1
|
Gristina V, Bazan V, Barraco N, Taverna S, Manno M, Raccosta S, Carreca AP, Bono M, Bazan Russo TD, Pepe F, Pisapia P, Incorvaia L, Badalamenti G, Troncone G, Malapelle U, Santini D, Russo A, Galvano A. On-treatment dynamics of circulating extracellular vesicles in the first-line setting of patients with advanced non-small cell lung cancer: the LEXOVE prospective study. Mol Oncol 2025. [PMID: 39780749 DOI: 10.1002/1878-0261.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index. A total of 135 plasma samples from 27 patients were collected at baseline (T0) and at the first radiological restaging (T1). A ∆cfEV < 20% was associated with improved median progression-free survival (mPFS) in responders versus non-responders. Specifically, cfEV responders on pembrolizumab had a significantly better mPFS (25.2 months) compared to those on chemotherapy plus pembrolizumab (6.1 months). EGFR-positive cfEV responders also experienced longer mPFS compared to cfEV non-responders (35.1 months, 95% CI: 14.9-35.5 vs. 20.8 months, 95% CI: 11.2-30.4). This study suggested that monitoring circulating EV could provide valuable insights into treatment efficacy in NSCLC, particularly for patients receiving pembrolizumab or osimertinib.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Nadia Barraco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Mauro Manno
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Anna Paola Carreca
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | | | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Italy
| | - Daniele Santini
- Medical Oncology A, Policlinico Umberto 1, La Sapienza Università Di Roma, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| |
Collapse
|
2
|
Saha SK, Arya V, Jadhav A, Jhanana Kailash S, Panigrahy BK, Joshi A, Singh R, Dubey K. Solid dispersion of alectinib HCl: preclinical evaluation for improving bioavailability and establishing an IVIVC model. Drug Dev Ind Pharm 2025; 51:50-63. [PMID: 39757594 DOI: 10.1080/03639045.2024.2447276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Alectinib HCl (ALB-HCl) is a BCS class IV molecule with low solubility and low oral bioavailability. Owing to its low bioavailability, a high dose of ALB-HCl is recommended with food to meet clinical efficacy. Thus, there is a need for a delivery system to overcome the bioavailability concerns. METHODS Three solid dispersion (SD) formulations (I, II, and III) were evaluated for in-vitro dissolution and in-vivo pharmacokinetics (PK) study in Wistar rats. An in-vitro and in-vivo correlation (IVIVC) model was developed to establish a relationship between in-vitro dissolution data and in-vivo PK data. The formulations were subjected to stability studies. RESULTS All formulations showed enhanced dissolution in all the media except Formulation I in FaSSIF media. In-vivo PK studies displayed that Formulation I was inferior to API alone. Formulations II and III (amorphous SD [ASD]) exhibited two-fold higher Cmax and AUC0-last than API alone. Level A IVIVC model was established for Cmax and AUC0-last with an acceptable % prediction error (PE). When evaluated for external predictability, the model was found validated for Cmax (% PE <10%), however, it was inconclusive for AUC0-last (%PE -14.03). Stability studies showed ASD formulations were stable during storage. CONCLUSION A stable ASD formulation of ALB-HCl was successfully developed with improved bioavailability. Developing an IVIVC model can act as a surrogate to predict in-vivo performance. The selection of formulation components in ASD shall be rationalized for bioavailability and stability before clinical evaluation.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, New Delhi, India
- Formulation Research and Development - Orals, Gurugram, India
| | - Vipin Arya
- CPP, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Ajinkya Jadhav
- Formulation Research and Development - Orals, Vadodara, India
| | | | | | | | - Romi Singh
- Formulation Research and Development - Orals, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, New Delhi, India
| |
Collapse
|
3
|
Lee ATM, Nagasaka M. Adagrasib in KRYSTAL-12 has Not Broken the KRAS G12C Enigma Code of the Unspoken 6-Month PFS Barrier in NSCLC. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:169-176. [PMID: 39717628 PMCID: PMC11664093 DOI: 10.2147/lctt.s492126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/23/2024] [Indexed: 12/25/2024]
Abstract
Mutations in KRAS G12C are among the more common oncogenic driver mutations in non-small cell lung cancer (NSCLC). In December 2022, the US Food and Drug Administration (FDA) granted accelerated approval to adagrasib, a small molecule covalent inhibitor of KRAS G12C, for the treatment of patients with locally advanced or metastatic KRAS G12C mutant NSCLC who received at least one prior systemic therapy based on promising results from phase 1 and 2 trials wherein adagrasib demonstrated a median PFS of 6.5 months. Results from the phase 3 KRYSTAL-12 trial were recently presented, showing benefit with adagrasib compared to docetaxel, with participants in the adagrasib group demonstrating a PFS of 5.5 months compared to 3.8 months in the docetaxel group. However, these results fall short of the 6-month PFS benchmark that had seemed achievable from what had been seen in phase 1 and 2 trials, mirroring similarly disappointing results from the CodeBreaK 200 trial wherein sotorasib, the first-in-class KRAS G12C inhibitor, also failed to meet the 6-month benchmark also thought to be possible when examining earlier trials. These results raise the question of adagrasib's true value in the second-line treatment setting and compel us to explore more potent novel therapies, combination therapies, and more as we seek to break the 6-month PFS barrier in the treatment of KRAS G12C mutant NSCLC.
Collapse
Affiliation(s)
- Alexandria T M Lee
- University of California Irvine School of Medicine, Department of Medicine, Orange, CA, 92868, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Department of Medicine, Orange, CA, 92868, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, 92868, USA
- St. Marianna University School of Medicine, Department of Medicine, Kawasaki, Japan
| |
Collapse
|
4
|
Gorzelak-Magiera A, Domagała-Haduch M, Kabut J, Gisterek-Grocholska I. The Use of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer Treatment-Literature Review. Biomedicines 2024; 12:2308. [PMID: 39457620 PMCID: PMC11504905 DOI: 10.3390/biomedicines12102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related morbidity and mortality. The median survival time for patients with advanced non-small-cell lung cancer before the era of molecular-based personalized treatment was 7.9 months. The discovery of predictive factors and the introduction of molecular diagnostics into daily practice made a breakthrough, enabling several years of survival in patients with advanced disease. The discovery of rearrangements in the ALK gene and ALK tyrosine kinase inhibitors has resulted in a dramatic improvement in the prognosis of patients with this subtype of cancer. Currently, three generations of ALK inhibitors differing in activity, toxicity and degree of penetration into the central nervous system are available in clinical practice. The current state of knowledge on ALK inhibitors used in clinical practice is summarised in this research paper. Methods of diagnosis of abnormalities in ALK have been shown, and the review of research that contributed to the development of the next generation of ALK inhibitors has been presented.
Collapse
Affiliation(s)
- Anita Gorzelak-Magiera
- Department of Oncology and Radiotherapy, Medical University of Silesia, 40-615 Katowice, Poland; (M.D.-H.); (J.K.); (I.G.-G.)
| | | | | | | |
Collapse
|
5
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sulabh Singhal
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
AlAkrash HS, Ghabbani HM, AlSaleh FA, Nassar RM, AlHumaidan AA, AlHasan AM, AlMosa AM, AlBluwi AA, Eltholoth HS, Ali NM, AlZahrani AY. Anaplastic lymphoma kinase rearrangement-associated renal cell carcinoma: Rare subset case report. Urol Case Rep 2024; 55:102798. [PMID: 39104401 PMCID: PMC11298843 DOI: 10.1016/j.eucr.2024.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Anaplastic lymphoma kinase rearrangement-associated renal cell carcinoma (ALK-RCC) is a rare subtype of renal cell carcinoma characterized by genetic rearrangements involving the ALK gene. Managing ALK-RCC is challenging due to its rarity and limited treatment options. Targeted therapies directed at the ALK gene have shown promise. ALK-RCC is a rare subtype of renal cell carcinoma with unique clinical and pathological features. ALK inhibitors may hold promise as a targeted therapy for ALK-RCC. Further research is needed to understand the behavior of ALK-RCC and develop effective treatment strategies.
Collapse
Affiliation(s)
- Hamad S. AlAkrash
- Urology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hisham M. Ghabbani
- Urology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faisal A. AlSaleh
- Urology Department, King Khaled University Hospital, Riyadh, Saudi Arabia
| | - Rashad M. Nassar
- Urology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Almaha A. AlHumaidan
- College of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Abdullah M. AlMosa
- Urology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Hossam S. Eltholoth
- Urology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nagoud M. Ali
- Histopathology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed Y. AlZahrani
- Urology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
8
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
9
|
Wu Y, Ren K, Wan Y, Lin HM. Economic burden in patients with anaplastic lymphoma kinase ( ALK)-positive non-small cell lung cancer (NSCLC), with or without brain metastases, receiving first-line ALK inhibitors. J Oncol Pharm Pract 2023; 29:1418-1427. [PMID: 36131505 PMCID: PMC10540485 DOI: 10.1177/10781552221126174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION This observational study describes the real-world economic burden in patients with anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) receiving a first-line ALK inhibitor, and the economic impact of brain metastases (BM). METHODS Administrative claims data (Truven Health MarketScan® Commercial Claims and Encounters database and Medicare Supplemental and Coordination of Benefits database; January 1, 2015-March 31, 2020) for adult patients with ALK+ NSCLC who received a first-line ALK inhibitor were retrospectively reviewed. Healthcare costs and resource utilization were calculated on a per-patient-per-month (PPPM) basis and stratified by the presence or absence of BM prior to first-line ALK inhibitor. Factors associated with costs were identified. RESULTS A total of 496 patients were eligible for analysis. Mean PPPM total healthcare costs were $21,961 for all patients receiving up to 1 year of a first-line ALK inhibitor. Patients were significantly more likely to have higher mean PPPM total costs if they had BM prior to first-line ALK inhibitor (vs. no BM; odds ratio: 1.11; 95% confidence interval: 1.02, 1.21; p = 0.013). Mean PPPM days of hospital stay (p = 0.0056), and inpatient hospital visits (p = 0.0030) were significantly higher for patients with BM compared to no BM. The main cost drivers for non-inpatient procedures for all patients were medications, radiation therapy, and other diagnostic procedures. CONCLUSIONS The economic burden in patients with ALK+ NSCLC receiving a first-line ALK inhibitor was high. Patients with ALK+ NSCLC and BM had higher healthcare costs and resource utilization than patients without BM.
Collapse
Affiliation(s)
- Yanyu Wu
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kaili Ren
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Yin Wan
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Huamao M Lin
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| |
Collapse
|
10
|
Zia V, Lengyel CG, Tajima CC, de Mello RA. Advancements of ALK inhibition of non-small cell lung cancer: a literature review. Transl Lung Cancer Res 2023; 12:1563-1574. [PMID: 37577315 PMCID: PMC10413028 DOI: 10.21037/tlcr-22-619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/19/2023] [Indexed: 08/15/2023]
Abstract
Background and Objective The therapeutic landscape for non-small cell lung cancer (NSCLC) has evolved considerably in the last few years. The targeted drugs and molecular diagnostics have been developed together at a fast pace. This narrative review explores the evolution of anaplastic lymphoma kinase (ALK) targeting therapies from discovering the ALK protein, molecular tests, present clinical trial data and future perspectives. Since the body of evidence on lung cancer is growing daily, most oncologists need time to implement data in their daily practice. Methods We developed a narrative review to provide up-to-date help in the clinical decision-making of ALK-altered NSCLC patients. In 2022, the authors reviewed PubMed's published pivotal randomized Phase 3 trial results. Key Content and Findings The development of ALK inhibitors was a revolution that is still ongoing; second and third-generation ALK inhibitors provided more than 30 months of progression-free survival (PFS) and impressive "brain-control". Brigatinib provided a survival benefit for patients with baseline brain metastases (HR 0.43, 95% CI: 0.21-0.89), and Lorlatinib demonstrated intracranial response rates of 82%, with 71% of complete intracranial responses. Personalized medicine is the new paradigm, from performing broad genetic panels for diagnosis to individual targeted therapy or combinations of different targeted agents. Conclusions In the future, performing broad molecular panels should be the standard of care in the front line and after each progression to detect arising resistance mechanisms. Longer PFS will substantially convert a deadly condition into an almost chronic disease in the following decades. Treatment sequencing will be the cornerstone for patient survival, and liquid biopsies may replace tissue biopsies.
Collapse
Affiliation(s)
- Victor Zia
- Post-graduation Program in Translational Medicine, University Federal of São Paulo, São Paulo, Brazil
| | - Csongor György Lengyel
- Department of Head and Neck Surgery, National Institute of Oncology Hungary, Budapest, Hungary
| | | | - Ramon Andrade de Mello
- Post-graduation Program in Translational Medicine, University Federal of São Paulo, São Paulo, Brazil
- Post-Graduation Programme in Medicine, Nine of July University (UNINOVE), São Paulo, Brazil
- Section of Medical Oncology, Brazilian Society of Cancerology (SBCANCER), Salvador, Brazil
- Department of Oncology, University of Oxford, Oxford, UK
- Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
Norman A, Adjei AA. Expanding the KRASG12C Inhibitor Class: What Do We Need Next? J Thorac Oncol 2023; 18:844-846. [PMID: 37348992 DOI: 10.1016/j.jtho.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Aurora Norman
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Alex A Adjei
- Taussig Cancer Institute, Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
12
|
Sullivan DR, Wisnivesky JP, Nugent SM, Stone K, Farris MK, Kern JA, Swanson S, Smith CB, Rosenzweig K, Slatore CG. Decision Regret among Patients with Early-stage Lung Cancer Undergoing Radiation Therapy or Surgical Resection. Clin Oncol (R Coll Radiol) 2023; 35:e352-e361. [PMID: 37031075 PMCID: PMC10241560 DOI: 10.1016/j.clon.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
AIMS Clinical equipoise exists regarding early-stage lung cancer treatment among patients as trials comparing stereotactic body radiation therapy (SBRT) and surgical resection are unavailable. Given the potential differences in treatment effectiveness and side-effects, we sought to determine the associations between treatment type, decision regret and depression. MATERIALS AND METHODS A multicentre, prospective study of patients with stage IA-IIA non-small cell lung cancer (NSCLC) with planned treatment with SBRT or surgical resection was conducted. Decision regret and depression were measured using the Decision Regret Scale (DRS) and Patient Health Questionnaire-4 (PHQ-4) at 3, 6 and 12 months post-treatment, respectively. Mixed linear regression modelling examined associations between treatment and decision regret adjusting for patient sociodemographics. RESULTS Among 211 study participants with early-stage lung cancer, 128 (61%) patients received SBRT and 83 (39%) received surgical resection. The mean age was 73 years (standard deviation = 8); 57% were female; 79% were White non-Hispanic. In the entire cohort at 3 months post-treatment, 72 (34%) and 57 (27%) patients had mild and severe decision regret, respectively. Among patients who received SBRT or surgery, 71% and 46% of patients experienced at least mild decision regret at 3 months, respectively. DRS scores increased at 6 months and decreased slightly at 12 months of follow-up in both groups. Higher DRS scores were associated with SBRT treatment (adjusted mean difference = 4.18, 95% confidence interval 0.82 to 7.54) and depression (adjusted mean difference = 3.49, 95% confidence interval 0.52 to 6.47). Neither patient satisfaction with their provider nor decision-making role concordance was associated with DRS scores. CONCLUSIONS Most early-stage lung cancer patients experienced at least mild decision regret, which was associated with SBRT treatment and depression symptoms. Findings suggest patients with early-stage lung cancer may not be receiving optimal treatment decision-making support. Therefore, opportunities for improved patient-clinician communication probably exist.
Collapse
Affiliation(s)
- D R Sullivan
- Division of Pulmonary & Critical Care Medicine (PCCM), OHSU, Portland, OR, USA; Center to Improve Veteran Involvement in Care (CIVIC), VA-Portland Health Care System (VAPORHCS), Portland, OR, USA; Knight Cancer Institute, OHSU, Portland, OR, USA.
| | - J P Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Division of PCCM Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - S M Nugent
- Center to Improve Veteran Involvement in Care (CIVIC), VA-Portland Health Care System (VAPORHCS), Portland, OR, USA; Knight Cancer Institute, OHSU, Portland, OR, USA
| | - K Stone
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Division of PCCM Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - M K Farris
- Department of Radiation Oncology, Wake Forest Baptist Atrium Health, Winston-Salem, NC, USA
| | - J A Kern
- Division of Oncology, National Jewish Health, Denver, CO, USA
| | - S Swanson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA; Division of Surgical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - C B Smith
- Division of Hematology and Medical Oncology, Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - K Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - C G Slatore
- Division of Pulmonary & Critical Care Medicine (PCCM), OHSU, Portland, OR, USA; Center to Improve Veteran Involvement in Care (CIVIC), VA-Portland Health Care System (VAPORHCS), Portland, OR, USA; Knight Cancer Institute, OHSU, Portland, OR, USA; Section of PCCM, VAPORHCS, Portland, OR, USA
| |
Collapse
|
13
|
Chen J, Xu C, Lv J, Lu W, Zhang Y, Wang D, Song Y. Clinical characteristics and targeted therapy of different gene fusions in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 2023; 12:895-908. [PMID: 37197619 PMCID: PMC10183389 DOI: 10.21037/tlcr-22-566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/17/2023] [Indexed: 04/07/2023]
Abstract
Background and Objective Lung cancer is the most fatal malignant tumor in the world. Since the discovery of driver genes, targeted therapy has been demonstrated to be superior to traditional chemotherapy and has revolutionized the therapeutic landscape of non-small cell lung cancer (NSCLC). The remarkable success of tyrosine kinase inhibitors (TKIs) in patients with epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusions has shifted the treatment from platinum-based combination chemotherapy to targeted therapy. Although the incidence rate of gene fusion is low in NSCLC, it is of great significance in advanced refractory patients. However, the clinical characteristics and the latest treatment progress of patients with gene fusions in lung cancer have not been thoroughly explored. The objective of this narrative review was to summarize the latest research progress of targeted therapy for gene fusion variants in NSCLC to improve understanding for clinicians. Methods We conducted a search of PubMed database and American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), and World Conference on Lung Cancer (WCLC) abstracts meeting proceedings from 1 January 2005 to 31 August 2022 with the following keywords "non-small cell lung cancer", "fusion", "rearrangement", "targeted therapy" and "tyrosine kinase inhibitor". Key Content and Findings We comprehensively listed the targeted therapy of various gene fusions in NSCLC. Fusions of ALK, ROS proto-oncogene 1 (ROS1), and rearranged during transfection proto-oncogene (RET) are relatively more common than others (NTRK fusions, NRG1 fusions, FGFR fusions, etc.). Among ALK-rearranged NSCLC patients treated with crizotinib, alectinib, brigatinib, or ensartinib, the Asian population exhibited a slightly better effect than the non-Asian population in first-line therapy. It was revealed that ceritinib may have a slightly better effect in the non-Asian ALK-rearranged population as first-line therapy. The effect of crizotinib might be similar in Asians and non-Asians with ROS1-fusion-positive NSCLC in first-line therapy. The non-Asian population were shown to be more likely to be treated with selpercatinib and pralsetinib for RET-rearranged NSCLC than the Asian population. Conclusions The present report summarizes the current state of fusion gene research and the associated therapeutic methods to improve understanding for clinicians, but how to better overcome drug resistance remains a problem that needs to be explored.
Collapse
Affiliation(s)
- Jiayan Chen
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiawen Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wanjun Lu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yixue Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dong Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
14
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
15
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
16
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy of ALK Inhibitors for Treatment-Naïve ALK-Positive Advanced Non-Small Cell Lung Cancer with Central Nervous System Metastasis: A Network Meta-Analysis. Int J Mol Sci 2023; 24:2242. [PMID: 36768562 PMCID: PMC9917367 DOI: 10.3390/ijms24032242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Central nervous system (CNS) metastases and acquired resistance complicate the treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC). Thus, this review aimed to provide a comprehensive overview of brain metastasis, acquired resistance, and prospects for overcoming these challenges. A network meta-analysis of relevant phase III randomized controlled trials was performed to compare the efficacies of multiple ALK inhibitors by drug and generation in overall patients with ALK-p untreated advanced NSCLC and a subgroup of patients with CNS metastases. The primary endpoint was progression-free survival (PFS). Generation-specific comparison results showed that third-generation ALK inhibitors were significantly more effective than second-generation ALK inhibitors in prolonging the PFS of the subgroup of patients with CNS metastases. Drug-specific comparison results demonstrated that lorlatinib was the most effective in prolonging PFS, followed by brigatinib, alectinib, ensartinib, ceritinib, crizotinib, and chemotherapy. While lorlatinib was superior to brigatinib for PFS in the overall patient population, no significant difference between the two was found in the subgroup of patients with CNS metastases. These results can serve as a foundation for basic, clinical, and translational research and guide clinical oncologists in developing individualized treatment strategies for patients with ALK-p, ALK inhibitor-naive advanced NSCLC.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Advanced Cancer Translational Research Institute, Hatanodai Campus, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akihiko Tanaka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| |
Collapse
|
17
|
Cho BC, Kim DW, Batra U, Park K, Kim SW, Yang CT, Voon PJ, Sriuranpong V, Babu KG, Amin K, Wang Y, Sen P, Slimane K, Geater S. Efficacy and Safety of Ceritinib 450 mg/day with Food and 750 mg/day in Fasted State in Treatment-Naïve Patients with ALK+ Non-Small Cell Lung Cancer: Results from the ASCEND-8 Asian Subgroup Analysis. Cancer Res Treat 2023; 55:83-93. [PMID: 35344649 PMCID: PMC9873336 DOI: 10.4143/crt.2021.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Previous report from the ASCEND-8 trial showed consistent efficacy with less gastrointestinal (GI) toxicity in patients with anaplastic lymphoma kinase-rearranged (ALK+) advanced/metastatic non-small cell lung cancer (NSCLC) treated with ceritinib 450-mg with food compared with 750-mg fasted. In this subgroup analysis, we report outcomes in Asian patients of the ASCEND-8 trial. MATERIALS AND METHODS Key efficacy endpoints were blinded independent review committee (BIRC)-assessed overall response rate (ORR) and duration of response (DOR) evaluated per Response Evaluation Criteria in Solid Tumors v1.1. Other efficacy endpoints were investigator-assessed ORR and DOR; BIRC- and investigator-assessed progression-free survival (PFS) and disease control rate; overall survival (OS). Safety was evaluated by frequency and severity of adverse events. RESULTS At final data cutoff (6 March 2020), 198 treatment-naïve patients were included in efficacy analysis, of which 74 (37%) comprised the Asian subset; 450-mg fed (n=29), 600-mg fed (n=19), and 750-mg fasted (n=26). Baseline characteristics were mostly comparable across study arms. At baseline, more patients in 450-mg fed arm (44.8%) had brain metastases than in 750-mg fasted arm (26.9%). Per BIRC, patients in the 450-mg fed arm had a numerically higher ORR, 24-month DOR rate and 24-month PFS rate than the 750-mg fasted arm. The 36-month OS rate was 93.1% in 450-mg fed arm and 70.9% in 750-mg fasted arm. Any-grade GI toxicity occurred in 82.8% and 96.2% of patients in the 450-mg fed and 750-mg fasted arms, respectively. CONCLUSION Asian patients with ALK+ advanced/metastatic NSCLC treated with ceritinib 450-mg fed showed numerically higher efficacy and lower GI toxicity than 750-mg fasted patients.
Collapse
Affiliation(s)
- Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul,
Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Ullas Batra
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Center, New Delhi,
India
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Cheng-Ta Yang
- Chang Gung Memorial Hospital and Chang Gung University, Taoyuan,
Taiwan
| | | | - Virote Sriuranpong
- Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok,
Thailand
| | - K. Govind Babu
- HCG Curie Center of Oncology and Kidwai Memorial Institute of Oncology, Bengaluru,
India
| | | | | | - Paramita Sen
- Novartis Pharmaceuticals Corporation, East Hanover, NJ,
USA
| | | | - Sarayut Geater
- Songklanagarind Hospital, Prince of Songkla University, Songkhla,
Thailand
| |
Collapse
|
18
|
Yang Y, Li Y, Yang Q, Liu Z, Chang X, Yang H, Liu J, Li Z, Zuo D. FAT4 activation inhibits epithelial-mesenchymal transition (EMT) by promoting autophagy in H2228/Cer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:64. [PMID: 36576661 DOI: 10.1007/s12032-022-01934-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
As a tumor suppressor in lung cancer, FAT atypical cadherin 4 (FAT4) has a critical role in epithelial-mesenchymal transition (EMT). However, the role of FAT4 in ceritinib-resistant anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) EMT has not been reported. It is necessary to discuss the role of FAT4 in this process and its potential mechanism of interaction. We found that the expression level of FAT4 was downregulated markedly in ceritinib-resistant NCI-H2228 (H2228/Cer) cells. Jujuboside A, a FAT4 activator, diminished EMT and metastasis of H2228/Cer cells. Importantly, autophagy inhibition inverted the inhibitory effect of FAT4 activation on EMT. Furthermore, we found the regulatory action of FAT4 on autophagy was related to proteasome 26S subunit ubiquitin receptor and non-ATPase 4 (PSMD4) and proteasome 20S subunit beta 4 (PSMB4), and the inhibitory effect of autophagy on EMT might be related to ROS/NF-κB/IκB-α and Wnt/β-catenin pathways. In conclusion, FAT4 activation can inhibit the process of EMT in H2228/Cer cells by promoting autophagy, which provides a potential target for ceritinib-resistant ALK positive NSCLC therapy.
Collapse
Affiliation(s)
- Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Yang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Huan Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
19
|
Pratap Reddy Gajulapalli V, Lee J, Sohn I. Ligand-Based Pharmacophore Modelling in Search of Novel Anaplastic Lymphoma Kinase Inhibitors. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Guo D, Yu Y, Long B, Deng P, Ran D, Han L, Zheng J, Gan Z. Design, synthesis and biological evaluation of 2,4-pyrimidinediamine derivatives as ALK and HDACs dual inhibitors for the treatment of ALK addicted cancer. J Enzyme Inhib Med Chem 2022; 37:2512-2529. [PMID: 36100230 PMCID: PMC9481106 DOI: 10.1080/14756366.2022.2121822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Simultaneous inhibition of histone deacetylases (HDACs) and anaplastic lymphoma kinase (ALK) could enhance therapeutic activity against ALK addicted cancer cells. Herein, a new series of 2,4-pyrimidinediamine derivatives as ALK and HDACs dual inhibitors were designed, synthesised and evaluated. Compound 12a which possessed good inhibitory potency against ALKwt and HDAC1, exhibited stronger antiproliferative activity than Ceritinib on ALK positive cancer cell lines though inducing cell apoptosis and cell cycle arrest in vitro and in vivo. In addition, the mechanism is further verified by the down-regulation of p-ALK protein, and up-regulation of Acetylated histone 3 (Ac-H3) protein in cancer cells. These results suggested that 12a would be a potential candidate for the ALK addicted cancer treatment.
Collapse
Affiliation(s)
- Dafeng Guo
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, PR China
| | - Binyu Long
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Ping Deng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, PR China
| | - Dongzhi Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Lei Han
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jiecheng Zheng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, PR China
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
21
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
22
|
Garces de Los Fayos Alonso I, Zujo L, Wiest I, Kodajova P, Timelthaler G, Edtmayer S, Zrimšek M, Kollmann S, Giordano C, Kothmayer M, Neubauer HA, Dey S, Schlederer M, Schmalzbauer BS, Limberger T, Probst C, Pusch O, Högler S, Tangermann S, Merkel O, Schiefer AI, Kornauth C, Prutsch N, Zimmerman M, Abraham B, Anagnostopoulos J, Quintanilla-Martinez L, Mathas S, Wolf P, Stoiber D, Staber PB, Egger G, Klapper W, Woessmann W, Look TA, Gunning P, Turner SD, Moriggl R, Lagger S, Kenner L. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol Cancer 2022; 21:172. [PMID: 36045346 PMCID: PMC9434917 DOI: 10.1186/s12943-022-01640-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive. METHODS AND RESULTS In a transgenic mouse model that mimics PDGFRβ-driven human ALCL in vivo, we identify PDGFRβ as a driver of aggressive tumor growth. Mechanistically, PDGFRβ induces the pro-survival factor Bcl-xL and the growth-enhancing cytokine IL-10 via STAT5 activation. CRISPR/Cas9 deletion of both STAT5 gene products, STAT5A and STAT5B, results in the significant impairment of cell viability compared to deletion of STAT5A, STAT5B or STAT3 alone. Moreover, combined blockade of STAT3/5 activity with a selective SH2 domain inhibitor, AC-4-130, effectively obstructs tumor development in vivo. CONCLUSIONS We therefore propose PDGFRβ as a novel biomarker and introduce PDGFRβ-STAT3/5 signaling as an important axis in aggressive ALCL. Furthermore, we suggest that inhibition of PDGFRβ or STAT3/5 improve existing therapies for both previously untreated and relapsed/refractory ALK+ ALCL patients.
Collapse
Affiliation(s)
- I Garces de Los Fayos Alonso
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Zujo
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - I Wiest
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - P Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - G Timelthaler
- Center for Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - S Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - M Zrimšek
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - C Giordano
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Kothmayer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - H A Neubauer
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Dey
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria
| | - M Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - B S Schmalzbauer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - T Limberger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria
| | - C Probst
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - O Pusch
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - O Merkel
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - A I Schiefer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - C Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - N Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Anagnostopoulos
- Institute of Pathology, University of Wuerzburg, 97080, Würzburg, Germany
- Institute of Pathology, Charité-Medical University of Berlin, 10117, Berlin, Germany
| | - L Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Cluster of excellence iFIT, "Image-Guided and Functionally Instructed Tumor Therapy", University of Tübingen, 72076, Tübingen, Germany
| | - S Mathas
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Medical University of Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125, Berlin, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - D Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - P B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - G Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
- Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - W Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel/University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - W Woessmann
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - T A Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - S D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - R Moriggl
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria.
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria.
- Christian Doppler Laboratory of Applied Metabolomics, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
23
|
FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma. Int J Mol Sci 2022; 23:ijms23158675. [PMID: 35955806 PMCID: PMC9369421 DOI: 10.3390/ijms23158675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein—FGFR3-TACC3 fusion—is prevalent in 3–4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.
Collapse
|
24
|
Luca CD, Pepe F, Pisapia P, Iaccarino A, Righi L, Listì A, Russo G, Campione S, Pagni F, Nacchio M, Conticelli F, Russo M, Fabozzi T, Vigliar E, Bellevicine C, Rocco D, Laudati S, Iannaci G, Daniele B, Gridelli C, Cortinovis DL, Novello S, Molina-Vila MA, Rosell R, Troncone G, Malapelle U. RNA-based next generation sequencing in non-small-cell lung cancer in a routine setting: an experience from an Italian referral center. Per Med 2022; 19:395-401. [PMID: 35801400 DOI: 10.2217/pme-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: ALK, ROS1, NTRK and RET gene fusions and MET exon 14 skipping alterations represent novel predictive biomarkers for advanced non-small-cell lung cancer (NSCLC). Therefore, testing patients for these genetic variants is crucial for choosing the best selective treatment. Over the last couple of decades, next generation sequencing (NGS) platforms have emerged as an extremely useful tool for detecting these variants. Materials & methods: In the present study, we report our NGS molecular records produced during a year of diagnostic activity. Results: Overall, our in-house developed NGS workflow successfully analyzed n = 116/131 (88.5%) NSCLC samples. Of these, eight (6.8%) and five (4.3%) out of 116 patients harbored ALK and RET gene rearrangements, respectively: one case harbored ROS1 gene fusion (0.7%). Conclusion: Our results highlight that an RNA-based NGS analysis can reliably detect gene fusion alterations, thereby playing a pivotal role in the management of NSCLC patients.
Collapse
Affiliation(s)
- Caterina De Luca
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 1, Orbassano, Turin, 10043, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 1, Orbassano, Turin, 10043, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Severo Campione
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, Naples, Italy
| | - Fabio Pagni
- Department of Pathology, University of Milan-Bicocca (UNIMIB), Monza, Italy
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Floriana Conticelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Naples, Italy
| | | | | | | | - Cesare Gridelli
- Division of Medical Oncology, 'S.G. Moscati' Hospital, Avellino, Italy
| | | | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 1, Orbassano, Turin, 10043, Italy
| | | | - Rafael Rosell
- Laboratory of Oncology, Pangaea Biotech, Quiron Dexeus University Hospital, Barcelona, Spain.,Instituto Oncológico Dr. Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain.,Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain.,Germans Trias i Pujol, Health Sciences Institute & Hospital, Badalona, Spain
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Baba K, Goto Y. Lorlatinib as a treatment for ALK-positive lung cancer. Future Oncol 2022; 18:2745-2766. [PMID: 35787143 DOI: 10.2217/fon-2022-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, has been approved as a treatment for ALK-positive lung cancer. This review provides information regarding the pharmacology and clinical features of lorlatinib, including its efficacy and associated adverse events. Pivotal clinical trials are discussed along with the current status of lorlatinib as a treatment for ALK-positive lung cancer and future therapeutic challenges.
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
26
|
The Change in Paradigm for NSCLC Patients with EML4–ALK Translocation. Int J Mol Sci 2022; 23:ijms23137322. [PMID: 35806325 PMCID: PMC9266866 DOI: 10.3390/ijms23137322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The severe prognosis linked with a lung cancer diagnosis has changed with the discovery of oncogenic molecularly driven subgroups and the use of tailored treatment. ALK-translocated advanced lung cancer is the most interesting model, having achieved the longest overall survival. Here, we report the most important paradigmatic shifts in the prognosis and treatment for this subgroup population occurred among lung cancer.
Collapse
|
27
|
Dong S, Yousefi H, Savage IV, Okpechi SC, Wright MK, Matossian MD, Collins-Burow BM, Burow ME, Alahari SK. Ceritinib is a novel triple negative breast cancer therapeutic agent. Mol Cancer 2022; 21:138. [PMID: 35768871 PMCID: PMC9241294 DOI: 10.1186/s12943-022-01601-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are clinically aggressive subtypes of breast cancer. TNBC is difficult to treat with targeted agents due to the lack of commonly targeted therapies within this subtype. Androgen receptor (AR) has been detected in 12-55% of TNBCs. AR stimulates breast tumor growth in the absence of estrogen receptor (ER), and it has become an emerging molecular target in TNBC treatment. METHODS Ceritinib is a small molecule inhibitor of tyrosine kinase and it is used in the therapy of non-small lung cancer patients. Enzalutamide is a small molecule compound targeting the androgen receptor and it is used to treat prostate cancer. Combination therapy of these drugs were investigated using AR positive breast cancer mouse xenograft models. Also, combination treatment of ceritinib and paclitaxel investigated using AR- and AR low mouse xenograft and patient derived xenograft models. RESULTS We screened 133 FDA approved drugs that have a therapeutic effect of AR+ TNBC cells. From the screen, we identified two drugs, ceritinib and crizotinib. Since ceritinib has a well- defined role in androgen independent AR signaling pathways, we further investigated the effect of ceritinib. Ceritinib treatment inhibited RTK/ACK/AR pathway and other downstream pathways in AR+ TNBC cells. The combination of ceritinib and enzalutamide showed a robust inhibitory effect on cell growth of AR+ TNBC cells in vitro and in vivo. Interestingly Ceritinib inhibits FAK-YB-1 signaling pathway that leads to paclitaxel resistance in all types of TNBC cells. The combination of paclitaxel and ceritinib showed drastic inhibition of tumor growth compared to a single drug alone. CONCLUSIONS To improve the response of AR antagonist in AR positive TNBC, we designed a novel combinational strategy comprised of enzalutamide and ceritinib to treat AR+ TNBC tumors through the dual blockade of androgen-dependent and androgen-independent AR signaling pathways. Furthermore, we introduced a novel therapeutic combination of ceritinib and paclitaxel for AR negative or AR-low TNBCs and this combination inhibited tumor growth to a great extent. All agents used in our study are FDA-approved, and thus the proposed combination therapy will likely be useful in the clinic.
Collapse
Affiliation(s)
- Shengli Dong
- TYK Medicines, Inc, Zhejiang, People's Republic of China, 313100
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | | | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Maryl K Wright
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | | | | | - Matthew E Burow
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Salame N, Fooks K, El-Hachem N, Bikorimana JP, Mercier FE, Rafei M. Recent Advances in Cancer Drug Discovery Through the Use of Phenotypic Reporter Systems, Connectivity Mapping, and Pooled CRISPR Screening. Front Pharmacol 2022; 13:852143. [PMID: 35795568 PMCID: PMC9250974 DOI: 10.3389/fphar.2022.852143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-omic approaches offer an unprecedented overview of the development, plasticity, and resistance of cancer. However, the translation from anti-cancer compounds identified in vitro to clinically active drugs have a notoriously low success rate. Here, we review how technical advances in cell culture, robotics, computational biology, and development of reporter systems have transformed drug discovery, enabling screening approaches tailored to clinically relevant functional readouts (e.g., bypassing drug resistance). Illustrating with selected examples of “success stories,” we describe the process of phenotype-based high-throughput drug screening to target malignant cells or the immune system. Second, we describe computational approaches that link transcriptomic profiling of cancers with existing pharmaceutical compounds to accelerate drug repurposing. Finally, we review how CRISPR-based screening can be applied for the discovery of mechanisms of drug resistance and sensitization. Overall, we explore how the complementary strengths of each of these approaches allow them to transform the paradigm of pre-clinical drug development.
Collapse
Affiliation(s)
- Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Katharine Fooks
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Nehme El-Hachem
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - François E. Mercier
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: François E. Mercier, ; Moutih Rafei,
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- *Correspondence: François E. Mercier, ; Moutih Rafei,
| |
Collapse
|
29
|
Dai Y, Liu P, He W, Yang L, Ni Y, Ma X, Du F, Song C, Liu Y, Sun Y. Genomic Features of Solid Tumor Patients Harboring ALK/ROS1/NTRK Gene Fusions. Front Oncol 2022; 12:813158. [PMID: 35785159 PMCID: PMC9243239 DOI: 10.3389/fonc.2022.813158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fusions of receptor tyrosine kinase (RTK) involving anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1), and neurotrophic receptor tyrosine kinase (NTRK) represent the potential targets of therapeutic intervention for various types of solid tumors. Here, the genomic features of 180 Chinese solid tumor patients with ALK, ROS1, and NTRK fusions by next generation sequencing (NGS) were comprehensively characterized, and the data from 121 patients in Memorial Sloan Kettering Cancer Center (MSKCC) database were used to compare. We found that ALK, ROS1, and NTRK fusions were more common in younger female patients (p<0.001) and showed a higher expression of programmed death ligand 1 (PD-L1). The gene-intergenic fusion and the fusion with rare formation directions accounted for a certain proportion in all samples and 62 novel fusions were discovered. Alterations in TP53 and MUC16 were common in patients with RTK fusions. The mutational signatures of patients were mainly distributed in COSMIC signature 1, 2, 3, 15 and 30, while had a higher frequency in copy number variations (CNVs) of individual genes, such as IL-7R. In the MSKCC cohort, patients with fusions and CNVs showed shorter overall survival than those with only fusions. Furthermore, the differentially mutated genes between fusion-positive and -negative patients mainly concentrated on MAPK signaling and FOXO signaling pathways. These results may provide genomic information for the personalized clinical management of solid tumor patients with ALK, ROS1, and NTRK fusions in the era of precision medicine.
Collapse
Affiliation(s)
- Yinghuan Dai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lizhen Yang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Ni
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Xuejiao Ma
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- *Correspondence: Yi Sun, ; Yang Liu, ; Chao Song,
| | - Yang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Sun, ; Yang Liu, ; Chao Song,
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi Sun, ; Yang Liu, ; Chao Song,
| |
Collapse
|
30
|
Giunta EF, Signori A, West HJ, Metro G, Friedlaender A, Parikh K, Banna GL, Addeo A. Beyond Crizotinib: A Systematic Review and Meta-Analysis of the Next-Generation ALK Inhibitors as First-Line Treatment for ALK-Translocated Lung Cancer. Front Oncol 2022; 12:921854. [PMID: 35774122 PMCID: PMC9239548 DOI: 10.3389/fonc.2022.921854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Second and third-generation ALK inhibitors (ALKIs) have been recently approved for ALK-translocated lung cancer treatment, improving - and expanding - the first-line scenario. Methods In this systematic review and metanalysis, we investigated the efficacy and safety of next-generation ALKIs in untreated advanced ALK-translocated lung cancer patients, searching for randomized phase III controlled trials through databases (PubMed, EMBASE, and the Cochrane Library). Inclusion and exclusion of studies, quality assessment, data extraction, and synthesis were independently accomplished by two reviewers, with discrepancies adjudicated by a third reviewer. Stata (StataCorp., v.16) software was used for the metanalysis. Results In total, seven randomized controlled trials met our inclusion criteria. Comparing the results of next-generation ALKIs and control therapy (crizotinib or chemotherapy), next-generation ALKIs significantly improved progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), any lesion (aCNSRR) and measurable lesions of central nervous system response rate (mCNSRR). Safety results were similar between the experimental and control groups. Conclusion Our analysis confirmed that next-generation ALKIs are the preferred first-line treatment option for ALK-translocated lung cancer. They are superior to crizotinib or chemotherapy in several clinical endpoints, including OS, PFS, ORR and CNS disease control, without increased toxicity. In the absence of head-to-head data, the choice between these molecules should be guided by physician experience and preference, drug-specific safety profile and schedule.
Collapse
Affiliation(s)
| | - Alessio Signori
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Howard Jack West
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Giulio Metro
- Medical Oncology, Santa Maria Della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Alex Friedlaender
- Oncology Department, University Hospital Geneva, Geneva, Switzerland
| | - Kaushal Parikh
- Hackensack University Medical Center, Hackensack, NJ, United States
| | - Giuseppe Luigi Banna
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (Turin), Italy
- *Correspondence: Giuseppe Luigi Banna,
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Early Development of Ubiquitous Acanthocytosis and Extravascular Hemolysis in Lung Cancer Patients Receiving Alectinib. Cancers (Basel) 2022; 14:cancers14112720. [PMID: 35681698 PMCID: PMC9179520 DOI: 10.3390/cancers14112720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alectinib is a standard initial treatment for patients with advanced anaplastic lymphoma kinase (ALK) rearranged non-small-cell lung cancer (NSCLC). The current study analyzed a prospective cohort of 24 consecutive alectinib-treated patients and controls in order to comprehensively characterize longitudinal erythrocyte changes under treatment with ALK inhibitors. Upon starting alectinib, all examined patients developed reticulocytosis and abnormal erythrocyte morphology with anisocytosis and a predominance of acanthocytes (64% of red blood cells on average, range 36−100%) in the peripheral blood smear within approximately 2 weeks. Changes were accompanied by a gradual reduction in Eosin-5-maleimide (EMA) binding, which became pathologic (<80% of cells) within 1−2 months in all cases, mimicking an abortive form of hereditary spherocytosis. The latter could be ruled out in 3/3 of analyzed cases by normal sequencing results for the ANK1, EPB42, SLC4A1, SPTA1, or SBTB genes. The direct Coombs test was also negative in 11/11 tested cases. Besides, anemia, increased LDH, and increased bilirubin were noted in a fraction of patients only, ranging between 42 and 68%. Furthermore, haptoglobin decreases were infrequent, occurring in approximately 1/3 of cases only, and mild, with an average value of 0.93 g/L within the normal range of 0.3−2 g/dL, suggesting that hemolysis occurred predominantly in the extravascular compartment, likely due to splenic trapping of the deformed erythrocytes. These changes showed no association with progression-free survival under alectinib or molecular features, i.e., ALK fusion variant or TP53 status of the disease, and resolved upon a switch to an alternative ALK inhibitor. Thus, alectinib induces mild, reversible erythrocyte changes in practically all treated patients, whose most sensitive signs are aberrant red cell morphology in the peripheral smear, a pathologic EMA test, and reactive reticulocytosis. Frank hemolytic anemia is rare, but mild subclinical hemolysis is very frequent and poses differential-diagnostic problems. Alectinib can be continued under the regular control of hemolysis parameters, but the risk of long-term complications, such as cholelithiasis due to increased serum bilirubin in most patients, remains unclear at present.
Collapse
|
32
|
Raphael A, Onn A, Holtzman L, Dudnik J, Urban D, Kian W, Cohen AY, Moskovitz M, Zer A, Bar J, Rabinovich NM, Grynberg S, Oedegaard C, Agbarya A, Peled N, Shochat T, Dudnik E. The Impact of Comprehensive Genomic Profiling (CGP) on the Decision-Making Process in the Treatment of ALK-Rearranged Advanced Non-Small Cell Lung Cancer (aNSCLC) After Failure of 2nd/3rd-Generation ALK Tyrosine Kinase Inhibitors (TKIs). Front Oncol 2022; 12:874712. [PMID: 35646707 PMCID: PMC9137396 DOI: 10.3389/fonc.2022.874712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background The use of CGP in guiding treatment decisions in aNSCLC with acquired resistance to ALK TKIs is questionable. Methods We prospectively assessed the impact of CGP on the decision-making process in ALK-rearranged aNSCLC patients following progression on 2nd/3rd-generation ALK TKIs. Physician’s choice of the most recommended next-line systemic treatment (NLST) was captured before and after receival of CGP results; the percentage of cases in which the NLST recommendation has changed was assessed along with the CGP turnaround time (TAT). Patients were divided into groups: patients in whom the NLST was initiated after (group 1) and before (group 2) receival of the CGP results. Time-to-treatment discontinuation (TTD) and overall survival (OS) with NLST were compared between the groups. Results In 20 eligible patients (median [m]age 63 years [range, 40-89], females 75%, adenocarcinoma 100%, failure of alectinib 90%, FoundationOne Liquid CDx 80%), CGP has altered NLST recommendation in 30% of cases. CGP findings were as follows: ALK mutations 30% (l1171X 10%, G1202R, L1196M, G1269A, G1202R+l1171N+E1210K 5% each), CDKN2A/B mutation/loss 10%, c-met amplification 5%. CGP mTAT was 2.9 weeks [IQR, 2.4-4.4]. mTTD was 11.3 months (95% CI, 2.1-not reached [NR]) and 5.4 months (95% CI, 2.0-NR) in groups 1 and 2, respectively (p-0.34). mOS was 13.2 months (95% CI, 2.9-NR) and 13.0 months (95% CI, 6.0-NR) in groups 1 and 2, respectively (p-0.86). Conclusion CGP has a significant impact on the decision-making process in ALK-rearranged aNSCLC following progression on 2nd/3rd-generation ALK TKIs.
Collapse
Affiliation(s)
- Ari Raphael
- Department of Oncology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Onn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Thoracic Oncology Service, Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Liran Holtzman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Julia Dudnik
- Thoracic Oncology Service, Cancer Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Damien Urban
- Thoracic Oncology Service, Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Waleed Kian
- Department of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Aharon Y. Cohen
- Thoracic Oncology Service, Cancer Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Mor Moskovitz
- Thoracic Cancer Service, Rambam Health Care Campus, Haifa, Israel
| | - Alona Zer
- Thoracic Cancer Service, Rambam Health Care Campus, Haifa, Israel
| | - Jair Bar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Thoracic Oncology Service, Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | | | - Shirly Grynberg
- Thoracic Oncology Service, Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Cecilie Oedegaard
- Thoracic Oncology Service, Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Abed Agbarya
- Department of Oncology, Bnai Zion Medical Center, Haifa, Israel
| | - Nir Peled
- Department of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Health Sciences, Ben Gurion University of Negev, Beer-Sheva, Israel
| | - Tzippy Shochat
- Statistical Consulting Unit, Rabin Medical Center, Petah Tikva, Israel
| | - Elizabeth Dudnik
- Faculty of Health Sciences, Ben Gurion University of Negev, Beer-Sheva, Israel
- Thoracic Oncology Service, Assuta Medical Centers, Tel-Aviv, Israel
- Thoracic Oncology Service, Rabin Medical Center, Petah Tikva, Israel
- *Correspondence: Elizabeth Dudnik,
| |
Collapse
|
33
|
Wang C, Hu Q, Sun Y, Yu F, Peng M. Complete pathological remission after neoadjuvant ensartinib in patients with locally advanced lung adenocarcinoma and with CTLC-ALK and ALK-DHX8 rearrangements. Eur J Cancer 2022; 169:131-134. [PMID: 35567918 DOI: 10.1016/j.ejca.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China; Early-Stage Lung Cancer Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China; Early-Stage Lung Cancer Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China; Early-Stage Lung Cancer Center, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
34
|
Rumienczyk I, Kulecka M, Statkiewicz M, Ostrowski J, Mikula M. Oncology Drug Repurposing for Sepsis Treatment. Biomedicines 2022; 10:biomedicines10040921. [PMID: 35453671 PMCID: PMC9030585 DOI: 10.3390/biomedicines10040921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis involves life-threatening organ dysfunction caused by a dysregulated host response to infection. Despite three decades of efforts and multiple clinical trials, no treatment, except antibiotics and supportive care, has been approved for this devastating syndrome. Simultaneously, numerous preclinical studies have shown the effectiveness of oncology-indicated drugs in ameliorating sepsis. Here we focus on cataloging these efforts with both oncology-approved and under-development drugs that have been repositioned to treat bacterial-induced sepsis models. In this context, we also envision the exciting prospect for further standard and oncology drug combination testing that could ultimately improve clinical outcomes in sepsis.
Collapse
Affiliation(s)
- Izabela Rumienczyk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Małgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Correspondence: ; Tel.: +48-22-546-26-55
| |
Collapse
|
35
|
Zhou W, Yan LD, Yu ZQ, Li N, Yang YH, Wang M, Chen YY, Mao MX, Peng XC, Cai J. Role of STK11 in ALK‑positive non‑small cell lung cancer (Review). Oncol Lett 2022; 23:181. [PMID: 35527776 PMCID: PMC9073580 DOI: 10.3892/ol.2022.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been shown to be effective in treating patients with ALK-positive non-small cell lung cancer (NSCLC), and crizotinib, ceritinib and alectinib have been approved as clinical first-line therapeutic agents. The availability of these inhibitors has also largely changed the treatment strategy for advanced ALK-positive NSCLC. However, patients still inevitably develop resistance to ALK inhibitors, leading to tumor recurrence or metastasis. The most critical issues that need to be addressed in the current treatment of ALK-positive NSCLC include the high cost of targeted inhibitors and the potential for increased toxicity and resistance to combination therapy. Recently, it has been suggested that the serine/threonine kinase 11 (STK11) mutation may serve as one of the biomarkers for immunotherapy in NSCLC. Therefore, the main purpose of this review was to summarize the role of STK11 in ALK-positive NSCLC. The present review also summarizes the treatment and drug resistance studies in ALK-positive NSCLC and the current status of STK11 research in NSCLC.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yong-Hua Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
36
|
Activity of ALK Inhibitors in Renal Cancer with ALK Alterations: A Systematic Review. Int J Mol Sci 2022; 23:ijms23073995. [PMID: 35409355 PMCID: PMC8999731 DOI: 10.3390/ijms23073995] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) associated with anaplastic lymphoma kinase (ALK) gene rearrangements (ALK-RCC) is currently considered an “emerging or provisional” tumor entity by the last World Health Organization classification published in 2016. Although several studies assessing ALK-RCC’s clinical and histological characteristics have been published in recent years, only a few publications have evaluated the activity of ALK inhibitors (ALK-i) in this subgroup of patients. Considering the well-recognized efficacy of this evolving class of targeted therapies in other ALK-positive tumors, we conducted a systematic review to evaluate the reported activity of ALK-i in the ALK-RCC subtype. MEDLINE was searched from its inception to 7 January 2022 for case reports and case series on adult metastatic ALK-RCC patients treated with ALK-i whose therapeutic outcomes were available. A virtual cohort of ALK-RCC patients was created. Our results showed a favorable activity of first- and second-generation ALK-i in pretreated ALK-RCC patients in terms of either radiological response or performance status improvement. We hope that the present work will prompt the creation of large, multi-institutional clinical trials to confirm these promising early data.
Collapse
|
37
|
Ma L, Xiao J, Guan Y, Wu D, Gu T, Wang J. SDK1-ALK Fusion in a Lung Adenocarcinoma Patient With Excellent Response to ALK Inhibitor Treatment: A Case Report. Front Oncol 2022; 12:860060. [PMID: 35311071 PMCID: PMC8931607 DOI: 10.3389/fonc.2022.860060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
BackgroundRearrangements of Anaplastic lymphoma kinase (ALK) have been discovered as a novel driver mutation in patients with non–small-cell lung cancer (NSCLC). Patients’ responses to ALK tyrosine kinase inhibitors (TKIs) may vary depending on the variations of ALK rearrangements they have. It is imperative for clinicians to identify druggable ALK fusions in routine practice.Case PresentationIn this study, we discovered a rare ALK rearrangement type (SDK1–ALK) in a Chinese lung adenocarcinoma patient who responded well to ALK inhibitor SAF-189s. The positive expression of ALK in lung biopsy tissue was verified by IHC analysis. A new SDK1-ALK fusion was discovered using NGS. The patient was treated with SAF-189s (160 mg per day) as a first-line therapy and went into continuous remission, with a 12 months progression-free survival at the last follow-up.ConclusionThis is the first case of SDK1-ALK fusion with an excellent response to an ALK inhibitor, which will provide better understanding of ALK-TKI applications for NSCLC patients with ALK fusion in the future.
Collapse
Affiliation(s)
- Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Junjuan Xiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Dongfang Wu
- YuceBio Technology Co., Ltd, Shenzhen, China
| | - Tiantian Gu
- YuceBio Technology Co., Ltd, Shenzhen, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
- *Correspondence: Jun Wang,
| |
Collapse
|
38
|
Wang Y, Wang T, Xue J, Jia Z, Liu X, Li B, Li J, Li X, Wang W, Bing Z, Cao L, Cao Z, Liang N. Fatal Tumour Lysis Syndrome Induced by Brigatinib in a Lung Adenocarcinoma Patient Treated With Sequential ALK Inhibitors: A Case Report. Front Pharmacol 2021; 12:809467. [PMID: 34987411 PMCID: PMC8721166 DOI: 10.3389/fphar.2021.809467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Tumour lysis syndrome (TLS) represents a group of fatal metabolic derangements resulting from the rapid breakdown of tumour cells. TLS typically occurs soon after the administration of chemotherapy in haematologic malignancies but is rarely observed in solid tumours. Here, we report a case of brigatinib-induced TLS after treatment with sequential anaplastic lymphoma kinase (ALK) inhibitors in a patient with advanced ALK-rearranged lung adenocarcinoma. The patient was treated sequentially with crizotinib, alectinib, and ensartinib. High-throughput molecular profiling after disease progression indicated that brigatinib may overcome ALK resistance mutations, so the patient was administered brigatinib as the fourth-line treatment. After 22 days of therapy, he developed oliguria, fever, and progressive dyspnoea. Clinical manifestations and laboratory findings met the diagnostic criteria for TLS. The significant decrease in the abundance of ALK mutations in plasma indicated a therapeutic response at the molecular level. Consequently, the diagnosis of brigatinib-induced TLS was established. To the best of our knowledge, this is the first case of TLS induced by sequential targeted therapy in non-small cell lung cancer. With the extensive application of sequential therapy with more potent next-generation targeted therapeutic drugs, special attention should be given to this rare but severe complication.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiange Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laser Aesthetic Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqi Jia
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhili Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Naixin Liang,
| |
Collapse
|
39
|
Angeles AK, Christopoulos P, Yuan Z, Bauer S, Janke F, Ogrodnik SJ, Reck M, Schlesner M, Meister M, Schneider MA, Dietz S, Stenzinger A, Thomas M, Sültmann H. Early identification of disease progression in ALK-rearranged lung cancer using circulating tumor DNA analysis. NPJ Precis Oncol 2021; 5:100. [PMID: 34876698 PMCID: PMC8651695 DOI: 10.1038/s41698-021-00239-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Zhao Yuan
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Simon John Ogrodnik
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Matthias Schlesner
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, Augsburg University, Augsburg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Marc A Schneider
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Dietz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- AstraZeneca GmbH, Wedel, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
40
|
Valery M, Facchinetti F, Malka D, Ducreux M, Friboulet L, Hollebecque A. Cholangiocarcinoma with STRN-ALK translocation treated with ALK inhibitors. Dig Liver Dis 2021; 53:1664-1665. [PMID: 34556462 DOI: 10.1016/j.dld.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Marine Valery
- Medical Oncology Department, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France.
| | - Francesco Facchinetti
- Research Team in Molecular Biology, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - David Malka
- Medical Oncology Department, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Michel Ducreux
- Medical Oncology Department, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Luc Friboulet
- Research Team in Molecular Biology, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Hollebecque
- Research Team in Molecular Biology, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France; Department of Therapeutic Innovation and Early Trials, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
41
|
Cavallaro S, Hååg P, Sahu SS, Berisha L, Kaminskyy VO, Ekman S, Lewensohn R, Linnros J, Viktorsson K, Dev A. Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients. Biosens Bioelectron 2021; 193:113568. [PMID: 34428672 DOI: 10.1016/j.bios.2021.113568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALK-tyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Petra Hååg
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
42
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
43
|
Safety of Surgery after Neoadjuvant Targeted Therapies in Non-Small Cell Lung Cancer: A Narrative Review. Int J Mol Sci 2021; 22:ijms222212244. [PMID: 34830123 PMCID: PMC8622767 DOI: 10.3390/ijms222212244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
New drugs, including immune checkpoint inhibitors and targeted therapy, have changed the prognosis in a subset of patients with advanced lung cancer, and are now actively investigated in a number of trials with neoadjuvant and adjuvant regimens. However, no phase III randomized studies were published yet. The current narrative review proves that targeted therapies are safe in neoadjuvant approach. Unsurprisingly, administration of therapy is related to an acceptable toxicity profile. Severe adverse events’ rate that rarely compromises outcomes of patients with advanced lung cancer is not that commonly accepted in early lung cancer as it may lead to missing the chance of curative surgery. Among those complications, the most important factors that may limit the use of targeted therapies are severe respiratory adverse events precluding the resection occurring after treatment with some anaplastic lymphoma kinase and rarely after epidermal growth factor receptor tyrosine kinase inhibitors. At this point, in the presented literature assessing the feasibility of neoadjuvant therapies with anaplastic lymphoma kinase and epidermal growth factor receptor tyrosine kinase inhibitors, we did not find any unexpected intraoperative events that would be of special interest to a thoracic surgeon. Moreover, the postoperative course was associated with typical rate of complications.
Collapse
|
44
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy and Safety of Lorlatinib and Alectinib for ALK-Rearrangement Positive Advanced Non-Small Cell Lung Cancer in Asian and Non-Asian Patients: A Systematic Review and Network Meta-Analysis. Cancers (Basel) 2021; 13:cancers13153704. [PMID: 34359604 PMCID: PMC8345181 DOI: 10.3390/cancers13153704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC) remains a challenge. We compared the safety and efficacy of lorlatinib and alectinib in patients with ALK-p ALK-inhibitor‒naïve advanced NSCLC (in overall participants and in the Asian and non-Asian subgroups). The results showed that in the overall participant group, the efficacy of lorlatinib and alectinib was not significantly different in terms of progression-free survival (PFS) and overall survival (OS). Although in the Asian subgroup, PFS was not significantly different upon treatment with lorlatinib or alectinib, in the non-Asian subgroup, PFS was significantly better in response to lorlatinib than with alectinib. Grade 3 or higher adverse events in the overall participant group were significantly more frequent with lorlatinib than with alectinib. These results will provide valuable information that would enable the improvement of treatment strategies for ALK-p ALK-inhibitor‒naïve advanced NSCLC. Abstract To date, there have been no head-to-head randomized controlled trials (RCTs) comparing the safety and efficacy of lorlatinib and alectinib in anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) ALK-inhibitor‒naïve advanced non-small cell lung cancer (NSCLC). We performed a network meta-analysis comparing six treatment arms (lorlatinib, brigatinib, alectinib, ceritinib, crizotinib, and platinum-based chemotherapy) in overall participants and in Asian and non-Asian subgroups. Primary endpoints were progression-free survival (PFS), overall survival (OS), and grade 3 or higher adverse events (G3-AEs). There were no significant differences between lorlatinib and alectinib in overall participants for both PFS (hazard ratio [HR], 0.742; 95% credible interval [CrI], 0.466–1.180) and OS (HR, 1.180; 95% CrI, 0.590–2.354). In the Asian subgroup, there were no significant differences in PFS between lorlatinib and alectinib (HR, 1.423; 95% CrI, 0.748–2.708); however, in the non-Asian subgroup, PFS was significantly better with lorlatinib than with alectinib (HR, 0.388; 95% CrI, 0.195–0.769). The incidence of G3-AEs in overall participants was significantly higher with lorlatinib than with alectinib (risk ratio, 1.918; 95% CrI, 1.486–2.475). These results provide valuable information regarding the safety and efficacy of lorlatinib in ALK-p ALK-inhibitor‒naïve advanced NSCLC. Larger head-to-head RCTs are needed to validate the study results.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
- Correspondence: ; Tel.: +81-3-3784-8532
| | - Ryo Manabe
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Yasunari Kishino
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Sojiro Kusumoto
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Tohru Ohmori
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| |
Collapse
|
45
|
De Carlo E, Stanzione B, Del Conte A, Revelant A, Bearz A. Brigatinib as a treatment of ALK-positive non-small cell lung cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1954907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elisa De Carlo
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Brigida Stanzione
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandro Del Conte
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alberto Revelant
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Bearz
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
46
|
Zhou H, Xu B, Xu J, Zhu G, Guo Y. Novel MRPS9-ALK Fusion Mutation in a Lung Adenocarcinoma Patient: A Case Report. Front Oncol 2021; 11:670907. [PMID: 34168990 PMCID: PMC8217641 DOI: 10.3389/fonc.2021.670907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements account for approximately 5-6% of non-small-cell lung cancer (NSCLC) patients. In this study, a case of lung adenocarcinoma harboring a novel MRPS9-ALK fusion is reported. The patient responded well to the first and second generation of ALK-tyrosine kinase inhibitors (ALK-TKIs) (crizotinib then alectinib), as her imaging findings and clinical symptoms significantly improved. At last follow-up, over 21 months of overall survival (OS) has been achieved since ALK-TKI treatment. The progression-free survival (PFS) is already ten months since alectinib. The adverse effects were manageable. The case presented here provides first clinical evidence of the efficacy of ALK-TKIs in NSCLC patients with MRPS9-ALK fusion.
Collapse
Affiliation(s)
- Huamiao Zhou
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Binyue Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jili Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guomeng Zhu
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yong Guo
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
47
|
Non-Small Cell Lung Cancer Harboring Concurrent EGFR Genomic Alterations: A Systematic Review and Critical Appraisal of the Double Dilemma. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The molecular pathways which promote lung cancer cell features have been broadly explored, leading to significant improvement in prognostic and diagnostic strategies. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have dramatically altered the treatment approach for patients with metastatic non-small cell lung cancer (NSCLC). Latest investigations by using next-generation sequencing (NGS) have shown that other oncogenic driver mutations, believed mutually exclusive for decades, could coexist in EGFR-mutated NSCLC patients. However, the exact clinical and pathological role of concomitant genomic aberrations needs to be investigated. In this systematic review, we aimed to summarize the recent data on the oncogenic role of concurrent genomic alterations, by specifically evaluating the characteristics, the pathological significance, and their potential impact on the treatment approach.
Collapse
|
48
|
Li S, Li J, Peng L, Li Y, Wan X. Cost-Effectiveness of Lorlatinib as a First-Line Therapy for Untreated Advanced Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer. Front Oncol 2021; 11:684073. [PMID: 34136409 PMCID: PMC8203315 DOI: 10.3389/fonc.2021.684073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Recently, a phase III CROWN trial compared the efficacy of two anaplastic lymphoma kinase (ALK) inhibitors and demonstrated that lorlatinib displayed clinical improvement over crizotinib for advanced non-small cell lung cancer (NSCLC) patients. Therefore, the aim of this study was to estimate the cost-effectiveness of lorlatinib as a first-line therapy for patients with advanced ALK-positive (+) NSCLC. Materials and Methods A cost-effectiveness analysis was performed using a microsimulation model from the US payer perspective and a lifetime horizon (30 years) in patients with previous untreated advanced ALK+ NSCLC. Based on the CROWN trial, patient characteristics were obtained, and the transition probabilities were estimated. All direct costs were derived from official sources and published literature. The main outcomes of the model were total costs, incremental cost-effectiveness ratio (ICER), quality-adjusted life years (QALYs), and life years (LYs). One-way and probabilistic sensitivity analyses and multiple scenario analyses were conducted to test the robustness of the model outcomes. Results In the base case analysis, in which 1 million patients were simulated, treatment with lorlatinib or crizotinib as the first-line treatment was related to a mean cost of $909,758 and $616,230 (incremental cost: $293,528) and a mean survival of 4.81 QALYs and 4.09 QALYs (incremental QALY: 0.72) per patient, respectively. The main drivers of cost effectiveness were drug price and subsequent cost. PAS indicated that lorlatinib has 90% cost-effectiveness when compared to crizotinib when the willingness-to-pay (WTP) threshold in increased to $448,000/QALY. Scenario analysis demonstrated that lorlatinib has 100% cost-effectiveness at a WTP threshold of 200,000/QALY compared to crizotinib treatment when the price of lorlatinib is decreased to 75% ($424.5) of its original price. Conclusions In this study, lorlatinib was unlikely to be cost effective compared with crizotinib for patients with previously untreated advanced ALK+ NSCLC at a WTP threshold of 200,000/QALY.
Collapse
Affiliation(s)
- SiNi Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,The Xiangya Nursing School, Central South University, Changsha, China
| | - JianHe Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - LiuBao Peng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - YaMin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,The Xiangya Nursing School, Central South University, Changsha, China
| | - XiaoMin Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|