1
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
2
|
Rahmati M, Koyanagi A, Banitalebi E, Yon DK, Lee SW, Il Shin J, Smith L. The effect of SARS-CoV-2 infection on cardiac function in post-COVID-19 survivors: A systematic review and meta-analysis. J Med Virol 2023; 95:e28325. [PMID: 36401352 DOI: 10.1002/jmv.28325] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The longitudinal trajectories of cardiac structure and function following SARS-CoV-2 infection are unclear. Therefore, this meta-analysis aims to elucidate the effect of SARS-CoV-2 infection on cardiac function in coronavirus disease 2019 (COVID-19) survivors after recovery. PubMed/MEDLINE, CENTRAL, and EMBASE were systematically searched for articles published up to 1st August 2022. A systematic review and meta-analysis were performed to calculate the pooled effects size and 95% confidence interval of each outcome. A total of 21 studies including 2394 individuals (1436 post-COVID-19 cases and 958 controls) were included in the present meta-analysis. The pooled analyses compared with control groups showed a significant association between post-COVID-19 and reduced left ventricular ejection fraction (LV EF), LV end-diastolic volume (LV EDV), LV stroke volume (LV SV), mitral annular plane systolic excursion (MAPSE), global longitudinal strain, right ventricular EF (RV EF), RV EDV, RV ESV, RV SV, tricuspid annular plane systolic excursion, and increased LV mass. Subgroup analysis based on the severity of COVID-19 in the acute phase and subsequent chronic outcomes revealed that LV EF, MAPSE, RV EF, and RV ESV only decreased in studies including patients with a history of intensive care unit admission. Cardiac impairment after SARS-CoV-2 infection persisted in recovered COVID-19 patients even after 1 year. Future studies are warranted to determine the biological mechanisms underlying the long-term cardiovascular consequences of COVID-19.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, Spain
| | - Ebrahim Banitalebi
- Department of Sport Sciences, Faculty of Literature and Human Sciences, Shahrekord University, Shahrekord, Iran
| | - Dong Keon Yon
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea.,Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
3
|
Missner AA, Johns JD, Gu S, Hoa M. Repurposable Drugs That Interact with Steroid Responsive Gene Targets for Inner Ear Disease. Biomolecules 2022; 12:1641. [PMID: 36358991 PMCID: PMC9687275 DOI: 10.3390/biom12111641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Corticosteroids, oral or transtympanic, remain the mainstay for inner ear diseases characterized by hearing fluctuation or sudden changes in hearing, including sudden sensorineural hearing loss (SSNHL), Meniere's disease (MD), and autoimmune inner ear disease (AIED). Despite their use across these diseases, the rate of complete recovery remains low, and results across the literature demonstrates significant heterogeneity with respect to the effect of corticosteroids, suggesting a need to identify more efficacious treatment options. Previously, our group has cross-referenced steroid-responsive genes in the cochlea with published single-cell and single-nucleus transcriptome datasets to demonstrate that steroid-responsive differentially regulated genes are expressed in spiral ganglion neurons (SGN) and stria vascularis (SV) cell types. These differentially regulated genes represent potential druggable gene targets. We utilized multiple gene target databases (DrugBank, Pharos, and LINCS) to identify orally administered, FDA approved medications that potentially target these genes. We identified 42 candidate drugs that have been shown to interact with these genes, with an emphasis on safety profile, and tolerability. This study utilizes multiple databases to identify drugs that can target a number of druggable genes in otologic disorders that are commonly treated with steroids, providing a basis for establishing novel repurposing treatment trials.
Collapse
Affiliation(s)
| | - James Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Shutkov IA, Okulova YN, Tyurin VY, Sokolova EV, Babkov DA, Spasov AA, Gracheva YA, Schmidt C, Kirsanov KI, Shtil AA, Redkozubova OM, Shevtsova EF, Milaeva ER, Ott I, Nazarov AA. Ru(III) Complexes with Lonidamine-Modified Ligands. Int J Mol Sci 2021; 22:ijms222413468. [PMID: 34948263 PMCID: PMC8707700 DOI: 10.3390/ijms222413468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
A series of bifunctional Ru(III) complexes with lonidamine-modified ligands (lonidamine is a selective inhibitor of aerobic glycolysis in cancer cells) was described. Redox properties of Ru(III) complexes were characterized by cyclic voltammetry. An easy reduction suggested a perspective for these agents as their whole mechanism of action seems to be based on activation by metal atom reduction. New compounds demonstrated a more pronounced antiproliferative potency than the parental drug; individual new agents were more cytotoxic than cisplatin. Stability studies showed an increase in the stability of complexes along with the linker length. A similar trend was noted for antiproliferative activity, cellular uptake, apoptosis induction, and thioredoxin reductase inhibition. Finally, at concentrations that did not alter water solubility, the selected new complex evoked no acute toxicity in Balb/c mice.
Collapse
Affiliation(s)
- Ilya A. Shutkov
- Department of Medicinal Chemistry & Fine Organic Synthesis, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia; (I.A.S.); (Y.N.O.); (V.Y.T.); (Y.A.G.); (E.R.M.)
| | - Yulia N. Okulova
- Department of Medicinal Chemistry & Fine Organic Synthesis, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia; (I.A.S.); (Y.N.O.); (V.Y.T.); (Y.A.G.); (E.R.M.)
| | - Vladimir Yu. Tyurin
- Department of Medicinal Chemistry & Fine Organic Synthesis, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia; (I.A.S.); (Y.N.O.); (V.Y.T.); (Y.A.G.); (E.R.M.)
| | - Elena V. Sokolova
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya Street, 400087 Volgograd, Russia; (E.V.S.); (D.A.B.); (A.A.S.)
| | - Denis A. Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya Street, 400087 Volgograd, Russia; (E.V.S.); (D.A.B.); (A.A.S.)
| | - Alexander A. Spasov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya Street, 400087 Volgograd, Russia; (E.V.S.); (D.A.B.); (A.A.S.)
| | - Yulia A. Gracheva
- Department of Medicinal Chemistry & Fine Organic Synthesis, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia; (I.A.S.); (Y.N.O.); (V.Y.T.); (Y.A.G.); (E.R.M.)
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 55 Beethovenstrasse, 38106 Braunschweig, Germany; (C.S.); (I.O.)
| | - Kirill I. Kirsanov
- Blokhin Cancer Research Center, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (K.I.K.); (A.A.S.)
- Institute of Medicine, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alexander A. Shtil
- Blokhin Cancer Research Center, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (K.I.K.); (A.A.S.)
| | | | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy Proezd, 142432 Chernogolovka, Russia;
| | - Elena R. Milaeva
- Department of Medicinal Chemistry & Fine Organic Synthesis, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia; (I.A.S.); (Y.N.O.); (V.Y.T.); (Y.A.G.); (E.R.M.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 55 Beethovenstrasse, 38106 Braunschweig, Germany; (C.S.); (I.O.)
| | - Alexey A. Nazarov
- Department of Medicinal Chemistry & Fine Organic Synthesis, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia; (I.A.S.); (Y.N.O.); (V.Y.T.); (Y.A.G.); (E.R.M.)
- Correspondence:
| |
Collapse
|
5
|
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:691. [PMID: 34358117 PMCID: PMC8308787 DOI: 10.3390/ph14070691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs for treatment. In this paper, we present an update of knowledge about the interest of the functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.
Collapse
Affiliation(s)
- Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France;
- Irset (Institut de Recherche en Santé, Environnement et Travail)-Inserm UMR 1085, University of Rennes, CHU Rennes, INSERM, EHESP, 35000 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
| |
Collapse
|