1
|
Niland S, Eble JA. Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape. Matrix Biol 2025:S0945-053X(25)00010-1. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Kirsch KE, Little ME, Cundari TR, El-Shaer E, Barone G, Lynch VM, Toledo SA. Direct O 2 mediated oxidation of a Ni(II)N 3O structural model complex for the active site of nickel acireductone dioxygenase (Ni-ARD): characterization, biomimetic reactivity, and enzymatic implications. Dalton Trans 2024; 53:17852-17863. [PMID: 39421893 DOI: 10.1039/d4dt02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A new biomimetic model complex of the active site of acireductone dioxygenase (ARD) was synthesized and crystallographically characterized ([Ni(ii)(N-(ethyl-N'Me2)(Py)(2-t-ButPhOH))(OTf)]-1). 1 displays carbon-carbon oxidative cleavage activity in the presence of O2 towards the substrate 2-hydroxyacetophenone. This reactivity was monitored via UV-Visible and NMR spectroscopy. We postulate that the reactivity of 1 with O2 leads to the formation of a putative Ni(III)-superoxo transient species resulting from the direct activation of O2via the nickel center during the oxidative reaction. This proposed intermediate and reaction mechanism were studied in detail using DFT calculations. 1 and its substrate bound derivatives display reactivity toward mild outer sphere oxidants, suggesting ease of access to high valent Ni coordination complexes, consistent with our calculations. If confirmed, the direct activation of O2 at a nickel center could have implications for the mechanism of action of ARD and other nickel-based dioxygenases and their respective non-traditional, enzymatic moonlighting functions, as well as contribute to a general understanding of direct oxidation of nickel(II) coordination complexes by O2.
Collapse
Affiliation(s)
- Kelsey E Kirsch
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| | - Mary E Little
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, 1155 Union Cir, Denton, Texas 76203, USA
| | - Emily El-Shaer
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Georgia Barone
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, Texas 78712, USA
| | - Santiago A Toledo
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| |
Collapse
|
4
|
Magro N, Oteo M, Romero E, Ibáñez-Moragues M, Lujan VM, Martínez L, Vela O, López-Melero ME, Arroyo AG, Garaulet G, Martínez-Torrecuadrada JL, Mulero F, Morcillo MA. Target engagement of an anti-MT1-MMP antibody for triple-negative breast cancer PET imaging and beta therapy. Nucl Med Biol 2024; 136-137:108930. [PMID: 38833768 DOI: 10.1016/j.nucmedbio.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective diagnostic and therapeutic options. Membrane type 1 matrix metalloproteinase (MT1-MMP) is an attractive biomarker for improving patient selection. This study aimed to develop a theranostic tool using a highly tumour-selective anti-MT1-MMP antibody (LEM2/15) radiolabelled with 89Zr for PET and 177Lu for therapy in a TNBC murine model. METHODS The LEM2/15 antibody and IgG isotype control were radiolabelled with 89Zr. PET imaging was performed in a TNBC orthotopic mouse model at 1, 2, 4, and 7 days after administration. Tissue biodistribution and pharmacokinetic parameters were analysed and Patlak linearisation was used to calculate the influx rate of irreversible uptake. The TNBC mice were treated with [177Lu]Lu-DOTA-LEM2/15 (single- or 3-dose regimen) or saline. Efficacy of [177Lu]Lu-DOTA-LEM2/15 was evaluated as tumour growth and DNA damage (γH2AX) in MDA 231-BrM2-831 tumours. RESULTS At 7 days post-injection, PET uptake in tumour xenografts revealed a 1.6-fold and 2.4-fold higher tumour-to-blood ratio for [89Zr]Zr-Df-LEM2/15 in the non-blocked group compared to the blocked and IgG isotype control groups, respectively. Specific uptake of LEM2/15 in TBNC tumours mediated by MT1-MMP-binding was demonstrated by the Patlak linearisation method, providing insights into the potential efficacy of LEM2/15-based treatments. A similar uptake was found for [89Zr]Zr-Df-LEM2/15 and [177Lu]Lu-DOTA-LEM2/15 in tumours 7 days post-injection (6.80 ± 1.31 vs. 5.61 ± 0.66 %ID/g). Tumour doubling time was longer in the [177Lu]Lu-DOTA-LEM2/15 3-dose regimen treated group compared to the control (50 vs. 17 days, respectively). The percentage of cells with γH2AX-foci was higher in tumours treated with [177Lu]Lu-DOTA-LEM2/15 3-dose regimen compared to tumours non-treated or treated with [177Lu]Lu-DOTA-LEM2/15 single-dose (12 % vs. 4-5 %). CONCLUSIONS The results showed that the 89Zr/177Lu-labelled anti-MT1-MMP mAb (LEM2/15) pair facilitated immune-PET imaging and reduced tumour growth in a preclinical TNBC xenograft model.
Collapse
Affiliation(s)
- Natalia Magro
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Eduardo Romero
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Victor Manuel Lujan
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Laura Martínez
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Oscar Vela
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | - Alicia G Arroyo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Miguel Angel Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| |
Collapse
|
5
|
孙 畅, 郑 士, 李 梅, 杨 铭, 秦 梦, 徐 媛, 梁 伟, 胡 建, 王 良, 李 锋, 周 虹, 杨 兰. [High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF-β signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1209-1216. [PMID: 38977352 PMCID: PMC11237290 DOI: 10.12122/j.issn.1673-4254.2024.06.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TβR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-β signaling pathway, and the expressions of MMP-2/MMP-9 and TβR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TβR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-β signaling pathway, and its high expression promotes migration of ESCC cells.
Collapse
|
6
|
Rajendran P. Unveiling the power of flavonoids: A dynamic exploration of their impact on cancer through matrix metalloproteinases regulation. Biomedicine (Taipei) 2024; 14:12-28. [PMID: 38939095 PMCID: PMC11204124 DOI: 10.37796/2211-8039.1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 06/29/2024] Open
Abstract
Cancer stands as a significant contributor to global mortality rates, primarily driven by its progression and widespread dissemination. Despite notable strides in cancer therapy, the efficacy of current treatment strategies is compromised due to their inherent toxicity and the emergence of chemoresistance. Consequently, there is a critical need to evaluate alternative therapeutic approaches, with natural compounds emerging as promising candidates, showcasing demonstrated anticancer capabilities in various research models. This review manuscript presents a comprehensive examination of the regulatory mechanisms governing the expression of matrix metalloproteinases (MMPs) and delves into the potential therapeutic role of flavonoids as agents exhibiting specific anticancer activity against MMPs. The primary aim of this study is to elucidate the diverse functions associated with MMP production in cancer and to investigate the potential of flavonoids in modulating MMP expression to inhibit metastasis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
7
|
Dessaux C, Ganier L, Guiraud L, Borg JP. Recent insights into the therapeutic strategies targeting the pseudokinase PTK7 in cancer. Oncogene 2024; 43:1973-1984. [PMID: 38773263 PMCID: PMC11196218 DOI: 10.1038/s41388-024-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
The generation of drugs counteracting deregulated protein kinases has been a major focus in cancer therapy development. Breakthroughs in this effort have produced many therapeutic agents to the benefit of patients, mostly through the development of chemical or antibody-based drugs targeting active kinases. These strategies are challenged when considering catalytically inactive protein kinases (or pseudokinases), which represent 10% of the human kinome with many of relevance in cancer. Among the so-called pseudotyrosine kinases, the PTK7 receptor tyrosine kinase (RTK) stands as a bona fide target overexpressed in several solid tumors and hematological malignancies and linked to metastasis, poor prognosis, and resistance to treatment. Despite the lack of catalytic activity, PTK7 has signaling capacities through heterodimerization with active RTKs and offers pharmacological targeting opportunities through its inactive kinase domain. Moreover, PTK7-targeting strategies based on antibody-drug conjugates, aptamers, and CAR-T cell-based therapies have demonstrated encouraging results in preclinical and clinical settings. We review the most recent data assigning to PTK7 a prominent role in cancer progression as well as current preclinical and clinical targeting strategies against RTK family pseudokinases including PTK7.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Laetitia Ganier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
- adMare BioInnovations, Vancouver, BC, Canada
| | - Louis Guiraud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
8
|
Luo W, Quan Q, Xu Z, Lei J, Peng R. Bioinformatics analysis of MMP14+ myeloid cells affecting endothelial-mesenchymal transformation and immune microenvironment in glioma. Heliyon 2024; 10:e26859. [PMID: 38434278 PMCID: PMC10904238 DOI: 10.1016/j.heliyon.2024.e26859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gliomas, known for their complex and aggressive characteristics, are deeply influenced by the tumor microenvironment. Matrix metalloproteinases (MMPs) play a vital role in shaping this environment, presenting an opportunity for novel treatment strategies. Methods We collected six bulk RNA datasets, one single-cell RNA sequencing (scRNA-seq) dataset, and gene sets related to Matrix Metalloproteinases (MMPs), Endothelial-Mesenchymal Transformation (EndMT), and sprouting angiogenesis. We computed enrichment scores using Gene Set Variation Analysis (GSVA) and Single-sample Gene Set Enrichment Analysis (ssGSEA). To analyze immune infiltration, we employed the CIBERSORT method. Data analysis techniques included the log-rank test, Cox regression, Kruskal-Wallis test, and Pearson correlation. For single-cell data, we utilized tools such as Seurat and CellChat for dimensionality reduction, clustering, and cell communication analysis. Results 1. MMP14 was identified as an independent prognostic marker, highly expressed in myeloid cells in recurrent glioblastoma, highlighting these cells as functionally significant. 2. C-C Motif Chemokine Ligand (CCL) signaling from MMP14+ myeloid cells was identified as a critical immune regulatory pathway, with high C-C Motif Chemokine Receptor 1 (CCR1) expression correlating with increased M2 macrophage infiltration and PD-L1 expression. 3. Patients with high MMP14 expression showed better responses to bevacizumab combined chemotherapy. 4. Signaling pathways involving Visfatin, VEGF, and TGFb, emanating from myeloid cells, significantly impact endothelial cells. These pathways facilitate EndMT and angiogenesis in gliomas. 5. Nicotinamide Phosphoribosyltransferase (NAMPT) showed a strong link with angiogenesis and EndMT, and its association with chemotherapy resistance and differential sensitivity to bevacizumab was evident. Conclusions MMP14+ myeloid cells are critical in promoting tumor angiogenesis via EndMT and in mediating immunosuppression through CCL signaling in glioblastoma. MMP14 and NAMPT serve as vital clinical indicators for selecting treatment regimens in recurrent glioma. The study suggests that a combined blockade of CCR1 and CD274 could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qi Quan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zihao Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jinju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Roujun Peng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
9
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
10
|
Zhang H, Yuan X, Yang Y, Wanyan Y, Tao L, Chen Y. Cathelicidin LL-37 promotes EMT, migration and metastasis of hepatocellular carcinoma cells in vitro and mouse model. Cell Adh Migr 2023; 17:20-34. [PMID: 36656313 PMCID: PMC9858423 DOI: 10.1080/19336918.2023.2168231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The effect of cathelicidin hCAP18/LL-37 in hepatocellular carcinoma (HCC) metastasis remains unclear. Here, we confirmed that LL-37 expression enhanced endothelial-mesenchymal transition (EMT), migration and invasion in HCC cells. And the HER2/EGFR-MAPK/ERK signal participated in the process above. More frequent lung metastases were observed in an LL-37-overexpressing hematogenous metastasis model. Interestingly, 1,25(OH)2D3 together with si-LL-37 significantly enhanced 1,25(OH)2D3-induced inhibition of migration and invasion in PLC/PRF-5 cells, and also enhanced reversion of the EMT process. Therefore, LL-37 is involved in HCC metastases, and may act as an important factor to attenuate the inhibitory activity of 1,25(OH)2D3 on HCC metastasis. Targeting hCAP18/LL-37 may offer a potential strategy to improve the anticancer activity of 1,25(OH)2D3 in HCC therapy.
Collapse
Affiliation(s)
- Huidan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xueli Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yaxin Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yangke Wanyan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Liping Tao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China,CONTACT Yuqing Chen Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, 1# Wenyuan Rd, Nanjing210000, Jiangsu Province, PR China
| |
Collapse
|
11
|
Aizaz M, Khan A, Khan F, Khan M, Musad Saleh EA, Nisar M, Baran N. The cross-talk between macrophages and tumor cells as a target for cancer treatment. Front Oncol 2023; 13:1259034. [PMID: 38033495 PMCID: PMC10682792 DOI: 10.3389/fonc.2023.1259034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity. TAM abundance is closely associated with poor outcome of cancer, with impediment of chemotherapy effectiveness and ultimately a dismal therapy response and inferior overall survival. Thus, cross-talk between cancer cells and TAMs is an important target for immune checkpoint therapies and metabolic interventions, spurring interest in it as a therapeutic vulnerability for both hematological cancers and solid tumors. Furthermore, targeting of this cross-talk has emerged as a promising strategy for cancer treatment with the antibody against CD47 protein, a critical macrophage checkpoint recognized as the "don't eat me" signal, as well as other metabolism-focused strategies. Therapies targeting CD47 constitute an important milestone in the advancement of anticancer research and have had promising effects on not only phagocytosis activation but also innate and adaptive immune system activation, effectively counteracting tumor cells' evasion of therapy as shown in the context of myeloid cancers. Targeting of CD47 signaling is only one of several possibilities to reverse the immunosuppressive and tumor-protective tumor environment with the aim of enhancing the antitumor response. Several preclinical studies identified signaling pathways that regulate the recruitment, polarization, or metabolism of TAMs. In this review, we summarize the current understanding of the role of macrophages in cancer progression and the mechanisms by which they communicate with tumor cells. Additionally, we dissect various therapeutic strategies developed to target macrophage-tumor cell cross-talk, including modulation of macrophage polarization, blockade of signaling pathways, and disruption of physical interactions between leukemia cells and macrophages. Finally, we highlight the challenges associated with tumor hypoxia and acidosis as barriers to effective cancer therapy and discuss opportunities for future research in this field.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maryum Nisar
- School of Interdisciplinary Engineering & Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Ameri A, Ahmed HM, Pecho RDC, Arabnozari H, Sarabadani H, Esbati R, Mirabdali S, Yazdani O. Diverse activity of miR-150 in Tumor development: shedding light on the potential mechanisms. Cancer Cell Int 2023; 23:261. [PMID: 37924077 PMCID: PMC10625198 DOI: 10.1186/s12935-023-03105-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
There is a growing interest to understand the role and mechanism of action of microRNAs (miRNAs) in cancer. The miRNAs are defined as short non-coding RNAs (18-22nt) that regulate fundamental cellular processes through mRNA targeting in multicellular organisms. The miR-150 is one of the miRNAs that have a crucial role during tumor cell progression and metastasis. Based on accumulated evidence, miR-150 acts as a double-edged sword in malignant cells, leading to either tumor-suppressive or oncogenic function. An overview of miR-150 function and interactions with regulatory and signaling pathways helps to elucidate these inconsistent effects in metastatic cells. Aberrant levels of miR-150 are detectable in metastatic cells that are closely related to cancer cell migration, invasion, and angiogenesis. The ability of miR-150 in regulating of epithelial-mesenchymal transition (EMT) process, a critical stage in tumor cell migration and metastasis, has been highlighted. Depending on the cancer cells type and gene expression profile, levels of miR-150 and potential target genes in the fundamental cellular process can be different. Interaction between miR-150 and other non-coding RNAs, such as long non-coding RNAs and circular RNAs, can have a profound effect on the behavior of metastatic cells. MiR-150 plays a significant role in cancer metastasis and may be a potential therapeutic target for preventing or treating metastatic cancer.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
13
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Li YY, Zhang LY, Xiang YH, Li D, Zhang J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 2023; 13:1127407. [PMID: 37823051 PMCID: PMC10562598 DOI: 10.3389/fonc.2023.1127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM), especially for tumor invasion and osteolytic osteopathy. By breaking down extracellular matrix (ECM) components and releasing the proteins composing the ECM and growth factors, as well as their receptors, MMPs affect tissue integrity and promote cancer cell invasion and metastasis. A vital pathophysiological characteristic of MM is the progress of osteolytic lesions, which are brought on by interactions between myeloma cells and the bone marrow microenvironment. MMPs, certainly, are one of the fundamental causes of myeloma bone disease due to their ability to degrade various types of collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also participate in the occurrence and evolution of MM and the formation of bone disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9, MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel perspectives on the clinical diagnostics and therapeutics of MM.
Collapse
Affiliation(s)
- Yan-Ying Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu-Yun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Hui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Hapach LA, Wang W, Schwager SC, Pokhriyal D, Fabiano ED, Reinhart-King CA. Phenotypically sorted highly and weakly migratory triple negative breast cancer cells exhibit migratory and metastatic commensalism. Breast Cancer Res 2023; 25:102. [PMID: 37649089 PMCID: PMC10468890 DOI: 10.1186/s13058-023-01696-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Intratumor heterogeneity is a well-established hallmark of cancer that impedes cancer research, diagnosis, and treatment. Previously, we phenotypically sorted human breast cancer cells based on migratory potential. When injected into mice, highly migratory cells were weakly metastatic and weakly migratory cells were highly metastatic. The purpose of this study was to determine whether these weakly and highly migratory cells interact with each other in vitro or in vivo. METHODS To assess the relationship between heterogeneity in cancer cell migration and metastatic fitness, MDA-MB-231 and SUM159PT triple negative breast cancer cells were phenotypically sorted into highly migratory and weakly migratory subpopulations and assayed separately and in a 1:1 mixture in vitro and in vivo for metastatic behaviors. Unpaired, two-tailed Student's t-tests, Mann-Whitney tests, ordinary, one-way ANOVAs, and Kruskal-Wallis H tests were performed as appropriate with p < 0.05 as the cutoff for statistical significance. RESULTS When highly and weakly migratory cells are co-seeded in mixed spheroids, the weakly migratory cells migrated farther than weakly migratory only spheroids. In mixed spheroids, leader-follower behavior occurred with highly migratory cells leading the weakly migratory cells in migration strands. When cell suspensions of highly migratory, weakly migratory, or a 1:1 mixture of both subpopulations were injected orthotopically into mice, both the mixed cell suspensions and weakly migratory cells showed significant distal metastasis, but the highly migratory cells did not metastasize significantly to any location. Notably, significantly more distal metastasis was observed in mice injected with the 1:1 mixture compared to either subpopulation alone. CONCLUSIONS This study suggests that weakly migratory cells interact with highly migratory cells in a commensal fashion resulting in increased migration and metastasis. Together, these findings indicate that cancer cell subpopulation migration ability does not correlate with metastatic potential and that cooperation between highly migratory and weakly migratory subpopulations can enhance overall metastatic fitness.
Collapse
Affiliation(s)
- Lauren A Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Devika Pokhriyal
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | |
Collapse
|
16
|
Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules 2023; 28:5567. [PMID: 37513440 PMCID: PMC10384300 DOI: 10.3390/molecules28145567] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.
Collapse
Affiliation(s)
- Shriefa Almutairi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Hanin Moh'd Kalloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nour A Manoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
17
|
Frolova AS, Chepikova OE, Deviataikina AS, Solonkina AD, Zamyatnin AA. New Perspectives on the Role of Nuclear Proteases in Cell Death Pathways. BIOLOGY 2023; 12:797. [PMID: 37372081 DOI: 10.3390/biology12060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Multiple factors can trigger cell death via various pathways, and nuclear proteases have emerged as essential regulators of these processes. While certain nuclear proteases have been extensively studied and their mechanisms of action are well understood, others remain poorly characterized. Regulation of nuclear protease activity is a promising therapeutic strategy that could selectively induce favorable cell death pathways in specific tissues or organs. Thus, by understanding the roles of newly discovered or predicted nuclear proteases in cell death processes, we can identify new pharmacological targets for improving therapeutic outcomes. In this article, we delved into the role of nuclear proteases in several types of cell death and explore potential avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Anastasia S Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anna S Deviataikina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alena D Solonkina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
18
|
Lee H, Youn I, Demissie R, Vaid TM, Che CT, Azar DT, Han KY. Identification of small molecule inhibitors against MMP-14 via High-Throughput screening. Bioorg Med Chem 2023; 85:117289. [PMID: 37094433 PMCID: PMC10167624 DOI: 10.1016/j.bmc.2023.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Isoo Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robel Demissie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function. Int J Mol Sci 2023; 24:ijms24065068. [PMID: 36982142 PMCID: PMC10049710 DOI: 10.3390/ijms24065068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Collapse
|
20
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
21
|
Simanullang RH, Situmorang PC, Siahaan JM, Widjaja SS, Mutiara M. Effects of Zanthoxylum acanthopodium on MMP-9 and GLUT-1 expression and histology changes in rats with cervical carcinoma. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e89368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cervical cancer is one of the most common cancers in Indonesia. It can be treated with molecular therapies targeting Matrix metallopeptidase 9 (MMP-9) and Glucose transporter (GLUT-1), which are enzymes that are involved in tumour cell invasion, metastasis and angiogenesis. Zanthoxylum acanthopodium (andaliman) is an Indonesian herb with anti-cancer properties. This study aimed to investigate the histological changes andaliman treatment caused in MMP-9 and GLUT-1 expression. This study used five groups of rats: control (C-), cancer model (C+), cancer-bearing rats with a 100-mg dose of Zanthoxylum acanthopodium methanol extract (ZAM)/BW (ZAM100), cancer-bearing rats with a 200-mg dose of ZAM /BW (ZAM200) and cancer-bearing rats with a 400-mg dose of ZAM/BW (ZAM400). Immunohistochemical methods were used to stain cervical tissue with MMP-9 and GLUT-1 antibodies, and a TUNEL assay was performed to investigate cell apoptosis. Zanthoxylum acanthopodium methanol extract administration did not affect rat body weight but had a significant effect on cervical cancer growth. There was an increase in MDA levels associated with SOD deficiency in tumour tissue. SOD activity increased due to ZAM administration, allowing cells to be protected from oxidant disruption and oxidative stress. ZAM ameliorated cervical carcinoma tissue damage and reduced the expression of MMP-9, GLUT-1 and apoptosis in serum and tissue (p < 0.01) In short, the higher the ZAM dose, the lower the expression of MMP-9, GLUT-1 and apoptosis, indicating that ZAM is effective to treat cervical cancer.
Collapse
|
22
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
23
|
This S, Paidassi H. New perspectives on the regulation of germinal center reaction via αvβ8- mediated activation of TGFβ. Front Immunol 2022; 13:942468. [PMID: 36072589 PMCID: PMC9441935 DOI: 10.3389/fimmu.2022.942468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a long-known modulator of immune responses but has seemingly contradictory effects on B cells. Among cytokines, TGFβ has the particularity of being produced and secreted in a latent form and must be activated before it can bind to its receptor and induce signaling. While the concept of controlled delivery of TGFβ signaling via αvβ8 integrin-mediated activation has gained some interest in the field of mucosal immunity, the role of this molecular mechanism in regulating T-dependent B cell responses is just emerging. We review here the role of TGFβ and its activation, in particular by αvβ8 integrin, in the regulation of mucosal IgA responses and its demonstrated and putative involvement in regulating germinal center (GC) B cell responses. We examine both the direct effect of TGFβ on GC B cells and its ability to modulate the functions of helper cells, namely follicular T cells (Tfh and Tfr) and follicular dendritic cells. Synthetizing recently published works, we reconcile apparently conflicting data and propose an innovative and unified view on the regulation of the GC reaction by TGFβ, highlighting the role of its activation by αvβ8 integrin.
Collapse
Affiliation(s)
- Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie, Université de Montréal, Montréal, QC, Canada
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
24
|
The Catalytic Domain Mediates Homomultimerization of MT1-MMP and the Prodomain Interferes with MT1-MMP Oligomeric Complex Assembly. Biomolecules 2022; 12:biom12081145. [PMID: 36009039 PMCID: PMC9406036 DOI: 10.3390/biom12081145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Homomultimerization of MT1-MMP (membrane type 1 matrix metalloproteinase) through the hemopexin, transmembrane, and cytoplasmic domains plays a very important role in the activation of proMMP-2 and the degradation of pericellular collagen. MT1-MMP is overexpressed in many types of cancers, and it is considered to be a key enzyme in facilitating cancer cell migration. Since the oligomerization of MT1-MMP is important for its proteolytic activity in promoting cancer invasion, we have further investigated the multimerization by using heterologously expressed MT1-MMP ectodomains in insect cells to gain additional mechanistic insight into this process. We show that the whole ectodomain of MT1-MMP can form dimers and higher-order oligomeric complexes. The enzyme is secreted in its active form and the multimeric complex assembly is mediated by the catalytic domain. Blocking the prodomain removal determines the enzyme to adopt the monomeric structure, suggesting that the prodomain prevents the MT1-MMP oligomerization process. The binding affinity of MT1-MMP to type I collagen is dependent on the oligomeric state. Thus, the monomers have the weakest affinity, while the binding strength increases proportionally with the complexity of the multimers. Collectively, our experimental results indicate that the catalytic domain of MT1-MMP is necessary and sufficient to mediate the formation of multimeric structures.
Collapse
|
25
|
Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars) 2022; 17:492-507. [PMID: 35350840 PMCID: PMC8919829 DOI: 10.1515/med-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14) is associated with the development of many cancers. MT1-MMP may promote the entry of yes-associated protein1 (YAP1) into the nucleus by regulating the regulation of β1-integrin. The purpose of this study was to investigate the effects of MT1-MMP, β1-integrin and YAP1 on the prognosis of gliomas. The expression of proteins was detected by bioinformatics and immunohistochemistry. The relationship between three proteins and clinicopathological parameters was analyzed by the χ2 test. Survival analysis was used to investigate the effects of three proteins on prognosis. The results showed that high expressions of MT1-MMP, β1-integrin and YAP1 were found in glioblastoma (GBM) compared with lower-grade glioma (LGG). There was a significantly positive correlation between MT1-MMP and β1-integrin (r = 0.387), MT1-MMP and YAP1 (r = 0.443), β1-integrin and YAP1 (r = 0.348). Survival analysis showed that patients with overexpression of MT1-MMP, β1-integrin and YAP1 had a worse prognosis. YAP1 expression was the independent prognostic factor for progression-free survival (PFS). There was a statistical correlation between the expression of MT1-MMP and YAP1 and isocitrate dehydrogenase 1 (IDHl) mutation. Thus, this study suggested that MT1-MMP, β1-integrin and YAP1, as tumor suppressors, are expected to be promising prognostic biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Yangyang Zhai
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
- State Key Laboratory of Etiology and Prevention of High Incidence in Central Asia , Xinjiang Medical University, 830000 , P. R. China
| | - Wei Sang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Yusheng Shen
- Department of Neurosurgery, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang 830054 , P. R. China
| | - Yanran Hu
- Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region of China , 830011 , P. R. China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| |
Collapse
|
26
|
Fakhari S, Jalili A, Nikkhoo B, Ghaderi B, Boshagh MA, Mirzaie S, Moradzad M. MT2-MMP is differentially expressed in multiple myeloma cells and mediates their growth and progression. Cell Signal 2022; 92:110248. [PMID: 35041985 DOI: 10.1016/j.cellsig.2022.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Membrane type-matrix metalloproteinases (MT-MMPs) are known as key regulators of cancer progression/metastasis. However, their roles in the growth and progression of multiple myeloma (MM) have not been yet elucidated. METHODS AND MATERIALS The expression of 6 MT-MMPs in MM, B cell lines, and normal peripheral blood (PB) cells were measured by RT-PCR, qRT-PCR, flow cytometry, western blotting, and immunocytochemistry. B lymphocytes, CD19-/CD138-, and CD19-/CD138+ cells, known as malignant plasma cells (MPC), were sorted from bone marrow (BM) aspirations of 10 MM patients, and MT2-MMP expression was examined in these cells using qRT-PCR, flow cytometry and immunohistochemistry, and western blotting. Moreover, the expression of MT2-MMP in BM biopsies from 13 normal individuals and 14 MM patients was analyzed by immunohistochemistry. MT2-MMP was also knocked down in U266 cells using siRNA technology and the adhesion, invasion, migration abilities, and cell proliferation were determined and compared with scrambled ones in both in vitro and in vivo studies. RESULTS Our results showed that MT2-MMP expression is significantly higher in MM cell lines and MPC cells than B cell lines and other PB- or BM-derived cells. MT2-MMP is expressed in BM biopsies from all 14 patients with MM, and 67.85% ± 32.38 of BM cells were positive for MT2-MMP. In contrast, only 0.38 ± 0.76 of BM biopsies from normal individuals were positive for MT2-MMP. Importantly, MT2-MMP was expressed in all the patients' BM biopsies at the diagnosis, but not in the remission phase. MT2-MMP siRNA significantly decreased adhesion, invasion, migration, and 3D cell proliferation of U266 cells. Moreover, in the xenographic model, MT2-MMP siRNA prevented the growth and development of plasmacytoma. Taken together, these data demonstrate that MT2-MMP is strongly expressed in MM cells and plays important role in the growth and progression of these cells, suggesting that MT2-MMP is an appropriate biomarker in diagnosis and therapeutic interventions of MM.
Collapse
Affiliation(s)
- Shohreh Fakhari
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ali Jalili
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Bahram Nikkhoo
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bayazid Ghaderi
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
27
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
28
|
Zhang X, Zheng Q, Wang Z, Xu C, Han H, Li A, Ma G, Li J, Lu C, Chen H, Zhang Z. Qualitative and Quantitative Analysis of Tumor Cell Invasion Using Au Clusters. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:145. [PMID: 35010094 PMCID: PMC8746878 DOI: 10.3390/nano12010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Tumor invasion/metastasis is still the major cause of death in cancer patients. Membrane type-1 matrix metalloproteinase (MT1-MMP) is directly related to tumor invasion/metastasis. To accurately and quickly distinguish the risk of invasion/metastasis of primary tumor cells, it is urgent to develop a simple and precise quantitative method to distinguish the expression level of MT1-MMP. In this work, we have constructed red fluorescent Au clusters with peroxidase-like properties that could specifically bind to MT1-MMP on human cervical cancer cells. After MT1-MMP was labelled with Au clusters, we could visually see red fluorescence of MT1-MMP on cervical cancer cells via fluorescence microscopy and catalytic color imaging using an ordinary optical microscope. The constructed Au clusters contained 26 Au atoms; thus, the amount of MT1-MMP on cervical cancer cells could be accurately quantified using inductively coupled plasma mass spectrometry (ICP-MS). More importantly, the invasion/metastasis capabilities of the cervical cancer Siha, Caski and Hela cells with different MT1-MMP amounts could be accurately distinguished by fluorescence/catalysis qualitative imaging and ICP-MS quantitative analysis. This method of qualitative/quantitative analysis of tumor-associated proteins on cancer cells has great potential for accurately diagnosing aggressive tumor cells and assessment of their invasion/metastasis risk.
Collapse
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China;
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Aiping Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Guicen Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Jiaojiao Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
29
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
30
|
Kümper M, Hessenthaler S, Zamek J, Niland S, Pach E, Mauch C, Zigrino P. LOSS OF ENDOTHELIAL CELL MMP14 REDUCES MELANOMA GROWTH AND METASTASIS BY INCREASING TUMOR VESSEL STABILITY. J Invest Dermatol 2021; 142:1923-1933.e5. [DOI: 10.1016/j.jid.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
|
31
|
Pach E, Kümper M, Fromme JE, Zamek J, Metzen F, Koch M, Mauch C, Zigrino P. Extracellular Matrix Remodeling by Fibroblast-MMP14 Regulates Melanoma Growth. Int J Mol Sci 2021; 22:12276. [PMID: 34830157 PMCID: PMC8625044 DOI: 10.3390/ijms222212276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Maintaining a balanced state in remodeling the extracellular matrix is crucial for tissue homeostasis, and this process is altered during skin cancer progression. In melanoma, several proteolytic enzymes are expressed in a time and compartmentalized manner to support tumor progression by generating a permissive environment. One of these proteases is the matrix metalloproteinase 14 (MMP14). We could previously show that deletion of MMP14 in dermal fibroblasts results in the generation of a fibrotic-like skin in which melanoma growth is impaired. That was primarily due to collagen I accumulation due to lack of the collagenolytic activity of MMP14. However, as well as collagen I processing, MMP14 can also process several extracellular matrices. We investigated extracellular matrix alterations occurring in the MMP14-deleted fibroblasts that can contribute to the modulation of melanoma growth. The matrix deposited by cultured MMP14-deleted fibroblast displayed an antiproliferative and anti-migratory effect on melanoma cells in vitro. Analysis of the secreted and deposited-decellularized fibroblast's matrix identified a few altered proteins, among which the most significantly changed was collagen XIV. This collagen was increased because of post-translational events, while de novo synthesis was unchanged. Collagen XIV as a substrate was not pro-proliferative, pro-migratory, or adhesive, suggesting a negative regulatory role on melanoma cells. Consistent with that, increasing collagen XIV concentration in wild-type fibroblast-matrix led to reduced melanoma proliferation, migration, and adhesion. In support of its anti-tumor activity, enhanced accumulation of collagen XIV was detected in peritumoral areas of melanoma grown in mice with the fibroblast's deletion of MMP14. In advanced human melanoma samples, we detected reduced expression of collagen XIV compared to benign nevi, which showed a robust expression of this molecule around melanocytic nests. This study shows that loss of fibroblast-MMP14 affects melanoma growth through altering the peritumoral extracellular matrix (ECM) composition, with collagen XIV being a modulator of melanoma progression and a new proteolytic substrate to MMP14.
Collapse
Affiliation(s)
- Elke Pach
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Maike Kümper
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Julia E. Fromme
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), 50937 Cologne, Germany
| | - Jan Zamek
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Fabian Metzen
- Faculty of Medicine and University Hospital, Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany; (F.M.); (M.K.)
| | - Manuel Koch
- Faculty of Medicine and University Hospital, Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany; (F.M.); (M.K.)
| | - Cornelia Mauch
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Paola Zigrino
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| |
Collapse
|
32
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
33
|
Fibroblast MMP14-Dependent Collagen Processing Is Necessary for Melanoma Growth. Cancers (Basel) 2021; 13:cancers13081984. [PMID: 33924099 PMCID: PMC8074311 DOI: 10.3390/cancers13081984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Matrix metalloproteinases (MMPs) were considered as targets for the treatment of various cancers. However, initial trials using broad inhibitors to MMPs have failed, partly attributed to the contrasting functions of these proteases acting as tumor promoters and suppressors, among other reasons. Our data now suggest that specific inhibition of MMP14 might represent a more specific approach, as loss of this protease in fibroblasts resulted in reduced growth of grafted melanomas. Here, we found that deletion of MMP14 in fibroblasts generates a matrix-rich environment that reduces tumor vascularization and melanoma cell proliferation. In in vitro and ex vivo assays, we showed that the latter is mediated by stiffening of the tissue due to collagen accumulation. Additionally, in vivo, we show that independently of MMP14 deletion, a collagen-rich stiff matrix inhibits the growth of melanomas. Abstract Skin homeostasis results from balanced synthesis and degradation of the extracellular matrix in the dermis. Deletion of the proteolytic enzyme MMP14 in dermal fibroblasts (MMP14Sf−/−) leads to a fibrotic skin phenotype with the accumulation of collagen type I, resulting from impaired proteolysis. Here, we show that melanoma growth in these mouse fibrotic dermal samples was decreased, paralleled by reduced tumor cell proliferation and vessel density. Using atomic force microscopy, we found increased peritumoral matrix stiffness of early but not late melanomas in the absence of fibroblast-derived MMP14. However, total collagen levels were increased at late melanoma stages in MMP14Sf−/− mice compared to controls. In ex vivo invasion assays, melanoma cells formed smaller tumor islands in MMP14Sf−/− skin, indicating that MMP14-dependent matrix accumulation regulates tumor growth. In line with these data, in vitro melanoma cell growth was inhibited in high collagen 3D spheroids or stiff substrates. Most importantly, in vivo induction of fibrosis using bleomycin reduced melanoma tumor growth. In summary, we show that MMP14 expression in stromal fibroblasts regulates melanoma tumor progression by modifying the peritumoral matrix and point to collagen accumulation as a negative regulator of melanoma.
Collapse
|
34
|
Mitre GP, Balbinot KM, Ribeiro ALR, da Silva Kataoka MS, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Key proteins of invadopodia are overexpressed in oral squamous cell carcinoma suggesting an important role of MT1-MMP in the tumoral progression. Diagn Pathol 2021; 16:33. [PMID: 33879222 PMCID: PMC8059181 DOI: 10.1186/s13000-021-01090-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most relevant malignant neoplasm among all head and neck tumours due to its high prevalence and unfavourable prognosis. Tumour invasion and metastasis that affect prognosis are result of a set of complex events that cells with invasive potential use to spread to other regions. These cells use several mechanisms to invade tissues, including a type of finger-like membrane protrusion called invadopodia. This study aims to investigate the immunoexpression of invaopodia related-proteins TKs5, cortactin, TKs4 and MT1-MMP in OSCC and correlate it to clinicopathological data. METHODS An immunohistochemical evaluation of fifty cases of OSCCs and 20 cases of oral mucosa (OM) were assessed. The expression of invadopodia proteins were analysed in comparison to normal tissue (OM) and correlated to different clinical-stage and histological grade of OSCC. RESULTS TKs5, cortactin, TKs4 and MT1-MMP were significantly overexpressed in OSCC when compared to OM (p < 0.0001). Among tumour stages, TKs5 showed a statistical difference in immunolabelling between stage I and III (p = 0.026). Cortactin immunolabelling was statistically higher in grade I than in grade II and III. No differences were seen on TKs4 expression based on tumour staging or grading. MT1-MMP was higher expressed and showed statistical difference between stages I and III and grades I compared to II and III. CONCLUSIONS The invadopodia related-proteins were found to be overexpressed in OSCC when compared to OM, suggesting invadopodia formation and activity. Besides overexpressed in OSCC, cortactin, TKs4 and TKs5 showed no or ambiguous differences in protein expression when compared among clinical-stages or histological grades groups. Conversely, the expression of MT1-MMP increased in advanced stages and less differentiated tumours, suggesting MT1-MMP expression as a promising prognostic marker in OSCC.
Collapse
Affiliation(s)
- Geovanni Pereira Mitre
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Karolyny Martins Balbinot
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - André Luis Ribeiro Ribeiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Maria Sueli da Silva Kataoka
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Sérgio de Melo Alves Júnior
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil.
| |
Collapse
|
35
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
36
|
Cao H, Qiang L, Chen J, Johnson KM, McNiven MA, Razidlo GL. Synergistic metalloproteinase-based remodeling of matrix by pancreatic tumor and stromal cells. PLoS One 2021; 16:e0248111. [PMID: 33740019 PMCID: PMC7978280 DOI: 10.1371/journal.pone.0248111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/20/2021] [Indexed: 11/22/2022] Open
Abstract
The process by which tumor cells mechanically invade through the surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. Matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) degradation plays an important role in this invasive process. Defining the contribution and interaction between these MMPs during invasion remains a key interest in the development of targeted anti-metastatic therapies. In this study we have utilized multiple different stromal fibroblasts and tumor cells to define the relative contributions between cancer cells and stromal cells during MMP-dependent matrix remodeling and pancreatic (PDAC) tumor cell invasion. We find that tumor cells co-cultured with the conditioned medium from stromal fibroblasts exhibited a substantial increase in invadopodial-based matrix degradation and transwell invasion. This increase is dependent on pro-MMP2 expressed and secreted by stromal fibroblasts. Further, the pro-MMP2 from the stromal fibroblasts is activated by MT1-MMP expressed on the tumor cells. Depletion of MT1-MMP, the known activator of MMP2, in tumor cells largely blocked matrix remodeling, even in the presence of stromal cell medium. In summary, these findings implicate an important interplay between MT1-MMP from tumor cells and MMP2 from fibroblasts as a key component for ECM remodeling and invasion.
Collapse
Affiliation(s)
- Hong Cao
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Li Qiang
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jing Chen
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Katherine M. Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark A. McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (GLR); (MAM)
| | - Gina L. Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (GLR); (MAM)
| |
Collapse
|
37
|
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 2021; 288:7162-7182. [PMID: 33405316 DOI: 10.1111/febs.15701] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammad A M Ali
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York-Binghamton, NY, USA
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Daquinag AC, Gao Z, Fussell C, Sun K, Kolonin MG. Glycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen Assembly. Cells 2020; 9:cells9122646. [PMID: 33317052 PMCID: PMC7764107 DOI: 10.3390/cells9122646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Proper processing of collagens COL1 and COL6 is required for normal function of adipose tissue and skeletal muscle. Proteoglycan decorin (DCN) regulates collagen fiber formation. The amino-terminus of DCN is modified with an O-linked glycosaminoglycan (GAG), the function of which has remained unclear. Previously, non-glycanated DCN (ngDCN) was identified as a marker of adipose stromal cells. Here, we identify MMP14 as the metalloprotease that cleaves DCN to generate ngDCN. We demonstrate that mice ubiquitously lacking DCN GAG (ngDCN mice) have reduced matrix rigidity, enlarged adipocytes, fragile skin, as well as skeletal muscle hypotrophy, fibrosis, and dysfunction. Our results indicate that DCN deglycanation results in reduced intracellular DCN—collagen binding and increased production of truncated COL6 chains, leading to aberrant procollagen processing and extracellular localization. This study reveals that the GAG of DCN functions to regulate collagen assembly in adipose tissue and skeletal muscle and uncovers a new mechanism of matrix dysfunction in obesity and aging.
Collapse
|
39
|
Tumor cell MT1-MMP is dispensable for osteosarcoma tumor growth, bone degradation and lung metastasis. Sci Rep 2020; 10:19138. [PMID: 33154487 PMCID: PMC7645741 DOI: 10.1038/s41598-020-75995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.
Collapse
|
40
|
Chen N, Zhang G, Fu J, Wu Q. Matrix metalloproteinase-14 (MMP-14) downregulation inhibits esophageal squamous cell carcinoma cell migration, invasion, and proliferation. Thorac Cancer 2020; 11:3168-3174. [PMID: 32930509 PMCID: PMC7606025 DOI: 10.1111/1759-7714.13636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Matrix metalloproteinase‐14 (MMP‐14) is known to be a key regulator of oncogenesis and tumor progression. The present study was designed to assess the relationship between the downregulation of MMP‐14 and the in vitro proliferative, migratory, and invasive activity of esophageal squamous cell carcinoma (ESCC) cells. Methods MMP‐14 expression in human ESCC and paracancerous normal esophageal tissue samples was evaluated via immunohistochemistry, and correlations between MMP‐14 staining and patient clinicopathological features were examined. In addition, siRNA was used to knockdown MMP‐14 in ESCC cells, and the proliferation and invasive activity of these cells were then evaluated via MTT and Transwell assays, respectively. Flow cytometry was additionally used to assess cell cycle progression, while Western blotting was employed to measure protein levels within these cells. Results ESCC samples were found to exhibit MMP‐14 overexpression relative to paracancerous tissue samples, and this overexpression was positively correlated with tumor T classification (T1‐2 vs. T3; P < 0.05), N classification (negative vs. positive; P < 0.001), degree of differentiation (G1 vs. G3, P < 0.05; G2 vs. G3, P < 0.05) and clinical stage (I–IIA vs. IIB–III; P < 0.05). When MMP‐14 was knocked down in ESCC cells, this induced cell cycle arrest, impairing their proliferative and invasive activity. Conclusions MMP‐14 is a key regulator of the proliferation and invasion of ESCC cells, making it a viable therapeutic target for the treatment of this cancer.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Tagliatela AC, Hempstead SC, Hibshman PS, Hockenberry MA, Brighton HE, Pecot CV, Bear JE. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion. Sci Rep 2020; 10:11958. [PMID: 32686704 PMCID: PMC7371684 DOI: 10.1038/s41598-020-67465-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Coronin 1C is overexpressed in multiple tumors, leading to the widely held view that this gene drives tumor progression, but this hypothesis has not been rigorously tested in melanoma. Here, we combined a conditional knockout of Coronin 1C with a genetically engineered mouse model of PTEN/BRAF-driven melanoma. Loss of Coronin 1C in this model increases both primary tumor growth rates and distant metastases. Coronin 1C-null cells isolated from this model are more invasive in vitro and produce more metastatic lesions in orthotopic transplants than Coronin 1C-reexpressing cells due to the shedding of extracellular vesicles (EVs) containing MT1-MMP. Interestingly, these vesicles contain melanosome markers suggesting a melanoma-specific mechanism of EV release, regulated by Coronin 1C, that contributes to the high rates of metastasis in melanoma.
Collapse
Affiliation(s)
- Alicia C Tagliatela
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie C Hempstead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Max A Hockenberry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hailey E Brighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chad V Pecot
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
6-Gingerol delays tumorigenesis in benzo[a]pyrene and dextran sulphate sodium-induced colorectal cancer in mice. Food Chem Toxicol 2020; 142:111483. [PMID: 32512025 DOI: 10.1016/j.fct.2020.111483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) has been linked to dietary consumption of benzo[a]pyrene (B[a]P). 6-Gingerol (6-G), a component of ginger has been reported to possess anti-inflammatory and antioxidant activities, but little is known regarding the mechanism of 6-G in CRC chemoprevention. We therefore investigated the effect of 6-G on B[a]P. and dextran sulphate sodium (DSS) induced CRC in mice. Mice in Group I and Group II received corn oil and 6-G orally at 2 ml/kg and 100 mg/kg, respectively for 126 days. Group III were administered 125 mg/kg of B[a]P for 5 days followed by 3 cycles of 4% dextran sulphate sodium (DSS). Group IV received 6-G for 7 days followed by co-administration with 125 mg/kg of B[a]P. for 5 days and 3 cycles of 4% DSS. Tumor formation was reduced and expression of Ki-67, WNT3a, DVL-2 and β-catenin following 6-G exposure. Also, 6-G increases expression of APC, P53, TUNEL positive nuclei and subsequently decreased the expression of TNF-α, IL-1β, INOS, COX-2 and cyclin D1. 6-G inhibited angiogenesis by decreasing the concentration of VEGF, Angiopoietin-1, FGF and GDF-15 in the colon of B[a]P. and DSS exposed mice. Overall, 6-G attenuated B[a]P and DSS-induced CRC in mice via anti-inflammatory, anti-proliferative and apoptotic mechanisms.
Collapse
|
44
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
45
|
Moreira-Soares M, Cunha SP, Bordin JR, Travasso RDM. Adhesion modulates cell morphology and migration within dense fibrous networks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:314001. [PMID: 32378515 DOI: 10.1088/1361-648x/ab7c17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
One of the most fundamental abilities required for the sustainability of complex life forms is active cell migration, since it is essential in diverse processes from morphogenesis to leukocyte chemotaxis in immune response. The movement of a cell is the result of intricate mechanisms, that involve the coordination between mechanical forces, biochemical regulatory pathways and environmental cues. In particular, epithelial cancer cells have to employ mechanical strategies in order to migrate through the tissue's basement membrane and infiltrate the bloodstream during the invasion stage of metastasis. In this work we explore how mechanical interactions such as spatial restriction and adhesion affect migration of a self-propelled droplet in dense fibrous media. We have performed a systematic analysis using a phase-field model and we propose a novel approach to simulate cell migration with dissipative particle dynamics modelling. With this purpose we have measured in our simulation the cell's velocity and quantified its morphology as a function of the fibre density and of its adhesiveness to the matrix fibres. Furthermore, we have compared our results to a previousin vitromigration assay of fibrosarcoma cells in fibrous matrices. The results show good agreement between the two methodologies and experiments in the literature, which indicates that these minimalist descriptions are able to capture the main features of the system. Our results indicate that adhesiveness is critical for cell migration, by modulating cell morphology in crowded environments and by enhancing cell velocity. In addition, our analysis suggests that matrix metalloproteinases (MMPs) play an important role as adhesiveness modulators. We propose that new assays should be carried out to address the role of adhesion and the effect of different MMPs in cell migration under confined conditions.
Collapse
Affiliation(s)
| | - Susana P Cunha
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - José Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, Federal University of Pelotas, Rua dos Ipês, Capão do Leão, RS, 96050-500, Brazil
| | - Rui D M Travasso
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
46
|
Wu W, Klockow JL, Mohanty S, Ku KS, Aghighi M, Melemenidis S, Chen Z, Li K, Morais GR, Zhao N, Schlegel J, Graves EE, Rao J, Loadman PM, Falconer RA, Mukherjee S, Chin FT, Daldrup-Link HE. Theranostic nanoparticles enhance the response of glioblastomas to radiation. Nanotheranostics 2019; 3:299-310. [PMID: 31723547 PMCID: PMC6838141 DOI: 10.7150/ntno.35342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/14/2019] [Indexed: 01/03/2023] Open
Abstract
Despite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation. Methods: NSG™ mice bearing human GBMs and C57BL/6J mice bearing murine GBMs received CLIO-ICT, radiation, or combination treatment. The mice underwent pre- and post-treatment magnetic resonance imaging (MRI) scans, bioluminescence imaging (BLI), and histological analysis. Tumor nanoparticle enhancement, tumor flux, microvessel density, GIC, and apoptosis markers were compared between different groups using a one-way ANOVA and two-tailed Mann-Whitney test. Additional NSG™ mice underwent survival analyses with Kaplan-Meier curves and a log rank (Mantel-Cox) test. Results: At 2 weeks post-treatment, BLI and MRI scans revealed significant reduction in tumor size for CLIO-ICT plus radiation treated tumors compared to monotherapy or vehicle-treated tumors. Combining CLIO-ICT with radiation therapy significantly decreased microvessel density, decreased GICs, increased caspase-3 expression, and prolonged the survival of GBM-bearing mice. CLIO-ICT delivery to GBM could be monitored with MRI. and was not significantly different before and after radiation. There was no significant caspase-3 expression in normal brain at therapeutic doses of CLIO-ICT administered. Conclusion: Our data shows additive anti-tumor effects of CLIO-ICT nanoparticles in combination with radiotherapy. The combination therapy proposed here could potentially be a clinically translatable strategy for treating GBMs.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jessica L Klockow
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Kimberly S Ku
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Maryam Aghighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | | | - Zixin Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Kai Li
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Ning Zhao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Edward E Graves
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA.,Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Sudip Mukherjee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| |
Collapse
|