1
|
Kokoris S, Polyviou A, Evangelidis P, Grouzi E, Valsami S, Tragiannidis K, Gialeraki A, Tsakiris DA, Gavriilaki E. Thrombosis in Paroxysmal Nocturnal Hemoglobinuria (PNH): From Pathogenesis to Treatment. Int J Mol Sci 2024; 25:12104. [PMID: 39596172 PMCID: PMC11594924 DOI: 10.3390/ijms252212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Paroxysmal Nocturnal Hemoglobinuria (PNH) constitutes a rare bone marrow failure syndrome characterized by hemolytic anemia, thrombotic events (TEs), and bone marrow aplasia of variable degrees. Thrombosis is one of the major clinical manifestations of the disease, affecting up to 40% of individuals with PNH. Venous thrombosis is more prevalent, affecting mainly unusual sites, such as intrabdominal and hepatic veins. TEs might be the first clinical manifestation of PNH. Complement activation, endothelial dysfunction, hemolysis, impaired bioavailability of nitric oxide, and activation of platelets and neutrophils are implicated in the pathogenesis of TEs in PNH patients. Moreover, a vicious cycle involving the coagulation cascade, complement system, and inflammation cytokines, such as interleukin-6, is established. Complement inhibitors, such as eculizumab and ravulizumab (C5 inhibitors), have revolutionized the care of patients with PNH. C5 inhibitors should be initiated in patients with PNH and thrombosis, while they constitute a great prophylactic measure for TEs in those individuals. Anticoagulants, such as warfarin and low-molecular-weight heparin, and, in selected cases, direct oral anticoagulants (DOACs) should be used in combination with C5 inhibitors in patients who develop TEs. Novel complement inhibitors are considered an alternative treatment option, especially for those who develop extravascular or breakthrough hemolysis when terminal inhibitors are administered.
Collapse
Affiliation(s)
- Styliani Kokoris
- Laboratory of Hematology and Blood Bank Unit, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.K.); (A.G.)
| | - Antri Polyviou
- Department of Hematology and Lymphoma, BMT Unit, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (K.T.)
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece;
| | - Serena Valsami
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Konstantinos Tragiannidis
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (K.T.)
| | - Argyri Gialeraki
- Laboratory of Hematology and Blood Bank Unit, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.K.); (A.G.)
| | - Dimitrios A. Tsakiris
- Department of Hemostasis and Thrombosis, University of Basel, 4001 Basel, Switzerland;
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (K.T.)
| |
Collapse
|
2
|
Panicucci C, Sahin E, Bartolucci M, Casalini S, Brolatti N, Pedemonte M, Baratto S, Pintus S, Principi E, D'Amico A, Pane M, Sframeli M, Messina S, Albamonte E, Sansone VA, Mercuri E, Bertini E, Sezerman U, Petretto A, Bruno C. Proteomics profiling and machine learning in nusinersen-treated patients with spinal muscular atrophy. Cell Mol Life Sci 2024; 81:393. [PMID: 39254732 PMCID: PMC11387582 DOI: 10.1007/s00018-024-05426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
AIM The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen infusion (T302). METHODS In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spectrometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen (SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302. The Random Forest (RF) machine learning algorithm and pathway enrichment analysis were applied for analysis. RESULTS The RF algorithm, applied to the protein expression profile of naïve patients, revealed several proteins that could classify the different types of SMA according to their differential abundance at T0. Analysis of changes in proteomic profiles identified a total of 147 differentially expressed proteins after nusinersen treatment in SMA1, 135 in SMA2, and 289 in SMA3. Overall, nusinersen-induced changes on proteomic profile were consistent with i) common effects observed in allSMA types (i.e. regulation of axonogenesis), and ii) disease severity-specific changes, namely regulation of glucose metabolism in SMA1, of coagulation processes in SMA2, and of complement cascade in SMA3. CONCLUSIONS This untargeted LC-MS proteomic profiling in the CSF of SMA patients revealed differences in protein expression in naïve patients and showed nusinersen-related modulation in several biological processes after 10 months of treatment. Further confirmatory studies are needed to validate these results in larger number of patients and over abroader timeframe.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sara Casalini
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Noemi Brolatti
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Marina Pedemonte
- Pediatric Neurology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Sara Pintus
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marika Pane
- Centro Clinico Nemo, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marina Sframeli
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Sonia Messina
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Emilio Albamonte
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Valeria A Sansone
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health- DINOGMI, University of Genova, Genova, Italy.
| |
Collapse
|
3
|
Iqbal MS, Belal Bin Heyat M, Parveen S, Ammar Bin Hayat M, Roshanzamir M, Alizadehsani R, Akhtar F, Sayeed E, Hussain S, Hussein HS, Sawan M. Progress and trends in neurological disorders research based on deep learning. Comput Med Imaging Graph 2024; 116:102400. [PMID: 38851079 DOI: 10.1016/j.compmedimag.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
In recent years, deep learning (DL) has emerged as a powerful tool in clinical imaging, offering unprecedented opportunities for the diagnosis and treatment of neurological disorders (NDs). This comprehensive review explores the multifaceted role of DL techniques in leveraging vast datasets to advance our understanding of NDs and improve clinical outcomes. Beginning with a systematic literature review, we delve into the utilization of DL, particularly focusing on multimodal neuroimaging data analysis-a domain that has witnessed rapid progress and garnered significant scientific interest. Our study categorizes and critically analyses numerous DL models, including Convolutional Neural Networks (CNNs), LSTM-CNN, GAN, and VGG, to understand their performance across different types of Neurology Diseases. Through particular analysis, we identify key benchmarks and datasets utilized in training and testing DL models, shedding light on the challenges and opportunities in clinical neuroimaging research. Moreover, we discuss the effectiveness of DL in real-world clinical scenarios, emphasizing its potential to revolutionize ND diagnosis and therapy. By synthesizing existing literature and describing future directions, this review not only provides insights into the current state of DL applications in ND analysis but also covers the way for the development of more efficient and accessible DL techniques. Finally, our findings underscore the transformative impact of DL in reshaping the landscape of clinical neuroimaging, offering hope for enhanced patient care and groundbreaking discoveries in the field of neurology. This review paper is beneficial for neuropathologists and new researchers in this field.
Collapse
Affiliation(s)
- Muhammad Shahid Iqbal
- Department of Computer Science and Information Technology, Women University of Azad Jammu & Kashmir, Bagh, Pakistan.
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| | - Saba Parveen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, VIC 3216, Australia.
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Eram Sayeed
- Kisan Inter College, Dhaurahara, Kushinagar, India.
| | - Sadiq Hussain
- Department of Examination, Dibrugarh University, Assam 786004, India.
| | - Hany S Hussein
- Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha 61411, Saudi Arabia; Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81528, Egypt.
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Narasipura SD, Zayas JP, Ash MK, Reyes A, Shull T, Gambut S, Schneider JR, Lorenzo-Redondo R, Al-Harthi L, Mamede JI. HIV-1 infection promotes neuroinflammation and neuron pathogenesis in novel microglia-containing cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598579. [PMID: 38915632 PMCID: PMC11195220 DOI: 10.1101/2024.06.13.598579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cerebral organoids (COs) are a valuable tool to study the intricate interplay between glial cells and neurons in brain development and disease, including HIV-associated neuroinflammation. We developed a novel approach to generate microglia containing COs (CO-iMs) by co-culturing hematopoietic progenitors and induced pluripotent stem cells. This approach allowed for the differentiation of microglia within the organoids concomitantly to the neuronal progenitors. CO- iMs exhibited higher efficiency in generation of CD45 + /CD11b + /Iba-1 + microglia cells compared to conventional COs with physiologically relevant proportion of microglia (∼7%). CO-iMs exhibited substantially higher expression of microglial homeostatic and sensome markers as well as markers for the complement cascade. CO-iMs showed susceptibility to HIV infection resulting in a significant increase in several pro-inflammatory cytokines/chemokines and compromised neuronal function, which were abrogated by addition of antiretrovirals. Thus, CO-iM is a robust model to decipher neuropathogenesis, neurological disorders, and viral infections of brain cells in a 3D culture system.
Collapse
|
5
|
Evangelidis P, Evangelidis N, Vlachaki E, Gavriilaki E. What is the role of complement in bystander hemolysis? Old concept, new insights. Expert Rev Hematol 2024; 17:107-116. [PMID: 38708453 DOI: 10.1080/17474086.2024.2348662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Bystander hemolysis occurs when antigen-negative red blood cells (RBCs) are lysed by the complement system. Many clinical entities including passenger lymphocyte syndrome, hyperhemolysis following blood transfusion, and paroxysmal nocturnal hemoglobinuria are complicated by bystander hemolysis. AREAS COVERED The review provides data about the role of the complement system in the pathogenesis of bystander hemolysis. Moreover, future perspectives on the understanding and management of this syndrome are described. EXPERT OPINION Complement system can be activated via classical, alternative, and lectin pathways. Classical pathway activation is mediated by antigen-antibody (autoantibodies and alloantibodies against autologous RBCs, infectious agents) complexes. Alternative pathway initiation is triggered by heme, RBC microvesicles, and endothelial injury that is a result of intravascular hemolysis. Thus, C5b is formed, binds with C6-C9 compomers, and MAC (C5b-9) is formulated in bystander RBCs membranes, leading to cell lysis. Intravascular hemolysis, results in activation of the alternative pathway, establishing a vicious cycle between complement activation and bystander hemolysis. C5 inhibitors have been used effectively in patients with hyperhemolysis syndrome and other entities characterized by bystander hemolysis.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Adult Thalassemia Unit, 2nd Department of Internal Medicine, Aristotle University of Thessaloniki, Hippocration General Hospital, Thessaloniki, Greece
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Sun Z, Zhang B, Peng Y. Development of novel treatments for amyotrophic lateral sclerosis. Metab Brain Dis 2024; 39:467-482. [PMID: 38078970 DOI: 10.1007/s11011-023-01334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes paralysis whose etiology and pathogenesis have not been fully elucidated. Presently it is incurable and rapidly progressive with a survival of 2-5 years from onset, and no treatments could cure it. Therefore, it is urgent to identify which therapeutic target(s) are more promising to develop treatments that could effectively treat ALS. So far, more than 90 novel treatments for ALS patients have been registered on ClinicalTrials.gov, of which 23 are in clinical trials, 12 have been terminated and the rest suspended. This review will systematically summarize the possible targets of these novel treatments under development or failing based on published literature and information released by sponsors, so as to provide basis and support for subsequent drug research and development.
Collapse
Affiliation(s)
- Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
7
|
Arora R, Baldi A. Revolutionizing Neurological Disorder Treatment: Integrating Innovations in Pharmaceutical Interventions and Advanced Therapeutic Technologies. Curr Pharm Des 2024; 30:1459-1471. [PMID: 38616755 DOI: 10.2174/0113816128284824240328071911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 04/16/2024]
Abstract
Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods will remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.
Collapse
Affiliation(s)
- Rimpi Arora
- Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| | - Ashish Baldi
- Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| |
Collapse
|
8
|
Gavriilaki M, Papaliagkas V, Stamperna A, Moschou M, Notas K, Papagiannopoulos S, Arnaoutoglou M, Kimiskidis VK. Biomarkers of therapeutic efficacy in adolescents and adults with 5q spinal muscular atrophy: a systematic review. Acta Neurol Belg 2023; 123:1735-1745. [PMID: 35861914 DOI: 10.1007/s13760-022-02028-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The therapeutic landscape of spinal muscular atrophy (SMA) was dramatically transformed with the introduction of three disease-modifying therapies (DMTs). A systematic review was performed to assess available evidence regarding quantitative therapeutic biomarkers used in SMA patients older than 11 years under treatment with DMTs. METHODS Latest literature search in MEDLINE, EMBASE, Cochrane databases and gray literature resources was performed in June 2021. Studies reporting only motor function or muscle strength scales or pulmonary function tests were excluded. Primary outcome was the change from baseline score of any serum, cerebrospinal fluid (CSF) or neurophysiologic biomarker examined. RESULTS Database and gray literature search yielded a total of 8050 records. We identified 14 records published from 2019 until 2021 examining 18 putative serum, CSF or neurophysiologic biomarkers along with routine CSF parameters in 295 SMA nusinersen-treated type 2-4 patients older than 11 years of age. There is evidence based on real-world observational studies suggesting that serum creatinine, creatine kinase activity levels along with CSF Αβ42, glial fibrillary acidic protein concentration as well as ulnar compound motor action potential amplitude and single motor unit potential amplitude changes may depict therapeutic response in this population. CONCLUSION This systematic review explored for the first-time biomarkers used to monitor therapeutic efficacy in SMA adolescents and adults treated with DMTs. Research in this area is in its early stages, and our systematic review can facilitate selection of quantitative therapeutic biomarkers that may be used as surrogate measures of treatment efficacy in future trials. PROTOCOL REGISTRATION PROSPERO CRD42021245516.
Collapse
Affiliation(s)
- Maria Gavriilaki
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, S. Kyriakidi Str. 1, 546 36, Thessaloniki, Greece.
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Alexandra Stamperna
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moschou
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, S. Kyriakidi Str. 1, 546 36, Thessaloniki, Greece
| | - Konstantinos Notas
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotirios Papagiannopoulos
- 3rd Department of Neurology, School of Medicine, G. Papanicolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, S. Kyriakidi Str. 1, 546 36, Thessaloniki, Greece
| |
Collapse
|
9
|
Faravelli I, Gagliardi D, Abati E, Meneri M, Ongaro J, Magri F, Parente V, Petrozzi L, Ricci G, Farè F, Garrone G, Fontana M, Caruso D, Siciliano G, Comi GP, Govoni A, Corti S, Ottoboni L. Multi-omics profiling of CSF from spinal muscular atrophy type 3 patients after nusinersen treatment: a 2-year follow-up multicenter retrospective study. Cell Mol Life Sci 2023; 80:241. [PMID: 37543540 PMCID: PMC10404194 DOI: 10.1007/s00018-023-04885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Ongaro
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | | | | | | | - Donatella Caruso
- Unitech OMICs, University of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Guo X, Feng C, Pu J, Jiang H, Zhu Z, Zheng Z, Zhang J, Chen G, Zhu J, Wu H. Deep Brain Stimulation for Advanced Parkinson Disease in Developing Countries: A Cost-Effectiveness Study From China. Neurosurgery 2023; 92:812-819. [PMID: 36729808 DOI: 10.1227/neu.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The cost-effectiveness of deep brain stimulation (DBS) is more favorable than best medical treatment (BMT) for advanced Parkinson disease (PD) in developed countries. However, it remains unclear in developing countries, where the cost of DBS may not be reimbursed by health care system. OBJECTIVE To model and evaluate the long-term cost-effectiveness of DBS for advanced PD in China from a patient payer perspective. METHODS We developed a Markov model representing the clinical progress of PD to predict the disease progression and related medical costs in a 15-year time horizon. The incremental cost-effectiveness ratio (ICER) and net benefit were used to evaluate the cost-effectiveness of DBS vs BMT. RESULTS DBS treatment led to discounted total costs of ¥370 768 ($56 515.20) (95% CI, ¥369 621.53-371 914.88), compared with ¥48 808 ($7439.68) (95% CI, ¥48 502.63-49 114.21) for BMT, with an additional 1.51 quality-adjusted life years gained, resulting in an ICER of ¥213 544 ($32 549.96)/quality-adjusted life years (95% CI, ¥208 177.35-218 910.10). Sensitivity analysis showed that DBS-related cost has the most substantial impact on ICER. Nation-wide net benefit of BMT and DBS were ¥33 819 ($5154.94) (95% CI, ¥30 211.24-37 426) and ¥30 361 ($4627.85) (95% CI, ¥25 587.03-39 433.66), respectively. Patient demographic analysis showed that more favorable DBS cost-effectiveness was associated with younger age and less severe disease stage. CONCLUSION DBS is cost-effective for patients with advanced PD over a 15-year time horizon in China. However, compared with developed countries, DBS remains a substantial economic burden for patients when no reimbursement is provided. Our findings may help inform cost-effectiveness-based decision making for clinical care of PD in developing countries.
Collapse
Affiliation(s)
- Xinxia Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Chen Feng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiali Pu
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhoule Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Kitzler TM, Chun J. Understanding the Current Landscape of Kidney Disease in Canada to Advance Precision Medicine Guided Personalized Care. Can J Kidney Health Dis 2023; 10:20543581231154185. [PMID: 36798634 PMCID: PMC9926383 DOI: 10.1177/20543581231154185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Purpose of Review To understand the impact of kidney disease in Canada and the priority areas of kidney research that can benefit from patient-oriented, precision medicine research using novel technologies. Sources of Information Information was collected through discussions between health care professionals, researchers, and patient partners. Literature was compiled using search engines (PubMed, PubMed central, Medline, and Google) and data from the Canadian Organ Replacement Register. Methods We reviewed the impact, prevalence, economic burden, causes of kidney disease, and priority research areas in Canada. After reviewing the priority areas for kidney research, potential avenues for future research that can integrate precision medicine initiatives for patient-oriented research were outlined. Key Findings Chronic kidney disease (CKD) remains among the top causes of morbidity and mortality in the world and exerts a large financial strain on the health care system. Despite the increasing number of people with CKD, funding for basic kidney research continues to trail behind other diseases. Current funding strategies favor existing clinical treatment and patient educational strategies. The identification of genetic factors for various forms of kidney disease in the adult and pediatric populations provides mechanistic insight into disease pathogenesis. Allocation of resources and funding toward existing high-yield personalized research initiatives have the potential to significantly affect patient-oriented research outcomes but will be difficult due to a constant decline of funding for kidney research. Limitations This is an overview primarily focused on Canadian-specific literature rather than a comprehensive systematic review of the literature. The scope of our findings and conclusions may not be applicable to health care systems in other countries.
Collapse
Affiliation(s)
- Thomas M. Kitzler
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada,Department of Human Genetics, McGill University, Montreal, QC, Canada,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Justin Chun
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, AB, Canada,Justin Chun, Division of Nephrology, Department of Medicine, University of Calgary, Health Research Innovation Centre, 4A12, 3280 Hospital Drive Northwest, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
12
|
Muacevic A, Adler JR, Xu L, Collins L, Luo E, Ripple KM, de Castro GC, Boua JVK, Marius C, Giamberardino C, Lad SP, Islam Williams T, Bereman MS, Bedlack RS. Filtered Cerebrospinal Fluid From Patients With Amyotrophic Lateral Sclerosis Displays an Altered Proteome and Affects Motor Phenotype in a Mouse Model. Cureus 2022; 14:e32980. [PMID: 36712738 PMCID: PMC9877488 DOI: 10.7759/cureus.32980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) has been implicated in amyotrophic lateral sclerosis (ALS) due to its ability to spread inflammatory proteins throughout the nervous system. We hypothesized that filtration of the CSF could remove pathogenic proteins and prevent them from altering motor phenotypes in a mouse model. METHODS We filtered the CSF from 11 ALS patients via 100 kilodaltons (kD) molecular weight cut-off filters. We used mass spectrometry-based discovery proteomics workflows to compare protein abundances before and after filtration. To test the effects of CSF filtration on motor function, we injected groups of mice with saline, filtered ALS-CSF, or unfiltered ALS-CSF (n=12 per group) and assessed motor function via pole descent and open field tests. RESULTS We identified proteins implicated in ALS pathogenesis and showed that these were removed in significant amounts in our workflow. Key filtered proteins included complement proteins, chitinases, serine protease inhibitors, and neuro-inflammatory proteins such as amyloid precursor protein, chromogranin A, and glial fibrillary acidic protein. Compared to the filtered ALS-CSF mice, unfiltered ALS-CSF mice took longer to descend a pole (10 days post-injection, 11.14 seconds vs 14.25 seconds, p = 0.02) and explored less on an open field (one day post-injection, 21.81 m vs 16.83 m, p = 0.0004). CONCLUSIONS We demonstrated the ability to filter proteins from the CSF of ALS patients and identified potentially pathologic proteins that were reduced in quantity. Additionally, we demonstrated the ability of unfiltered ALS-CSF to induce motor deficits in mice on the pole descent and open field tests and showed that filtration could prevent this deficit. Given the lack of effective treatments for ALS, this could be a novel solution for patients suffering from this deadly and irreversible condition.
Collapse
|
13
|
Brandwijk RJMGE, Michels MAHM, van Rossum M, de Nooijer AH, Nilsson PH, de Bruin WCC, Toonen EJM. Pitfalls in complement analysis: A systematic literature review of assessing complement activation. Front Immunol 2022; 13:1007102. [PMID: 36330514 PMCID: PMC9623276 DOI: 10.3389/fimmu.2022.1007102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. Objective We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. Methods A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. Results A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. Conclusion A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysis
Collapse
Affiliation(s)
| | - Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara van Rossum
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Per H. Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Erik J. M. Toonen
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
- *Correspondence: Erik J. M. Toonen,
| |
Collapse
|
14
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
15
|
Stakeholders Perceptions of Barriers to Precision Medicine Adoption in the United States. J Pers Med 2022; 12:jpm12071025. [PMID: 35887521 PMCID: PMC9316935 DOI: 10.3390/jpm12071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Despite evidence that precision medicine (PM) results in improved patient care, the broad adoption and implementation has been challenging across the United States (US). To better understand the perceived barriers associated with PM adoption, a quantitative survey was conducted across five stakeholders including medical oncologists, surgeons, lab directors, payers, and patients. The results of the survey reveal that stakeholders are often not aligned on the perceived challenges with PM awareness, education and reimbursement, with there being stark contrast in viewpoints particularly between clinicians, payers, and patients. The output of this study aims to help raise the awareness that misalignment on the challenges to PM adoption is contributing to broader lack of implementation that ultimately impacts patients. With better understanding of stakeholder viewpoints, we can help alleviate the challenges by focusing on multi-disciplinary education and awareness to ultimately improve patient outcomes.
Collapse
|
16
|
Gavriilaki M, Moschou M, Papaliagkas V, Notas K, Chatzikyriakou E, Papagiannopoulos S, Arnaoutoglou M, Kimiskidis VK. Nusinersen in Adults with 5q Spinal Muscular Atrophy: a Systematic Review and Meta-analysis. Neurotherapeutics 2022; 19:464-475. [PMID: 35178673 PMCID: PMC9226250 DOI: 10.1007/s13311-022-01200-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
Evidence for nusinersen administration in adult 5q spinal muscular atrophy (5q-SMA) patients is scarce and based on real-world observational data. The present systematic review and meta-analysis aimed to explore the efficacy and safety of nusinersen in patients older than 12 years of age with 5q-SMA. We searched MEDLINE, EMBASE, the Cochrane Library, and grey literature through April 2021. Cross-sectional studies, case reports, review articles, and studies with follow-up less than 6 months were excluded. We included 12 records (seven case-series, five cohorts) representing 11 population cohorts and enrolling 428 SMA patients. We observed statistically significant improvements on motor function Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM) scores at the longest follow-up assessments [SMD = 0.17(95% CI 0.01-0.33), SMD = 0.22(95% CI 0.06-0.38), respectively]. HFMSE and RULM significant improvements were also detected at the subgroup analysis during 10 and 14 months. HFMSE and RULM amelioration occurred earlier in patients with SMA type 3 or 4 during short-term analysis (≤ 6 months). 6-min walk tests (6MWT) and pulmonary function tests did not change. Minimal clinically important differences in HFMSE and RULM were observed in 43.3% (95% CI 34.5-52.3) and 38.9% (95% CI 27.7-50.7), respectively. Severe adverse events were reported in 2% (95% CI 0-5.8). Treatment withdrawal rate was 3% (95% CI 0.5-6.6). Despite the low quality of evidence and the unmet need for randomized data to establish the safety and efficacy of nusinersen in adults, our meta-analysis confirms that nusinersen is a valuable treatment option for older patients with longer-disease duration.Trial registration: PROSPERO database CRD42020223109.
Collapse
Affiliation(s)
- Maria Gavriilaki
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- School of Medicine, University Campus, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Maria Moschou
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Nea Moudania, Greece
| | - Konstantinos Notas
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Chatzikyriakou
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotirios Papagiannopoulos
- 3rd Department of Neurology, School of Medicine, G. Papanicolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Biomarkers of disease progression in adolescents and adults with 5q spinal muscular atrophy: a systematic review and meta-analysis. Neuromuscul Disord 2022; 32:185-194. [DOI: 10.1016/j.nmd.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022]
|
18
|
Gomez-Arboledas A, Acharya MM, Tenner AJ. The Role of Complement in Synaptic Pruning and Neurodegeneration. Immunotargets Ther 2021; 10:373-386. [PMID: 34595138 PMCID: PMC8478425 DOI: 10.2147/itt.s305420] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The complement system, an essential part of the innate immune system, is composed of a group of secreted and membrane proteins that collectively participate in maintaining the function of the healthy and diseased brain. However, an inappropriate activation of the complement system has been related to an inflammatory response in multiple diseases, such as stroke, traumatic brain injury, multiple sclerosis, and Alzheimer's disease, as well as Zika infection and radiotherapy. In addition, C1q and C3 (initial activation components of the complement cascade) have been shown to play a key beneficial role in the refinement of synaptic circuits during developmental stages and adult plasticity. Nevertheless, excessive synaptic pruning in the adult brain can be detrimental and has been associated with synaptic loss in several pathological conditions. In this brief review, we will discuss the role of the complement system in synaptic pruning as well as its contribution to neurodegeneration and cognitive deficits. We also mention potential therapeutic approaches to target the complement system to treat several neuroinflammatory diseases and unintended consequences of radiotherapy.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
19
|
Eftychidis I, Sakellari I, Anagnostopoulos A, Gavriilaki E. Endothelial dysfunction and vascular complications after allogeneic hematopoietic cell transplantation: an expert analysis. Expert Rev Hematol 2021; 14:831-840. [PMID: 34388057 DOI: 10.1080/17474086.2021.1968823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) is the standard of care for many diseases. However, survivors often present with serious complications resulting from acute and chronic toxicities and it is crucial to increase consciousness from treating physicians. We performed a comprehensive review of the literature and critically examined recent available data, mostly using the PubMed and Medline search engines for original articles published over the last decade. Better understanding of many alloHCT-related disorders has shown that endothelial injury and vascular damage plays a critical role. The most widely studied endothelial injury syndromes (EIS) are veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), graft-versus-host-disease (GVHD), and transplant-associated thrombotic microangiopathy (TA-TMA). TA-TMA, frequently underdiagnosed, needs to be clarified using certain criteria and, as a life-threatening condition, requires immediate and intensive treatment. The first-in-class complement inhibitor eculizumab has significantly improved outcomes in both the pediatric and adult population. Cardiovascular (CV) events are the second major cause of morbidity and mortality of alloHCT survivors, after GVHD. Long-term monitoring and management of CV risk is expected to also incorporate patient stratification with CV risk prediction models, early markers of vascular dysfunction or procoagulant activity, subclinical target organ damage, arterial stiffness, and subclinical atherosclerosis.
Collapse
Affiliation(s)
- Ioannis Eftychidis
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Ioanna Sakellari
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
20
|
Pan C, Zhao Y, Xie H, Zhou Y, Duan R, Li Y, Jia Y, Peng T. Effect of Low Complement C4 on Clinical Characteristics of Patients with First-Episode Neuromyelitis Optica Spectrum Disorder. Neuropsychiatr Dis Treat 2021; 17:2859-2866. [PMID: 34522097 PMCID: PMC8434927 DOI: 10.2147/ndt.s322789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To describe and compare the clinical features of patients with first-episode neuromyelitis optica spectrum disorder (NMOSD) in a normal complement C4 group and a low complement C4 group, and explore the mechanism by which low complement C4 affects the clinical features of patients with NMOSD. PATIENTS AND METHODS We retrospectively analyzed clinical data of 169 aquaporin-4 (AQP4) antibody positive patients with NMOSD from the First Affiliated Hospital of Zhengzhou University from December 2013 to March 2021. Prior to treatment, the blood was drawn for detection, and the patients underwent a 3.0 Tesla MRI examination. A low complement C4 level was defined as a serum complement C4 level <0.14 g/L. Depending on whether the complement C4 level was reduced, it was divided into the normal complement C4 group and low complement C4 group. The basic demographics, clinical manifestations, laboratory examinations, and imaging findings of the two groups were compared. RESULTS Among the 169 AQP4 antibody positive patients, 54 were low-complement C4 patients and 115 were normal. There were no significant differences in the demographics, clinical manifestations, treatment options, or admission Expanded Disability Status Scale (EDSS) score between two groups (P > 0.05). The median of discharged EDSS was the same (4 vs 4), but the difference between the two was statistically significant (P = 0.019). Compared with the normal complement C4 group, the blood uric acid level (225 vs 179; P = 0.001) and the C3 level (1.06 vs 0.87, P = 0.000) of the low complement C4 group were significantly lower. The incidence of brainstem lesions in patients with low complement C4 was higher (53.7% vs 33%, P = 0.01). CONCLUSION The treatment effect of the first-episode AQP4 antibody positive NMOSD low complement C4 group was poor, the blood-brain barrier was more severely damaged, and the disease changes were likely to involve the brainstem.
Collapse
Affiliation(s)
- Chunyang Pan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haojie Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|