologic investigation was performed, TRPA1/V1 immunopositivity and mRNA expressions were measured. IAA induced a concentration-dependent weight loss and reduced water intake in both species. Hyperemia, submucosal edema, inflammatory infiltration and hemorrhagic erosions developed after 7 days, while ulcers after 14 days in rats. Trpa1 mRNA/protein expressions were upregulated at both timepoints. Meanwhile, TRPV1 immunopositivity was upregulated in the gastric corpus after 0.05% IAA ingestion, but downregulated after 0.2%, whereas Trpv1 mRNA did not change. Interestingly, no macroscopic/microscopic changes were observed in mice. These are the first data for the concentration- and duration-dependent changes in the IAA-induced gastritis in rats accompanied by TRPA1 upregulation, therefore, its therapeutic potential in gastritis should further be investigated.
Collapse
|
46
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 2019; 9:1087. [PMID: 31681615 PMCID: PMC6805766 DOI: 10.3389/fonc.2019.01087] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Process of inflammation and complex interactions between immune and cancer cells within tumor microenvironment are known to drive and shape the outcome of the neoplastic disease. Recent studies increasingly show that ion channels can be used as potential targets to modulate immune response and to treat inflammatory disorders and cancer. The action of both innate and adaptive immune cells is tightly regulated by ionic signals provided by a network of distinct ion channels. TRPV1 channel, known as a capsaicin receptor, was recently documented to be expressed on the cells of the immune system but also aberrantly expressed in the several tumor types. It is activated by heat, protons, proinflammatory cytokines, and associated with pain and inflammation. TRPV1 channel is not only involved in calcium signaling fundamental for many cellular processes but also takes part in cell-environment crosstalk influencing cell behavior. Furthermore, in several studies, activation of TRPV1 by capsaicin was associated with anti-cancer effects. Therefore, TRPV1 provides a potential link between the process of inflammation, cancer and immunity, and offers new treatment possibilities. Nevertheless, in many cases, results regarding TRPV1 are contradictory and need further refinement. In this review we present the summary of the data related to the role of TRPV1 channel in the process of inflammation, cancer and immunity, limitations of the studies, and directions for future research.
Collapse
Affiliation(s)
- Joanna Katarzyna Bujak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Daria Kosmala
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Non-Analgesic Symptomatic or Disease-Modifying Potential of TRPA1. Med Sci (Basel) 2019; 7:medsci7100099. [PMID: 31547502 PMCID: PMC6836032 DOI: 10.3390/medsci7100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
TRPA1, a versatile ion channel of the Transient Receptor Potential (TRP) channel family, detects a large variety of chemicals and can contribute to signal processing of other stimuli, e.g., due to its sensitivity to cytosolic calcium elevation or phosphoinositolphosphate modulation. At first, TRPA1 was found on sensory neurons, where it can act as a sensor for potential or actual tissue damage that ultimately may elicit pain or itch as warning symptoms. This review provides an update regarding the analgesic and antipruritic potential of TRPA1 modulation and the respective clinical trials. Furthermore, TRPA1 has been found in an increasing amount of other cell types. Therefore, the main focus of the review is to discuss the non-analgesic and particularly the disease-modifying potential of TRPA1. This includes diseases of the respiratory system, cancer, ischemia, allergy, diabetes, and the gastrointestinal system. The involvement of TRPA1 in the respective pathophysiological cascades is so far mainly based on pre-clinical data.
Collapse
|
49
|
Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins (Basel) 2019; 11:toxins11080449. [PMID: 31370176 PMCID: PMC6723473 DOI: 10.3390/toxins11080449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.
Collapse
|