1
|
Sollini M, Calais J, Chiti A, Emmett L, Fanti S, Fendler W, Herrmann K, Hope TA, Sartor O, Shuch B, Tagawa S, Hofman MS. Novel Radiopharmaceuticals and Future of Theranostics in Genitourinary Cancers. Eur Urol 2024:S0302-2838(24)02641-1. [PMID: 39428326 DOI: 10.1016/j.eururo.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVE This review aims to provide an overview of novel diagnostic and therapeutic radiopharmaceuticals tested recently or used currently in genitourinary cancers within prospective phase 1-2 clinical trials, summarizing progresses and future directions. METHODS A systematic search was conducted using the PubMed/MEDLINE and ClinicalTrials.gov databases for original prospective research studies following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. KEY FINDINGS AND LIMITATIONS Forty-six papers were systematically reviewed; 74 ongoing clinical trials were identified. The results of 27 novel radiopharmaceuticals (ie, not approved by the Food and Drug Administration/European Medicines Agency and not listed in the Pharmacopeia) prospectively investigated in genitourinary cancers, mostly prostate, for diagnostic, theranostic, or therapeutic purposes (21, one, and five of the 27 radiopharmaceuticals, respectively) over the past 5 yr were presented. Most were prostate-specific membrane antigen-targeting agents (17/27); other targets included gastrin-releasing peptide receptor, carbonic anhydrase IX, Cu, six transmembrane epithelial antigen of the prostate 1, tumor-associated glycoprotein 42, and urokinase-type plasminogen activator receptor. Ongoing research confirms the same trend. Fibroblast activation protein inhibitor, PD-L1, CD8, nectin-4, and HER2 are other targets under investigation. Among the 22 ongoing therapeutic trials (out of the 74 ongoing clinical trials), targeted alpha therapy is being explored in 12, and five are evaluating combinations of radioligand therapy with other treatments. We confirmed the safety of radiopharmaceuticals (regardless of the diagnostic/therapeutic purpose) and showed promising results in terms of diagnostic accuracy and therapeutic efficacy in genitourinary cancers. CONCLUSIONS AND CLINICAL IMPLICATIONS There continues to be expansion in radiopharmaceutical approaches to genitourinary cancers, reflecting a strong emphasis on improving tumor detection and treatment, which will likely impact future management across the disease spectrum, with the potential for improved patient care and outcomes.
Collapse
Affiliation(s)
- Martina Sollini
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano, Italy; IRCCS Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy.
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Arturo Chiti
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano, Italy; IRCCS Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Wolfgang Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany; Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany; Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Oliver Sartor
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Brian Shuch
- Department of Urology, UCLA, Los Angeles, CA, USA
| | | | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Gouws CA, Naicker T, de la Torre BG, Albericio F, Duvenhage J, Kruger HG, Marjanovic-Painter B, Mdanda S, Zeevaart JR, Ebenhan T, Govender T. 68Ga Radiolabeling of NODASA-Functionalized Phage Display-Derived Peptides for Prospective Assessment as Tuberculosis-Specific PET Radiotracers. J Labelled Comp Radiopharm 2024. [PMID: 39118205 DOI: 10.1002/jlcr.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
This research presents the development of positron emission tomography (PET) radiotracers for detecting Mycobacterium tuberculosis (MTB) for the diagnosis and monitoring of tuberculosis. Two phage display-derived peptides with proven selective binding to MTB were identified for development into PET radiopharmaceuticals: H8 (linear peptide) and PH1 (cyclic peptide). We sought to functionalize H8/PH1 with NODASA, a bifunctional chelator that allows complexation of PET-compatible radiometals such as gallium-68. Herein, we report on the chelator functionalization, optimized radiosynthesis, and assessment of the radiopharmaceutical properties of [68Ga]Ga-NODASA-H8 and [68Ga]Ga-NODASA-PH1. Robust radiolabeling was achieved using the established routine method, indicating consistent production of a radiochemically pure product (RCP ≥ 99.6%). For respective [68Ga]Ga-NODASA-H8 and [68Ga]Ga-NODASA-PH1, relatively high levels of decay-corrected radiochemical yield (91.2% ± 2.3%, 86.7% ± 4.0%) and apparent molar activity (Am, 3.9 ± 0.8 and 34.0 ± 5.3 GBq/μmol) were reliably achieved within 42 min, suitable for imaging purposes. Notably, [68Ga]Ga-NODASA-PH1 remained stable in blood plasma for up to 2 h, while [68Ga]Ga-NODASA-H8 degraded within 30 min. For both 68Ga peptides, minimal whole-blood cell binding and plasma protein binding were observed, indicating a favorable pharmaceutical behavior. [68Ga]Ga-NODASA-PH1 is a promising candidate for further in vitro/in vivo evaluation as a tuberculosis-specific infection imaging agent.
Collapse
Affiliation(s)
- Christiaan A Gouws
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Janie Duvenhage
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Sipho Mdanda
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Jan R Zeevaart
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Radiochemistry, the South African Nuclear Energy Corporation (Necsa) SOC Ltd, Pelindaba, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Thomas Ebenhan
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
3
|
Hazari PP, Yadav SK, Kumar PK, Dhingra V, Rani N, Kumar R, Singh B, Mishra AK. Preclinical and Clinical Use of Indigenously Developed 99mTc-Diethylenetriaminepentaacetic Acid-Bis-Methionine: l-Type Amino Acid Transporter 1-Targeted Single Photon Emission Computed Tomography Radiotracer for Glioma Management. ACS Pharmacol Transl Sci 2023; 6:1233-1247. [PMID: 37705592 PMCID: PMC10496141 DOI: 10.1021/acsptsci.3c00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/15/2023]
Abstract
A new era in tumor classification, diagnosis, and prognostic evaluation has begun as a consequence of recent developments in the molecular and genetic characterization of central nervous system tumors. In this newly emerging era, molecular imaging modalities are essential for preoperative diagnosis, surgical planning, targeted treatment, and post-therapy evaluation of gliomas. The radiotracers are able to identify brain tumors, distinguish between low- and high-grade lesions, confirm a patient's eligibility for theranostics, and assess post-radiation alterations. We previously synthesized and reported the novel l-type amino acid transporter 1 (LAT-1)-targeted amino acid derivative in light of the use of amino acid derivatives in imaging technologies. Further, we have developed a single vial ready to label Tc-lyophilized kit preparations of diethylenetriaminepentaacetic acid-bis-methionine [DTPA-bis(Met)], also referred to as methionine-diethylenetriaminepentaacetic acid-methionine (MDM) and evaluated its imaging potential in numerous clinical studies. This review summarizes our previous publications on 99mTc-DTPA-bis(Met) in different clinical studies such as detection of breast cancer, as a prognostic marker, in detection of recurrent/residual gliomas, for differentiation of recurrent/residual gliomas from radiation necrosis, and for comparison of 99mTc-DTPA-bis(Met) with 11C-L-methionine (11C-MET), with relevant literature on imaging modalities in glioma management.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| | - Shiv Kumar Yadav
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| | - Pardeep Kumar Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences, Bangalore-560029, India
| | - Vandana Dhingra
- All India Institute of Medical Sciences, Rishikesh-249203, India
| | - Nisha Rani
- Division of Psychiatric Neuroimaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine 600 N. Wolfe Street, Phipps 300, Baltimore, Maryland 21287, United States
| | - Rakesh Kumar
- All India Institute of Medical Sciences, Delhi-110029, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| |
Collapse
|
4
|
Cavallaro PA, De Santo M, Belsito EL, Longobucco C, Curcio M, Morelli C, Pasqua L, Leggio A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2476. [PMID: 37686984 PMCID: PMC10490457 DOI: 10.3390/nano13172476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of HER2, a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. The aim of this review is to provide an updated overview of the main approaches for the diagnosis and treatment of HER2-positive breast cancer proposed in the literature over the past decade. We focused on the different targeting strategies involving antibodies and peptides that have been explored with their relative outcomes and current limitations that need to be improved. The review also encompasses a discussion on targeted peptides acting as probes for molecular imaging. By using different types of HER2-targeting strategies, nanotechnology promises to overcome some of the current clinical challenges by developing novel HER2-guided nanosystems suitable as powerful tools in breast cancer imaging, targeting, and therapy.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Camilla Longobucco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| |
Collapse
|
5
|
Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years? Cancers (Basel) 2022; 14:cancers14153643. [PMID: 35892901 PMCID: PMC9332800 DOI: 10.3390/cancers14153643] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a neoplasm originating from parafollicular C cells. MTC is a rare disease, but its prognosis is less favorable than that of well-differentiated thyroid cancers. To improve the prognosis of patients with MTC, early diagnosis and prompt therapeutic management are crucial. In the following paper, recent advances in laboratory and imaging diagnostics and also pharmacological and surgical therapies of MTC are discussed. Currently, a thriving direction of development for laboratory diagnostics is immunohistochemistry. The primary imaging modality in the diagnosis of MTC is the ultrasound, but opportunities for development are seen primarily in nuclear medicine techniques. Surgical management is the primary method of treating MTCs. There are numerous publications concerning the stratification of particular lymph node compartments for removal. With the introduction of more effective methods of intraoperative parathyroid identification, the complication rate of surgical treatment may be reduced. The currently used pharmacotherapy is characterized by high toxicity. Moreover, the main limitation of current pharmacotherapy is the development of drug resistance. Currently, there is ongoing research on the use of tyrosine kinase inhibitors (TKIs), highly specific RET inhibitors, radiotherapy and immunotherapy. These new therapies may improve the prognosis of patients with MTCs.
Collapse
|
6
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
7
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Kaliszewski K, Ludwig M, Greniuk M, Mikuła A, Zagórski K, Rudnicki J. Advances in the Diagnosis and Therapeutic Management of Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs). Cancers (Basel) 2022; 14:2028. [PMID: 35454934 PMCID: PMC9030061 DOI: 10.3390/cancers14082028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are an increasingly common cause of neoplastic diseases. One of the largest groups of NENs are neoplasms localized to the gastroenteropancreatic system, which are known as gastroenteropancreatic NENs (GEP-NENs). Because of nonspecific clinical symptoms, GEP-NEN patient diagnosis and, consequently, their treatment, might be difficult and delayed. This situation has forced researchers all over the world to continue progress in the diagnosis and treatment of patients with GEP-NENs. Our review is designed to present the latest reports on the laboratory diagnostic techniques, imaging tests and surgical and nonsurgical treatment strategies used for patients with these rare neoplasms. We paid particular attention to the nuclear approach, the use of which has been applied to GEP-NEN patient diagnosis, and to nonsurgical and radionuclide treatment strategies. Recent publications were reviewed in search of reports on new strategies for effective disease management. Attention was also paid to those studies still in progress, but with successful results. A total of 248 papers were analyzed, from which 141 papers most relevant to the aim of the study were selected. Using these papers, we highlight the progress in the development of diagnostic and treatment strategies for patients with GEP-NENs.
Collapse
Affiliation(s)
- Krzysztof Kaliszewski
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (M.L.); (M.G.); (A.M.); (K.Z.); (J.R.)
| | | | | | | | | | | |
Collapse
|
9
|
Pan D, Wang L, Wang X, Yan J, Xu Y, Yang M. Optimizing the performance of 68Ga labeled FSHR ligand in Prostate Cancer Model by Co-Administration of Aprotinin. Int J Radiat Biol 2022; 98:1571-1580. [PMID: 35389307 DOI: 10.1080/09553002.2022.2063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Radiolabeled FSH1 peptides are potential specific probes for FSHR imaging. However, moderate uptakes and fast washout from the tumors may limit its widespread use. In this study, 68Ga labeled modified FSH1 analogs was prepared and the imaging properties were determined in the prostate cancer model with or without aprotinin. METHODS NOTA-MAL-FSH4 was synthesized and labeled with 68Ga. The pharmacokinetic profile of the peptide after co-administration with aprotinin was determined through metabolism analyses and microPET imaging. RESULTS 68Ga-NOTA-MAL-FSH4 was successfully prepared. The IC50 value of displacement 68Ga-NOTA-MAL-FSH4 with FSH1 was 139.4 ± 1.16 nM. The PC-3 prostate tumor was visible after administration of the 68Ga labeled tracer. In vitro RP-HPLC analysis revealed that the average percentage of intact peptide in the plasma, liver and tumor was 8.30, 9.57 and 7.06% respectively. In presence of aprotinin, the amounts of intact peptide increased to 34.32%, 20.63% and 15.39% in the counterparts respectively. MicroPET imaging showed that the uptakes of PC-3 tumors at 60mins after co-administration of 100μg, 200μg or 400μg enzyme inhibitors were 2.91 ± 0.21%ID/g, 3.89 ± 0.16%ID/g and 9.21 ± 0.22%ID/g respectively. CONCLUSION With the aid of a serine protease inhibitor, the performance of the 68Ga labeled peptide was optimized, which may benefit further clinical application.
Collapse
Affiliation(s)
- Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| |
Collapse
|
10
|
|
11
|
Mikulová MB, Kružlicová D, Pecher D, Petreni A, Supuran CT, Mikuš P. Synthesis and Inhibition Activity Study of Triazinyl-Substituted Amino(alkyl)-benzenesulfonamide Conjugates with Polar and Hydrophobic Amino Acids as Inhibitors of Human Carbonic Anhydrases I, II, IV, IX, and XII. Int J Mol Sci 2021; 22:11283. [PMID: 34681940 PMCID: PMC8537140 DOI: 10.3390/ijms222011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6-91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5-9.6 nM). Various derivatives were also promising for some other isozymes.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Dáša Kružlicová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Andrea Petreni
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy; (A.P.); (C.T.S.)
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy; (A.P.); (C.T.S.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
12
|
Highly Specific L-Type Amino Acid Transporter 1 Inhibition by JPH203 as a Potential Pan-Cancer Treatment. Processes (Basel) 2021. [DOI: 10.3390/pr9071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accelerated cancer cell growth requires a massive intake of amino acids. Overexpression of L-type (large) amino acid transporter 1 (LAT1) on the cancer cell membrane facilitates such a demand, which is limited in normal organs. Therefore, LAT1 overexpression is ideal as a molecular cancer therapeutic target. JPH203, a LAT1-selective non-transportable blocker, had demonstrated LAT1 inhibition in <10 µM IC50 values and effectively suppressed cancer cell growth in studies involving several types of cancer cell lines and tumor xenograft models. A limited phase I clinical trial was performed on five different solid tumors and showed that JPH203 is well-tolerated and has a promising activity for the treatment of bile duct cancer. This review details the development and prospect of JPH203 as a LAT1-targeting cancer therapy.
Collapse
|