1
|
Rosales Hernández MC, Olvera-Valdez M, Velazquez Toledano J, Mendieta Wejebe JE, Fragoso Morales LG, Cruz A. Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer's Disease. Molecules 2024; 29:4780. [PMID: 39407708 PMCID: PMC11477595 DOI: 10.3390/molecules29194780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aβ) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aβ. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the μM range. Also, benzimidazoles and benzothiazoles can inhibit Aβ aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.
Collapse
Affiliation(s)
- Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Marycruz Olvera-Valdez
- Laboratorio de Nanomateriales Sustentables, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico;
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Alejandro Cruz
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| |
Collapse
|
2
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
3
|
Florio D, Annunziata A, Panzetta V, Netti PA, Ruffo F, Marasco D. η 6-Arene Ru(II) Complexes as Modulators of Amyloid Aggregation. Inorg Chem 2024; 63:16001-16010. [PMID: 39129368 DOI: 10.1021/acs.inorgchem.4c02456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Inorganic medicinal compounds represent a unique and versatile source of potential therapeutics in many diseases and, more recently, in neurodegeneration. Herein we investigated the effects of two η6-arene Ru(II) complexes on the self-aggregation processes of several amyloidogenic peptides endowed with different kinetics and primary sequences. The Ru(II) complexes exhibit, around the metal ion, two chlorides, one NHC = N-heterocyclic carbene, with a glucosyl and a methyl substituent and separately a hexamethylbenzene, which is named Ru1, and one benzene, named Ru2. Both complexes were demonstrated to bind monomeric amyloids suppressing aggregation as evidenced in thioflavin T (ThT) binding assays and autofluorescence experiments. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of direct adducts between amyloid and metal complexes, which determined the marked conformational variation of peptides and a rescue of cellular viability in SH-SY5Y cells. The complex Ru2 was demonstrated to be a more potent inhibitor of amyloid aggregation compared to Ru1 likely because of the less hindrance of the arene moiety. The presented data strongly support the in vitro ability of η6-arene Ru(II) complexes to suppress amyloid aggregation, providing insights into their potential application as novel therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Annunziata
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Francesco Ruffo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
La Manna S, Panzetta V, Di Natale C, Cipollone I, Monti M, Netti PA, Terán A, Sánchez-Peláez AE, Herrero S, Merlino A, Marasco D. Comparative Analysis of the Inhibitory Mechanism of Aβ 1-42 Aggregation by Diruthenium Complexes. Inorg Chem 2024; 63:10001-10010. [PMID: 38742626 DOI: 10.1021/acs.inorgchem.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is a growing interest in the search for metal-based therapeutics for protein misfolding disorders such as Alzheimer's disease (AD). A novel and largely unexplored class of metallodrugs is constituted by paddlewheel diruthenium complexes, which exhibit unusual water solubility and stability and unique coordination modes to proteins. Here, we investigate the ability of the complexes [Ru2Cl(DPhF)(O2CCH3)3]·H2O (1), [Ru2Cl(DPhF)2(O2CCH3)2]·H2O (2), and K2[Ru2(DPhF)(CO3)3]·3H2O (3) (DPhF- = N,N'-diphenylformamidinate) to interfere with the amyloid aggregation of the Aβ1-42 peptide. These compounds differ in charge and steric hindrance due to the coordination of a different number of bulky ligands. The mechanisms of action of the three complexes were studied by employing a plethora of physicochemical and biophysical techniques as well as cellular assays. All these studies converge on different mechanisms of inhibition of amyloid fibrillation: complexes 1 and 2 show a clear inhibitory effect due to an exchange ligand process in the Ru2 unit aided by aromatic interactions. Complex 3 shows no inhibition of aggregation, probably due to its negative charge in solution. This study demonstrates that slight variations in the ligands surrounding the bimetallic core can modulate the amyloid aggregation inhibition and supports the use of paddlewheel diruthenium complexes as promising therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., Naples 80131, Italy
| | - Paolo A Netti
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Aarón Terán
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, Madrid 28040, Spain
- MUSICHEM Research Group, Department of Physics "E. Pancini", University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 21, Naples 80126, Italy
| | - Ana E Sánchez-Peláez
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Santiago Herrero
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy
| |
Collapse
|
5
|
Masroor A, Zaidi N, Nabi F, Malik S, Zehra S, Arjmand F, Naseem N, Khan RH. Biophysical insight into anti-amyloidogenic nature of novel ionic Co(II)(phen)(H 2O) 4] +[glycinate] - chemotherapeutic drug candidate against human lysozyme aggregation. Biophys Chem 2024; 308:107214. [PMID: 38428228 DOI: 10.1016/j.bpc.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
In the recent past, there has been an ever-increasing interest in the search for metal-based therapeutic drug candidates for protein misfolding disorders (PMDs) particularly neurodegenerative disorders such as Alzheimer's, Parkinson's, Prion's diseases, and amyotrophic lateral sclerosis. Also, different amyloidogenic variants of human lysozyme (HL) are involved in hereditary systemic amyloidosis. Metallo-therapeutic agents are extensively studied as antitumor agents, however, they are relatively unexplored for the treatment of non-neuropathic amyloidoses. In this work, inhibition potential of a novel ionic cobalt(II) therapeutic agent (CoTA) of the formulation [Co(phen)(H2O)4]+[glycinate]- is evaluated against HL fibrillation. Various biophysical techniques viz., dye-binding assays, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electron microscopy, and molecular docking experiments validate the proposed mechanism of inhibition of HL fibrillation by CoTA. The experimental corroborative results of these studies reveal that CoTA can suppress and slow down HL fibrillation at physiological temperature and pH. DLS and 1-anilino-8-naphthalenesulfonate (ANS) assay show that reduced fibrillation in the presence of CoTA is marked by a significant decrease in the size and hydrophobicity of the aggregates. Fluorescence quenching and molecular docking results demonstrate that CoTA binds moderately to the aggregation-prone region of HL (Kb = 6.6 × 104 M-1), thereby, inhibiting HL fibrillation. In addition, far-UV CD and DSC show that binding of CoTA to HL does not cause any change in the stability of HL. More importantly, CoTA attenuates membrane damaging effects of HL aggregates against RBCs. This study identifies inorganic metal complexes as a therapeutic intervention for systemic amyloidosis.
Collapse
Affiliation(s)
- Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Naseem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India.
| |
Collapse
|
6
|
Wang Y, Liu W, Sun Y, Dong X. Transthyretin-Penetratin: A Potent Fusion Protein Inhibitor against Alzheimer's Amyloid-β Fibrillogenesis with High Blood Brain Barrier Crossing Capability. Bioconjug Chem 2024; 35:419-431. [PMID: 38450606 DOI: 10.1021/acs.bioconjchem.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The design of a potent amyloid-β protein (Aβ) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aβ inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aβ aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aβ inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aβ40 fibrillization at a low concentration (1.5 μM), while a TTR concentration as high as 12.5 μM was required to gain a similar function. Moreover, TP could mitigate Aβ-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 μM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aβ40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aβ species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
7
|
La Manna S, Di Natale C, Panzetta V, Leone M, Mercurio FA, Cipollone I, Monti M, Netti PA, Ferraro G, Terán A, Sánchez-Peláez AE, Herrero S, Merlino A, Marasco D. A Diruthenium Metallodrug as a Potent Inhibitor of Amyloid-β Aggregation: Synergism of Mechanisms of Action. Inorg Chem 2024; 63:564-575. [PMID: 38117944 PMCID: PMC10777406 DOI: 10.1021/acs.inorgchem.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aβ1-42 peptide and its peculiar fragments, Aβ1-16 and Aβ21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aβ1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.
Collapse
Affiliation(s)
- Sara La Manna
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Concetta Di Natale
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Valeria Panzetta
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Marilisa Leone
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| | | | - Irene Cipollone
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Paolo A. Netti
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Aarón Terán
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Ana E. Sánchez-Peláez
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Santiago Herrero
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| |
Collapse
|
8
|
Iacobucci I, La Manna S, Cipollone I, Monaco V, Canè L, Cozzolino F. From the Discovery of Targets to Delivery Systems: How to Decipher and Improve the Metallodrugs' Actions at a Molecular Level. Pharmaceutics 2023; 15:1997. [PMID: 37514183 PMCID: PMC10385150 DOI: 10.3390/pharmaceutics15071997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Metals are indispensable for the life of all organisms, and their dysregulation leads to various disorders due to the disruption of their homeostasis. Nowadays, various transition metals are used in pharmaceutical products as diagnostic and therapeutic agents because their electronic structure allows them to adjust the properties of molecules differently from organic molecules. Therefore, interest in the study of metal-drug complexes from different aspects has been aroused, and numerous approaches have been developed to characterize, activate, deliver, and clarify molecular mechanisms. The integration of these different approaches, ranging from chemoproteomics to nanoparticle systems and various activation strategies, enables the understanding of the cellular responses to metal drugs, which may form the basis for the development of new drugs and/or the modification of currently used drugs. The purpose of this review is to briefly summarize the recent advances in this field by describing the technological platforms and their potential applications for identifying protein targets for discovering the mechanisms of action of metallodrugs and improving their efficiency during delivery.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), European School of Chemistry, Polymers and Materials (ECPM), 67087 Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| |
Collapse
|
9
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
10
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
11
|
La Manna S, Florio D, Di Natale C, Marasco D. Modulation of hydrogel networks by metal ions. J Pept Sci 2022:e3474. [PMID: 36579727 DOI: 10.1002/psc.3474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
12
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
13
|
La Manna S, Leone M, Iacobucci I, Annuziata A, Di Natale C, Lagreca E, Malfitano AM, Ruffo F, Merlino A, Monti M, Marasco D. Glucosyl Platinum(II) Complexes Inhibit Aggregation of the C-Terminal Region of the Aβ Peptide. Inorg Chem 2022; 61:3540-3552. [PMID: 35171608 PMCID: PMC9951207 DOI: 10.1021/acs.inorgchem.1c03540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aβ21-40 and Aβ25-35, of the C-terminal region of the β-amyloid (Aβ) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.
Collapse
Affiliation(s)
- Sara La Manna
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Marilisa Leone
- Institute
of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Ilaria Iacobucci
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie Avanzate S.c.a r.l., “University
of Naples Federico II”, 80131 Naples, Italy
| | - Alfonso Annuziata
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary
Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica
del Materiali e della Produzione Industriale (DICMAPI), University “Federico II”, 80125 Naples, Italy
| | - Elena Lagreca
- Interdisciplinary
Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica
del Materiali e della Produzione Industriale (DICMAPI), University “Federico II”, 80125 Naples, Italy
| | - Anna Maria Malfitano
- Department
of Translational Medical Science, University
of Naples “Federico II”, 80131 Naples, Italy
| | - Francesco Ruffo
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie Avanzate S.c.a r.l., “University
of Naples Federico II”, 80131 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- Institute
of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| |
Collapse
|
14
|
Kotynia A, Wiatrak B, Kamysz W, Neubauer D, Jawień P, Marciniak A. Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics. Int J Mol Sci 2021; 22:ijms222112028. [PMID: 34769458 PMCID: PMC8584440 DOI: 10.3390/ijms222112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/20/2023] Open
Abstract
Antimicrobial peptides are a promising group of compounds used for the treatment of infections. In some cases, metal ions are essential to activate these molecules. Examples of metalloantibiotics are, for instance, bleomycin and dermcidin. This study is focused on three new pseudopeptides with potential biological activity. The coordination behavior of all ligands with Cu(II) and Ni(II) ions has been examined. Various analytical methods such as potentiometric titration, UV-Vis and CD spectroscopies, and mass spectrometry were used. All compounds are convenient chelators for metal ion-binding. Two of the ligands tested have histidine residues. Surprisingly, imidazole nitrogen is not involved in the coordination of the metal ion. The N-terminal amino group, Dab side chains, and amide nitrogen atoms of the peptide bonds coordinated Cu(II) and Ni(II) in all the complexes formed. The cytotoxicity of three pseudopeptides and their complexes was evaluated. Moreover, their other model allowed for assessing the attenuation of LPS-induced cytotoxicity and anti-inflammatory activities were also evaluated, the results of which revealed to be very promising.
Collapse
Affiliation(s)
- Aleksandra Kotynia
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Correspondence: (A.K.); (A.M.); Tel.: +48-71-784-03-35 (A.K.)
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (P.J.)
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (W.K.); (D.N.)
| | - Damian Neubauer
- Department of Inorganic Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (W.K.); (D.N.)
| | - Paulina Jawień
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (P.J.)
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Correspondence: (A.K.); (A.M.); Tel.: +48-71-784-03-35 (A.K.)
| |
Collapse
|
15
|
Manna SL, Florio D, Iacobucci I, Napolitano F, Benedictis ID, Malfitano AM, Monti M, Ravera M, Gabano E, Marasco D. A Comparative Study of the Effects of Platinum (II) Complexes on β-Amyloid Aggregation: Potential Neurodrug Applications. Int J Mol Sci 2021; 22:ijms22063015. [PMID: 33809522 PMCID: PMC7998721 DOI: 10.3390/ijms22063015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
Herein the effects of three platinum complexes, namely (SP-4-2)-(2,2'-bipyridine)dichloridoplatinum(II), Pt-bpy, (SP-4-2)-dichlorido(1,10-phenanthroline) platinum(II), Pt-phen, and (SP-4-2)-chlorido(2,2':6',2''-terpyridine)platinum(II) chloride, Pt-terpy, on the aggregation of an amyloid model system derived from the C-terminal domain of Aβ peptide (Aβ21-40) were investigated. Thioflavin T (ThT) binding assays revealed the ability of Pt(II) compounds to repress amyloid aggregation in a dose-dependent way, whereas the ability of Aβ21-40 peptide to interfere with ligand field of metal complexes was analyzed through UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. Spectroscopic data provided micromolar EC50 values and allowed to assess that the observed inhibition of amyloid aggregation is due to the formation of adducts between Aβ21-40 peptide and complexes upon the release of labile ligands as chloride and that they can explore different modes of coordination toward Aβ21-40 with respect to the entire Aβ1-40 polypeptide. In addition, conformational studies through circular dichroism (CD) spectroscopy suggested that Pt-terpy induces soluble β-structures of monomeric Aβ21-40, thus limiting self-recognition. Noticeably, Pt-terpy demonstrated the ability to reduce the cytotoxicity of amyloid peptide in human SH-SY5Y neuroblastoma cells. Presented data corroborate the hypothesis to enlarge the application field of already known metal-based agents to neurodegenerative diseases, as potential neurodrugs.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Daniele Florio
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Ilaria Iacobucci
- Department of Chemical Sciences, CEINGE Biotecnologie Avanzate S.c.a r.l., “University of Naples Federico II”, 80131 Naples, Italy; (I.I.); (M.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (F.N.); (A.M.M.)
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (F.N.); (A.M.M.)
| | - Maria Monti
- Department of Chemical Sciences, CEINGE Biotecnologie Avanzate S.c.a r.l., “University of Naples Federico II”, 80131 Naples, Italy; (I.I.); (M.M.)
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy; (M.R.); (E.G.)
| | - Elisabetta Gabano
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy; (M.R.); (E.G.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
- Correspondence: ; Tel.: +39-081-2534512; Fax: +39-081-2534574
| |
Collapse
|
16
|
Ghosh R, Raveendranath R, Kishore N. Unraveling diverse action of triton X-100 and methimazole on lysozyme fibrillation/aggregation: Physicochemical insights. Int J Biol Macromol 2020; 167:736-745. [PMID: 33278448 DOI: 10.1016/j.ijbiomac.2020.11.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 01/18/2023]
Abstract
Identification of functionalities responsible for prevention of fibrillation in proteins is important to design effective drugs in addressing neurodegenerative diseases. We have used nonionic surfactant triton X-100 (TX-100) and antithyroid drug methimazole (MMI) to understand mechanistic aspects of action of these molecules having different functionalities on hen egg-white lysozyme at different stages of fibrillation. After establishing the nucleation, elongation and maturation stages of fibrillation of protein at 57 °C, energetics of interactions with these molecules have been determined by using isothermal titration calorimetry. Differential scanning calorimetry has permitted assessment of thermal stability of the protein at these stages, with or without these molecular entities. The enthalpies of interaction of TX-100 and MMI with protein fibrils suggest importance of hydrogen bonding and polar interactions in their effectiveness towards prevention of fibrils. TX-100, in spite of several polar centres, is unable to prevent fibrillation, rather it promotes. MMI is able to establish polar interactions with interacting strands of the protein and disintegrate fibrils. A rigorous comparison with inhibitors reported in literature highlights importance -OH and >CO functionalities in fibrillation prevention. Even though MMI has hydrogen bonding centres, its efficiency as inhibitor falls after the inhibited lysozyme fibrils further interact and form amorphous aggregates.
Collapse
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Revathy Raveendranath
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
17
|
Thiophene-benzothiazole dyad ligand and its Ag(I) complex – Synthesis, characterization, interactions with DNA and BSA. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem Biol Interact 2020; 334:109300. [PMID: 33098838 PMCID: PMC7577920 DOI: 10.1016/j.cbi.2020.109300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Herein we present a comparative study of the effects of isoquinoline alkaloids belonging to benzo[c]phenanthridine and berberine families on β-amyloid aggregation. Results obtained using a Thioflavine T (ThT) fluorescence assay and circular dichroism (CD) spectroscopy suggested that the benzo[c]phenanthridine nucleus, present in both sanguinarine and chelerythrine molecules, was directly involved in an inhibitory effect of Aβ1-42 aggregation. Conversely, coralyne, that contains the isomeric berberine nucleus, significantly increased propensity for Aβ1-42 to aggregate. Surface Plasmon Resonance (SPR) experiments provided quantitative estimation of these interactions: coralyne bound to Aβ1-42 with an affinity (KD = 11.6 μM) higher than benzo[c]phenanthridines. Molecular docking studies confirmed that all three compounds are able to recognize Aβ1-42 in different aggregation forms suggesting their effective capacity to modulate the Aβ1-42 self-recognition mechanism. Molecular dynamics simulations indicated that coralyne increased the β-content of Aβ1-42, in early stages of aggregation, consistent with fluorescence-based promotion of the Aβ1-42 self-recognition mechanism by this alkaloid. At the same time, sanguinarine induced Aβ1-42 helical conformation corroborating its ability to delay aggregation as experimentally proved in vitro. The investigated compounds were shown to interfere with aggregation of Aβ1-42 demonstrating their potential as starting leads for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
|
19
|
Modulation of Amyloidogenic Peptide Aggregation by Photoactivatable CO-Releasing Ruthenium(II) Complexes. Pharmaceuticals (Basel) 2020; 13:ph13080171. [PMID: 32751396 PMCID: PMC7464691 DOI: 10.3390/ph13080171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023] Open
Abstract
Three Ru(II)-based CO-releasing molecules featuring bidentate benzimidazole and terpyridine derivatives as ligands were investigated for their ability to modulate the aggregation process of the second helix of the C-terminal domain of nucleophosmin 1, namely nucleophosmin 1 (NPM1)264-277, a model amyloidogenic system, before and after irradiation at 365 nm. Thioflavin T (ThT) binding assays and UV/Vis absorption spectra indicate that binding of the compounds to the peptide inhibits its aggregation and that the inhibitory effect increases upon irradiation (half maximal effective concentration (EC50) values in the high micromolar range). Electrospray ionization mass spectrometry data of the peptide in the presence of one of these compounds confirm that the modulation of amyloid aggregation relies on the formation of adducts obtained when the Ru compounds react with the peptide upon releasing of labile ligands, like chloride and carbon monoxide. This mechanism of action explains the subtle different behavior of the three compounds observed in ThT experiments. Overall, data support the hypothesis that metal-based CO releasing molecules can be used to develop metal-based drugs with potential application as anti-amyloidogenic agents.
Collapse
|
20
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
21
|
Vaquero M, Busto N, Fernández-Pampín N, Espino G, García B. Appended Aromatic Moieties Determine the Cytotoxicity of Neutral Cyclometalated Platinum(II) Complexes Derived from 2-(2-Pyridyl)benzimidazole. Inorg Chem 2020; 59:4961-4971. [PMID: 32182052 DOI: 10.1021/acs.inorgchem.0c00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new family of neutral chiral cyclometalated platinum(II) complexes with formula [Pt(κ2-(C^N))Cl(κ1-(L))], where (C^N) = 2-phenylpyridinate and (L) = 2-(2-pyridyl)benzimidazole (L1) or (N-(CH2)-Ar-(2-(2-pyridyl)benzimidazole) ligands; (Ar = phenyl (L2), naphthyl (L3), pyrenyl (L4)), have been synthesized and completely characterized. The unexpected κ1 coordination mode of the 2-(2-pyridyl)benzimidazole-derived ligands has been confirmed by spectroscopic techniques and X-ray diffraction. The aromatic moieties on the ligands in the new platinum(II) complexes have a remarkable influence on the cytotoxicity and in the binding mode to DNA. [Pt-L1]-[Pt-L4] complexes internalized more than cisplatin in the SW480 cancer cells even though only [Pt-L1] and [Pt-L2] display high cytotoxicity. 1H NMR and 13P{1H}NMR pointed out that [Pt-L1] and [Pt-L2] complexes bind covalently to dGMP, while the electrophoresis assays and CD experiments indicate that only [Pt-L2] is able to covalently interact with DNA, inducing the same conformational changes in the plasmid DNA as cisplatin. Although the complex [Pt-L4] intercalates into DNA, probably through the pyrenyl moiety, no biological activity is observed.
Collapse
Affiliation(s)
- Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Natalia Fernández-Pampín
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|