1
|
Elattar MM, Darwish RS, Hammoda HM, Dawood HM. An ethnopharmacological, phytochemical, and pharmacological overview of onion (Allium cepa L.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117779. [PMID: 38262524 DOI: 10.1016/j.jep.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Onion (Allium cepa L.) is one of the most widely distributed species within the Allium genus of family Amaryllidaceae. Onion has been esteemed for its medicinal properties since antiquity. It has been consumed for centuries in various indigenous cultures for the management of several ailments including microbial infections, respiratory, gastrointestinal, skin and cardio-vascular disorders, diabetes, renal colic, rheumatism, sexual impotence, menstrual pain, and headache. However, so far, there is a scarcity of recent data that compiles the plant chemistry, traditional practices, biological features, and toxicity. AIM OF THE WORK The aim of this review is to provide a comprehensive and analytical overview of ethnopharmacological uses, phytochemistry, pharmacology, industrial applications, quality control, and toxicology of onion, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS The information gathered in this review was obtained from various sources including books, scientific databases such as Science Direct, Wiley, PubMed, Google Scholar, and other domestic and foreign literature. RESULTS Onion has a long history of use as a traditional medicine for management of various conditions including infectious, inflammatory, respiratory, cardiovascular diseases, diabetes, and erectile dysfunction. More than 400 compounds have been identified in onion including flavonoids, phenolic acids, amino acids, peptides, saponins and fatty acids. The plant extracts and compounds showed various pharmacological activities such as antimicrobial, antidiabetic, anti-inflammatory, anti-hyperlipidemic, anticancer, aphrodisiac, cardioprotective, and neuroprotective activities. In addition to its predominant medicinal uses, onion has found various applications in the functional food industry. CONCLUSION Extensive literature analysis reveals that onion extracts and bioactive constituents possess diverse pharmacological activities that can be beneficial for treating various diseases. However, the current research primarily revolves around the documentation of ethnic pharmacology and predominantly consists of in vitro studies, with relatively limited in vivo and clinical studies. Consequently, it is imperative for future investigations to prioritize and expand the scope of in vivo and clinical research. Additionally, it is strongly recommended to direct further research efforts towards toxicity studies and quality control of the plant. These studies will help bridge the current knowledge gaps and establish a solid basis for exploring the plant's potential uses in a clinical setting.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
2
|
Duarte H, Carrera C, Aliaño-González MJ, Gutiérrez-Escobar R, Jiménez-Hierro MJ, Palma M, Galego L, Romano A, Medronho B. On the Valorization of Arbutus unedo L. Pomace: Polyphenol Extraction and Development of Novel Functional Cookies. Foods 2023; 12:3707. [PMID: 37835361 PMCID: PMC10572809 DOI: 10.3390/foods12193707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The fruits of Arbutus unedo L. have a crimson colour and are enriched with remarkable concentrations of bioactive compounds such as anthocyanins and polyphenols. These fruits are commonly used in the production of a Portuguese Protected Geographical Indication distillate called "Aguardente de Medronho". During this process, a solid pomace is generated and presently discarded without valuable applications. In this work, two strategies have been developed for the valorisation of A. unedo pomace. The first approach considers the extraction of polyphenols from this by-product through the optimization of an ultrasound-assisted method using a Box-Behnken design coupled with response surface methodology. The results indicate that the temperature and the percentage of methanol, along with their interaction, significantly influence the total concentration of polyphenols and the antioxidant activity of the extracts obtained. The optimal conditions identified consider the extraction of 0.5 g of sample with 20 mL of a solvent containing 74% MeOH (aq), at a pH of 4.8, maintained at 70 °C for 15 min. On the other hand, the second valorisation strategy considered the use of A. unedo pomace in the development of functional cookies. The incorporation of 15-20% pomace in the cookie formulation was well-received by consumers. This incorporation results in an intake of ca. 6.55 mg of polyphenols per gram of cookie consumed, accompanied by an antioxidant activity of 4.54 mg Trolox equivalents per gram of cookie consumed. Overall, these results encourage the employment of A. unedo pomace either as a reliable source of extracts enriched in polyphenols or as a nutraceutical active ingredient in functional cookies, thereby positively impacting human health.
Collapse
Affiliation(s)
- Hugo Duarte
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (H.D.); (L.G.); (A.R.); (B.M.)
| | - Ceferino Carrera
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cadiz, Spain (M.P.)
| | - María José Aliaño-González
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (H.D.); (L.G.); (A.R.); (B.M.)
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cadiz, Spain (M.P.)
| | - Rocío Gutiérrez-Escobar
- IFAPA Rancho de la Merced, Ministry of Agriculture, Fisheries, Water and Rural Development, Junta de Andalucía, Cañada de la Loba, 11471 Jerez de la Frontera, Cádiz, Spain; (R.G.-E.); (M.J.J.-H.)
| | - María Jesús Jiménez-Hierro
- IFAPA Rancho de la Merced, Ministry of Agriculture, Fisheries, Water and Rural Development, Junta de Andalucía, Cañada de la Loba, 11471 Jerez de la Frontera, Cádiz, Spain; (R.G.-E.); (M.J.J.-H.)
| | - Miguel Palma
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cadiz, Spain (M.P.)
| | - Ludovina Galego
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (H.D.); (L.G.); (A.R.); (B.M.)
- Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (H.D.); (L.G.); (A.R.); (B.M.)
| | - Bruno Medronho
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (H.D.); (L.G.); (A.R.); (B.M.)
- FSCN—Fibre Science and Communication Network Research Center, Surface and Colloid Engineering Deparment, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| |
Collapse
|
3
|
Gouda M, Nassarawa SS, Gupta SD, Sanusi NI, Nasiru MM. Evaluation of carbon dioxide elevation on phenolic compounds and antioxidant activity of red onion (Allium cepa L.) during postharvest storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107752. [PMID: 37224628 DOI: 10.1016/j.plaphy.2023.107752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Carbon dioxide (CO2) is considered one of the eco-related key factors that negatively affect global climatic change. Also, CO2 can play an important role in the postharvest quality of the agri-products. In this study, the impact of CO2 on the quality of postharvest onions that were stored at 23 °C for 8 weeks was investigated. The weight loss, phenolic, flavonoid, flavanol, anthocyanin, antioxidant activity, and soluble sugar were analyzed during the study period. The results showed that 20% CO2 treatment was significantly (P > 0.05) more effective than 15% CO2 and control in inhibiting weight loss. Additionally, 20% CO2 treatment significantly retained higher antioxidant enzyme activities such as CAT, APX, and SOD than 15% CO2 and control. During storage, 20% CO2 treatment significantly (P < 0.05) improved glucose, fructose, and sucrose levels by more than 15% CO2 exposure and control groups. Besides the chlorogenic acid, kaempferol and quercetin were significantly (P < 0.05) higher in the 20% CO2 than in the 15% CO2 after 2 weeks of storage. In conclusion, this study's novelty comes from the broad prospects of using CO2 for maximizing the stored onion phytochemical functionality that is usually affected by the room temperature long storage. This will help in the onion shelf-life extension by considering the quality-related attributes.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Sanusi Shamsudeen Nassarawa
- Department of Food Science and Technology, Faculty of Agriculture, Bayero University Kano, P.M.B.3011, Kano State, Nigeria.
| | - S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nassarawa Isma'il Sanusi
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Federal University Dutsin-Ma, Kankara-Katsina Road, Nigeria
| | - Mustapha Muhammad Nasiru
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| |
Collapse
|
4
|
V González-de-Peredo A, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, F Barbero G. Application of Direct Thermal Desorption-Gas Chromatography-Mass Spectrometry for Determination of Volatile and Semi-Volatile Organosulfur Compounds in Onions: A Novel Analytical Approach. Pharmaceuticals (Basel) 2023; 16:ph16050715. [PMID: 37242498 DOI: 10.3390/ph16050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The population is now more aware of their diets due to the connection between food and general health. Onions (Allium cepa L.), common vegetables that are minimally processed and grown locally, are known for their health-promoting properties. The organosulfur compounds present in onions have powerful antioxidant properties and may decrease the likelihood of developing certain disorders. It is vital to employ an optimum approach with the best qualities for studying the target compounds to undertake a thorough analysis of these compounds. In this study, the use of a direct thermal desorption-gas chromatography-mass spectrometry method with a Box-Behnken design and multi-response optimization is proposed. Direct thermal desorption is an environmentally friendly technique that eliminates the use of solvents and requires no prior preparation of the sample. To the author's knowledge, this methodology has not been previously used to study the organosulfur compounds in onions. Likewise, the optimal conditions for pre-extraction and post-analysis of organosulfur compounds were as follows: 46 mg of onion in the tube, a desorption heat of 205 °C for 960 s, and a trap heat of 267 °C for 180 s. The repeatability and intermediate precision of the method were evaluated by conducting 27 tests over three consecutive days. The results obtained for all compounds studied revealed CV values ranging from 1.8% to 9.9%. The major compound reported in onions was 2,4-dimethyl-thiophene, representing 19.4% of the total area of sulfur compounds. The propanethial S-oxide, the principal compound responsible for the tear factor, accounted for 4.5% of the total area.
Collapse
Affiliation(s)
- Ana V González-de-Peredo
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| |
Collapse
|
5
|
V. González-de-Peredo A, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, F. Barbero G, Palma M, Carrera C. Optimization of a Microwave Assisted Extraction Method for Maximum Flavonols and Antioxidant Activity of Onion Extracts. Antioxidants (Basel) 2022; 11:antiox11122393. [PMID: 36552601 PMCID: PMC9774159 DOI: 10.3390/antiox11122393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Nowadays, consumers demand bioactive foods that have the potential to limit the risk of suffering from several medical conditions. Onions present these desirable capabilities owing to its high content in antioxidant bioactive compounds. This work has used a Box-Behnken design with a response surface methodology to determine the best conditions in which to extract the polyphenols that are found in onions. Two extraction methods-one for the extraction of total flavonols and another one intended to obtain extracts with the highest possible antioxidant activity-have been developed and optimized. The following factors have been studied: temperature, %methanol in water, solvent pH, and sample-solvent volumetric ratio. The optimal conditions for the extraction of flavonols were 93.8% methanol in water, pH 2, 50 °C extraction temperature and 0.2:17.9 g:mL sample-solvent ratio. The best antioxidant activity levels were registered when using 74.2% methanol in water, pH 2, 99.9 °C extraction temperature and 0.2:18.2 g:mL sample-solvent ratio. Both optimized methods used short extraction times, and presented good precision levels and successful results when used with an assortment of onion varieties. According to total flavonols and antioxidant activity data, with 7.557 ± 0.3261 and 12.08 ± 0.0379 mg g-1, respectively, the developed methods achieved comparable or even superior results to those obtained by other authors.
Collapse
|
6
|
Quercetin-Rich Extracts from Onions ( Allium cepa) Play Potent Cytotoxicity on Adrenocortical Carcinoma Cell Lines, and Quercetin Induces Important Anticancer Properties. Pharmaceuticals (Basel) 2022; 15:ph15060754. [PMID: 35745673 PMCID: PMC9228762 DOI: 10.3390/ph15060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare subtype of cancer, with a poor prognosis in children and adults. Mitotane is the only approved adrenolytic drug for the treatment of ACC, which has controversies regarding its efficacy and side effects on patients. Onion (Allium cepa), a worldwide consumed food, is associated with many health benefits. Along with its glycosides, the flavonoid quercetin is abundant in onions. After evaluating the cytotoxicity of A. cepa extracts on adrenocortical carcinoma cell line (H295R), the rich quercetin fractions had better results. Then, we aimed to compare the quercetin vs. mitotane effectiveness, using adrenocortical carcinoma cell lines H295R and SW-13. Quercetin showed a higher cytotoxicity response on both cancerous cell lines after 10 µM concentration, while mitotane only after 30 µM. Cell cycle dynamics were altered upon quercetin treatments, with G2 phase increase with 30 µM of quercetin on H295R cell line and G1 arrest on SW-13 cell line with 15 µM. Early and late apoptosis, alongside intracellular calcium, were increased on SW-13 treated with 30 µM of quercetin, and ROS rates were reduced by quercetin on H295R. Therefore, quercetin-rich onions have the potential to be a natural source of anticancer agents for adrenocortical carcinoma.
Collapse
|
7
|
Carrera C, Aliaño-González MJ, Valaityte M, Ferreiro-González M, Barbero GF, Palma M. A Novel Ultrasound-Assisted Extraction Method for the Analysis of Anthocyanins in Potatoes ( Solanum tuberosum L.). Antioxidants (Basel) 2021; 10:antiox10091375. [PMID: 34573008 PMCID: PMC8468541 DOI: 10.3390/antiox10091375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Purple potato is one of the least known and consumed potato varieties. It is as rich in nutrients, amino acids and starches as the rest of the potato varieties, but it also exhibits a high content of anthocyanins, which confer it with some attractive health-related properties, such as antioxidant, pain-relieving, anti-inflammatory and other promising properties regarding the treatment of certain diseases. A novel methodology based on ultrasound-assisted extraction has been optimized to achieve greater yields of anthocyanins. Optimal extraction values have been established at 70 °C using 20 mL of a 60% MeOH:H2O solution, with a pH of 2.90 and a 0.5 s−1 cycle length at 70% of the maximum amplitude for 15 min. The repeatability and intermediate precision of the extraction method have been proven by its relative standard deviation (RSD) below 5%. The method has been tested on Vitelotte, Double Fun, Highland and Violet Queen potatoes and has demonstrated its suitability for the extraction and quantification of the anthocyanins found in these potato varieties, which exhibit notable content differences. Finally, the antioxidant capacity of these potato varieties has been determined by means of 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical scavenging and the values obtained were similar to those previously reported in the literature.
Collapse
Affiliation(s)
- Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| | - María José Aliaño-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| | - Monika Valaityte
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain;
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
- Correspondence: ; Tel.: +34-956-016355; Fax: +34-956-016460
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.C.); (M.J.A.-G.); (M.F.-G.); (M.P.)
| |
Collapse
|