1
|
Qian MQ, Xiang Z, Wang X. Sonodynamic inactivation of gram-negative and gram-positive bacteria in the presence of phenothiazine compounds toluidine blue and azurin A. Biochim Biophys Acta Gen Subj 2024; 1868:130711. [PMID: 39278371 DOI: 10.1016/j.bbagen.2024.130711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Sonodynamic antimicrobial chemotherapy (SACT) is an effective antimicrobial treatment that can avoid the production of drug-resistant bacteria. Design and development of new high-efficiency sonosensitizers play a key role in the practical application of SACT. METHODS The bacteriostatic effects of two phenothiazine compounds, toluidine blue (TB) and azure A (AA) combined with ultrasonic (US) on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were studied, and the sonodynamic antibacterial activities of TB and AA were compared. The reactive oxygen species (ROS) and the types of ROS produced in the sonodynamic system were detected and the sonodynamic mechanisms of TB and AA were proposed. RESULTS The sonodynamic bacteriostasis mediated by TB and AA increased with the increasing concentration of sonosensitizer, the extension of sonication time and the increase of reaction temperature. The production of ROS was the main reason that TB and AA had excellent sonodynamic antibacterial performance. Singlet oxygen (1O2) and hydroxyl radical (•OH) were the main ROS types in the sonodynamic antibacterial system. The ROS produced by the combined action of AA and US was higher than that of TB. CONCLUSION Both TB and AA displayed excellent sonodynamic antibacterial activities. Moreover, AA had a higher sonodynamic activity than TB. The electron donation effect and steric hindrance effect of the methyl group of phenothiazine parent nucleus of TB might be the cause of the decrease of its sonodynamic activity. These results would provide a valuable reference for the further study of phenothiazines sonosensitizers and their clinical application in SACT.
Collapse
Affiliation(s)
- Ming-Qin Qian
- Departments of Ultrasound, People's Hospital of Liaoning Province, Shenyang 110016, PR China.
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diesases, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diesases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Bueno-Silva B, Parma-Garcia J, Frigo L, Suárez LJ, Macedo TT, Uyeda FH, Melo MARDC, Sacco R, Mourão CF, Feres M, Shibli JA, Figueiredo LC. Antimicrobial Activity of Methylene Blue Associated with Photodynamic Therapy: In Vitro Study in Multi-Species Oral Biofilm. Pathogens 2024; 13:342. [PMID: 38668297 PMCID: PMC11054395 DOI: 10.3390/pathogens13040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The control of infectious diseases caused by biofilms is a continuing challenge for researchers due to the complexity of their microbial structures and therapeutic implications. Photodynamic therapy as an adjunctive anti-infective treatment has been described as a possible valid approach but has not been tested in polymicrobial biofilm models. This study evaluated the effect of photodynamic therapy in vitro with methylene blue (MB) 0.01% and red LEDs (λ = 660 nm, power density ≈ 330 mW/cm2, 2 mm distance from culture) on the metabolic activity and composition of a multispecies subgingival biofilm. Test Groups LED and MB + LED showed a more significant reduction in metabolic activity than the non-LED application group (~50 and 55%, respectively). Groups LED and MB equally affected (more than 80%) the total bacterial count in biofilms. No differences were noted in the bacterial biofilm composition between the groups. In vitro LED alone or the MB + LED combination reduced the metabolic activity of bacteria in polymicrobial biofilms and the total subgingival biofilm count.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, Brazil
| | - Javier Parma-Garcia
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Lucio Frigo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Faculdade de Odontologia da Associação Paulista de Cirurgiões Dentistas (FAOA), São Paulo 02011-000, Brazil
| | - Lina J. Suárez
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Tatiane Tiemi Macedo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Fábio Hideaki Uyeda
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Marcelo Augusto Ruiz da Cunha Melo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Roberto Sacco
- Department of Oral Surgery, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9SP, UK
| | - Carlos Fernando Mourão
- Department of Periodontology, Dental Research Division, Tuft University School of Dental Medicine, Boston, MA 02111, USA;
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Luciene Cristina Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| |
Collapse
|
3
|
Głowacki M, Mazurkiewicz A, Słomion M, Skórczewska K. Resistance of 3D-Printed Components, Test Specimens and Products to Work under Environmental Conditions-Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6162. [PMID: 36079539 PMCID: PMC9458170 DOI: 10.3390/ma15176162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 05/27/2023]
Abstract
The development of additive manufacturing methods known as "3D printing" started in the 1980s. In these methods, spatial models are created from a semi-finished product such as a powder, filament or liquid. The model is most often created in layers, which are created from the semi-finished product, which is most often subjected to thermal treatment or using light or ultraviolet rays. The technology of additive manufacturing has both advantages and disadvantages when compared to the traditionally used methods of processing thermoplastic materials, such as, for example, injection or extrusion. The most important advantages are low cost, flexibility and speed of manufacturing of elements with different spatial shapes. From the point of view of the user of the product, the most important disadvantages are the lower mechanical properties and lower resistance to environmental factors that occur during the use of the manufactured products. The purpose of this review is to present current information and a compilation of features in the field of research on the effects of the interactions of different types of environments on the mechanical properties of 3D-manufactured thermoplastic products. Changes in the structure and mechanical properties of the material under the influence of factors such as humidity, salt, temperature, UV rays, gasoline and the environment of the human body are presented. The presented article enables the effects of environmental conditions on common materials used in 3D printing technology to be collated in one place.
Collapse
Affiliation(s)
- Marcin Głowacki
- Department of Mechanical Engineering, Bydgoszcz University of Sciences and Technology, Kaliskiego 7 Street, 85-789 Bydgoszcz, Poland
| | - Adam Mazurkiewicz
- Department of Mechanical Engineering, Bydgoszcz University of Sciences and Technology, Kaliskiego 7 Street, 85-789 Bydgoszcz, Poland
| | - Małgorzata Słomion
- Department of Management, Bydgoszcz University of Sciences and Technology, Kaliskiego 7 Street, 85-789 Bydgoszcz, Poland
| | - Katarzyna Skórczewska
- Faculty of Technology and Chemical Engineering, University of Sciences and Technology, Seminaryjna 3, Street, 85-326 Bydgoszcz, Poland
| |
Collapse
|
4
|
Additive Manufacturing of Plastics Used for Protection against COVID19-The Influence of Chemical Disinfection by Alcohol on the Properties of ABS and PETG Polymers. MATERIALS 2021; 14:ma14174823. [PMID: 34500911 PMCID: PMC8432493 DOI: 10.3390/ma14174823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
In this paper, the influence of disinfection on structural and mechanical properties of additive manufactured (AM) parts was analyzed. All AM parts used for a fight against COVID19 were disinfected using available methods-including usage of alcohols, high temperature, ozonation, etc.-which influence on AM parts properties has not been sufficiently analyzed. During this research, three types of materials dedicated for were tested in four different disinfection times and two disinfection liquid concentrations. It has been registered that disinfection liquid penetrated void into material's volume, which caused an almost 20% decrease in tensile properties in parts manufactured using a glycol-modified version of polyethylene terephthalate (PETG).
Collapse
|