1
|
Kokhan VS, Chaprov K, Abaimov DA, Nesterov MS, Pikalov VA. Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:99-107. [PMID: 39864919 DOI: 10.1016/j.lssr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 01/28/2025]
Abstract
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy 12C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia.
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia
| | | | - Maxim S Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, settlement Svetlye Gory, Russia
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
2
|
Zarrindast MR, Hajikarimloo B, Raissi-Dehkordi N, Raissi-Dehkordi N, Khakpai F. Preclinical evidence for the anxiolytic- and antidepressant-like effects of citicoline and imipramine in the sciatic nerve-ligated mice. IBRO Neurosci Rep 2024; 17:364-371. [PMID: 39524480 PMCID: PMC11550369 DOI: 10.1016/j.ibneur.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Neuropathic pain is a usual condition followed by nerve injury. Experimental neuropathy is linked with delayed behavioral variations correlated to anxiety and depression behaviors. Imipramine is a tricyclic antidepressant that can diminish anxiety- and depressive-like behaviors. Also, citicoline as a dietary supplement has antidepressant and anxiolytic effects. Methods We sought to investigate citicoline's effect on anxiety-like (by elevated plus-maze (EPM)) and depression-like (by tail suspension test (TST)) responses as well as its potential to increase imipramine antidepressant properties in nerve-ligated mice. Results The results showed that induction of neuropathic pain through sciatic nerve ligation caused anxious- and depressant-like behaviors in male mice. On the other hand, intraperitoneal (i.p.) injections of moderate (50 mg/kg) and high (100 mg/kg) doses of citicoline and high dose of imipramine (5 mg/kg) significantly reduced anxiety- and depression-like behaviors induced by sciatic nerve ligation in male mice. Additionally, a low (25 mg/kg) dose of citicoline potentiated the anxiolytic- and antidepressant-like effects of different doses of imipramine when they co-injected in nerve-ligated mice. Isobolographic analysis indicated an additive effect of imipramine and citicoline on the occurrence of anxiolytic- and antidepressant-like behaviors in nerve-ligated mice. Our results showed that citicoline alone reduces anxiety- and depression-like behaviors. Furthermore, when co-administered with imipramine, citicoline potentiates imipramine effects. Conclusions Injection of citicoline (as a dietary supplement) along with imipramine improved the effectiveness of imipramine for the management of anxiety- and depressive-like responses in nerve-ligated mice.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Bardia Hajikarimloo
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Hou H, Qu Z, Liu R, Jiang B, Wang L, Li A. Traumatic brain injury: Advances in coagulopathy (Review). Biomed Rep 2024; 21:156. [PMID: 39268405 PMCID: PMC11391523 DOI: 10.3892/br.2024.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Trauma is a prevalent cause of coagulopathy, with traumatic brain injury (TBI) accompanied by coagulation disorders particularly linked to adverse outcomes. TBI is distinguished by minimal bleeding volume and unique injury sites, which precipitate complex coagulation disturbances. Historically, research into trauma-induced coagulopathy has primarily concentrated on the molecular biology and pathophysiology of endogenous anticoagulation and inflammation. Nonetheless, recognizing that cells are the fundamental units of structure and function in all living organisms, the present review aimed to distill our understanding of coagulopathy post-TBI by elucidating the intricate cellular mechanisms involving endothelial cells, neutrophils and platelets. Additionally, this study evaluates the strengths and weaknesses of various diagnostic tools and discusses the characteristics of pharmacological treatments and potential therapies for patients with TBI and coagulation disorders. The aim of this review is to amalgamate recent updates in mechanistic research and innovative diagnostic and therapeutic methodologies, thereby fostering the progression of precision medicine within this specialized domain.
Collapse
Affiliation(s)
- Hongqiao Hou
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Zhe Qu
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Ruping Liu
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Bowen Jiang
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Lanlan Wang
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Aiqun Li
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
4
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Zhang M, Han X, Yan L, Fu Y, Kou H, Shang C, Wang J, Liu H, Jiang C, Wang J, Cheng T. Inflammatory response in traumatic brain and spinal cord injury: The role of XCL1-XCR1 axis and T cells. CNS Neurosci Ther 2024; 30:e14781. [PMID: 38887195 PMCID: PMC11183917 DOI: 10.1111/cns.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaonan Han
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liyan Yan
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yikun Fu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongwei Kou
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunfeng Shang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Hongjian Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tian Cheng
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
6
|
González-Pacheco H, Amezcua-Guerra LM, Franco M, Arias-Mendoza A, Ortega-Hernández JA, Massó F. Cytoprotection as an Innovative Therapeutic Strategy to Cardiogenic Shock: Exploring the Potential of Cytidine-5-Diphosphocholine to Mitigate Target Organ Damage. J Vasc Res 2024; 61:160-165. [PMID: 38776883 DOI: 10.1159/000538946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Preservation of organ function and viability is a crucial factor for survival in cardiogenic shock (CS) patients. There is not information enough on cytoprotective substances that may delay organs damage in CS. We hypothesize that cytidine-5-diphosphocholine (CDP-choline) can act as a cytoprotective pharmacological measure that diminishes the target organ damage. So, we aimed to perform a review of works carried out in our institution to evaluate the effect of therapeutic cytoprotection of the CDP-choline. SUMMARY CDP-choline is an intermediate metabolite in the synthesis of phosphatidylcholine. It is also a useful drug for the treatment of acute ischaemic stroke, traumatic brain injury, and neurodegenerative diseases and has shown an excellent pharmacological safety profile as well. We review our institution's work and described the cytoprotective effects of CDP-choline in experimental models of heart, liver, and kidney acute damage, where this compound was shown to diminish reperfusion-induced ventricular arrhythmias, oxidative stress, apoptotic cell death, inflammation, lactic acid levels and to preserve mitochondrial function. KEY MESSAGES We propose that additional research is needed to evaluate the impact of cytoprotective therapy adjuvant to mitigate target organ damage in patients with CS.
Collapse
Affiliation(s)
| | | | - Martha Franco
- Department of Renal Pathophysiology, National Institute of Cardiology, Mexico City, Mexico
| | | | | | - Felipe Massó
- Translational Medicine Laboratory, National Institute of Cardiology, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
7
|
De Rosa S, Battaglini D, Llompart-Pou JA, Godoy DA. Ten good reasons to consider gastrointestinal function after acute brain injury. J Clin Monit Comput 2024; 38:355-362. [PMID: 37418061 DOI: 10.1007/s10877-023-01050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
The brain-gut axis represents a bidirectional communication linking brain function with the gastrointestinal (GI) system. This interaction comprises a top-down communication from the brain to the gut, and a bottom-up communication from the gut to the brain, including neural, endocrine, immune, and humoral signaling. Acute brain injury (ABI) can lead to systemic complications including GI dysfunction. Techniques for monitoring GI function are currently few, neglected, and many under investigation. The use of ultrasound could provide a measure of gastric emptying, bowel peristalsis, bowel diameter, bowel wall thickness and tissue perfusion. Despite novel biomarkers represent a limitation in clinical practice, intra-abdominal pressure (IAP) is easy-to-use and measurable at bedside. Increased IAP can be both cause and consequence of GI dysfunction, and it can influence cerebral perfusion pressure and intracranial pressure via physiological mechanisms. Here, we address ten good reasons to consider GI function in patients with ABI, highlighting the importance of its assessment in neurocritical care.
Collapse
Affiliation(s)
- Silvia De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | - Denise Battaglini
- UO Clinica Anestesiologica e Terapia Intensiva, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
8
|
Gudi V, Grieb P, Linker RA, Skripuletz T. CDP-choline to promote remyelination in multiple sclerosis: the need for a clinical trial. Neural Regen Res 2023; 18:2599-2605. [PMID: 37449595 DOI: 10.4103/1673-5374.373671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis is a multifactorial chronic inflammatory disease of the central nervous system that leads to demyelination and neuronal cell death, resulting in functional disability. Remyelination is the natural repair process of demyelination, but it is often incomplete or fails in multiple sclerosis. Available therapies reduce the inflammatory state and prevent clinical relapses. However, therapeutic approaches to increase myelin repair in humans are not yet available. The substance cytidine-5'-diphosphocholine, CDP-choline, is ubiquitously present in eukaryotic cells and plays a crucial role in the synthesis of cellular phospholipids. Regenerative properties have been shown in various animal models of diseases of the central nervous system. We have already shown that the compound CDP-choline improves myelin regeneration in two animal models of multiple sclerosis. However, the results from the animal models have not yet been studied in patients with multiple sclerosis. In this review, we summarise the beneficial effects of CDP-choline on biolipid metabolism and turnover with regard to inflammatory and regenerative processes. We also explain changes in phospholipid and sphingolipid homeostasis in multiple sclerosis and suggest a possible therapeutic link to CDP-choline.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
9
|
Mahmoodkhani M, Aminmansour B, Shafiei M, Hasas M, Tehrani DS. Citicoline on the Barthel Index: Severe and moderate brain injury. Indian J Pharmacol 2023; 55:223-228. [PMID: 37737074 PMCID: PMC10657618 DOI: 10.4103/ijp.ijp_570_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a paramount factor in mortality and morbidity. The clinical trials conducted to investigate the efficacy of neuroprotective agents, such as citicoline, as a therapeutic alternative for TBI have presented divergent findings. Therefore, this study aimed to evaluate and compare citicoline's effect on the Barthel Index in patients with severe and moderate brain injury. MATERIALS AND METHODS The study is a randomized clinical trial. Patients in the case group (35 patients) were treated with citicoline and the control group (34 patients) received a placebo. Data were analyzed using SPSS 16 software. RESULTS The results showed that changes in the Glasgow Coma Scale, changes in quadriceps muscle force score, Barthel Index score changes, achieving the status without intubation, and spontaneous breathing in patients treated with citicoline were not a statistically significant difference in the two groups (P > 0.05). CONCLUSION Findings revealed that citicoline did not impact the recovery process of severe and moderate TBI patients.
Collapse
Affiliation(s)
- Mehdi Mahmoodkhani
- Department of Neurosurgery, School of Medicine, Neurosciences Research Center, Kashani Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Aminmansour
- Department of Neurosurgery, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shafiei
- Department of Neurosurgery, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Hasas
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
10
|
Datta S, Lin F, Jones LD, Pingle SC, Kesari S, Ashili S. Traumatic brain injury and immunological outcomes: the double-edged killer. Future Sci OA 2023; 9:FSO864. [PMID: 37228857 PMCID: PMC10203904 DOI: 10.2144/fsoa-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.
Collapse
Affiliation(s)
- Souvik Datta
- Rhenix Lifesciences, 237 Arsha Apartments, Kalyan Nagar, Hyderabad, TG 500038, India
| | - Feng Lin
- CureScience, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | | | | | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | | |
Collapse
|
11
|
Sufianova GZ, Shapkin AG, Khlestkina MS, Maslov LN, Mukhomedzyanov AV, Voronkov NS, Sufianov AA. The Role of P 2Y 6 Receptors in the Mechanisms of the Neuroprotective Effect of Citicoline. Bull Exp Biol Med 2023:10.1007/s10517-023-05808-z. [PMID: 37338760 DOI: 10.1007/s10517-023-05808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 06/21/2023]
Abstract
Spontaneous bioelectrical activity of the brain and the duration of gasping were recorded in mice during modeling of global strangulation ischemia of the brain against the background of preventive administration of citicoline. The maximum neuroprotective effect of citicoline was observed when it was administered 60 min before the simulation of ischemia and was completely prevented by preliminary administration of a selective P2Y6 receptor antagonist MRS2578. The obtained experimental data attest to the leading role of receptor mechanisms in the implementation of neuroprotective activity of citicoline.
Collapse
Affiliation(s)
- G Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Ministry of Health of the Russian Federation, Tyumen, Russia
- Federal Center of Neurosurgery, Ministry of Health of the Russian Federation, Tyumen, Russia
| | - A G Shapkin
- Department of Pharmacology, Tyumen State Medical University, Ministry of Health of the Russian Federation, Tyumen, Russia
- Federal Center of Neurosurgery, Ministry of Health of the Russian Federation, Tyumen, Russia
| | - M S Khlestkina
- Department of Pharmacology, Tyumen State Medical University, Ministry of Health of the Russian Federation, Tyumen, Russia
- Federal Center of Neurosurgery, Ministry of Health of the Russian Federation, Tyumen, Russia
| | - L N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N S Voronkov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A A Sufianov
- Federal Center of Neurosurgery, Ministry of Health of the Russian Federation, Tyumen, Russia
- Department of Neurosurgery, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
12
|
Al-kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Alorabi M, Hadi Al-Harcan NA, El-Bouseary MM, Batiha GES. Citicoline and COVID-19: vis-à-vis conjectured. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1463-1475. [PMID: 36063198 PMCID: PMC9442587 DOI: 10.1007/s00210-022-02284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a current pandemic disease caused by a novel severe acute respiratory syndrome coronavirus virus respiratory type 2 (SARS-CoV-2). SARS-CoV-2 infection is linked with various neurological manifestations due to cytokine-induced disruption of the blood brain barrier (BBB), neuroinflammation, and peripheral neuronal injury, or due to direct SARS-CoV-2 neurotropism. Of note, many repurposed agents were included in different therapeutic protocols in the management of COVID-19. These agents did not produce an effective therapeutic eradication of SARS-CoV-2, and continuing searching for novel anti-SARS-CoV-2 agents is a type of challenge nowadays. Therefore, this study aimed to review the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali K. Al-Buhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Nasser A. Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
13
|
Abstract
This review is based on the previous one published in 2016 (Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol 2016; 63 (Supl 3): S1-S73), incorporating 176 new references, having all the information available in the same document to facilitate the access to the information in one document. This review is focused on the main indications of the drug, as acute stroke and its sequelae, including the cognitive impairment, and traumatic brain injury and its sequelae. There are retrieved the most important experimental and clinical data in both indications.
Collapse
Affiliation(s)
- Julio J. Secades
- Departamento Médico. Grupo Ferrer, S.A. Barcelona, EspañaDepartamento MédicoDepartamento MédicoBarcelonaEspaña
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido. ASP Catanzaro. Catanzaro, ItaliaCenter for Cognitive Disorders and Dementia - Catanzaro LidoCenter for Cognitive Disorders and Dementia - Catanzaro LidoCatanzaroItalia
| |
Collapse
|
14
|
Trimmel H, Herzer G, Derdak C, Kettenbach J, Grgac I. A novel pharmacological treatment concept for neuroprotection in severe traumatic brain injury-Two case reports. Clin Case Rep 2022; 10:e6626. [PMID: 36419580 PMCID: PMC9676123 DOI: 10.1002/ccr3.6626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Severe traumatic brain injury (sTBI) is a major cause of death and disability worldwide, resulting in a significant individual and socioeconomic burden. Current treatment guidelines do not include any recommendations for neuroprotective or neuoregenerative drugs. Here, we present a combined treatment with Cerebrolysin and Citicoline in two cases. Both drugs are experimentally better than clinically proven in their own effectiveness, but there is almost no clinical data on the combination of the two. Our case study hints at a promising approach that may improve neurological outcome after sTBI. The first patient was a 29 years male motorcyclist suffered polytrauma in a high-speed accident. He had severe bilateral chest trauma and fractures in both thighs and an sTBI. In addition to surgical and standard neurocritical care according to the evidence-based guidelines, he was given neuroprotective therapy with Cerebrolysin (50 ml/day) and Citicoline (3 g/day), by continuous intravenous infusion (IV), for 21 days. The second patient was a 30 years male ski mountaineer who had suffered a fall over 300 m in open terrain. In addition to the sTBI, he had fractures in the cervical spine, ribs, pelvis, and lower extremities, as well as lung contusions and massive soft tissue trauma. After initial treatment in a local hospital, he was transferred to our department and received the same neuroprotective drugs, like all of our patients with sTBI. Considering the severity of the injuries (Injury Severity Score [ISS]: 43/50, Revised Trauma Score [RTS: 5.0304, 2.7794]) and the unfavorable outcome probability (Hukkelhoven Score) of 93.1% and 82.6%, the outcomes of both patients are surprisingly encouraging 1 year after the accident. They achieved a Glasgow Outcome Score of 6 and 5 and grades 2 and 4 on the modified Rankin Scale, respectively. Currently, both are able to take care of themselves in activities of daily life to a large extent. Neuroprotective drugs may improve the regeneration of cell membranes, improve blood brain barrier integrity, and reduce neuroinflammation leading to secondary damage to the injured brain. Our clinical experience and data suggest that the combined administration of Citicoline and Cerebrolysin may contribute to better recovery, without relevant side effects. However, it would be important to validate these results by means of a controlled, prospective study.
Collapse
Affiliation(s)
- Helmut Trimmel
- Department of Anesthesiology, Emergency and Critical Care MedicineGeneral Hospital Wiener NeustadtWiener NeustadtAustria
- Karl Landsteiner Institute of Emergency MedicineGeneral Hospital Wiener NeustadtWiener NeustadtAustria
- Danube Private UniversityKremsAustria
| | - Guenther Herzer
- Department of Anesthesiology, Emergency and Critical Care MedicineGeneral Hospital Wiener NeustadtWiener NeustadtAustria
| | - Christoph Derdak
- Department of Anesthesiology, Emergency and Critical Care MedicineGeneral Hospital Wiener NeustadtWiener NeustadtAustria
| | - Joachim Kettenbach
- Danube Private UniversityKremsAustria
- Institute of Diagnostic, Interventional Radiology and Nuclear MedicineLandesklinikum Wiener NeustadtWiener NeustadtAustria
| | - Ivan Grgac
- Department of Anesthesiology, Emergency and Critical Care MedicineGeneral Hospital Wiener NeustadtWiener NeustadtAustria
- Faculty of Medicine, Institute of AnatomyComenius UniversityBratislavaSlovakia
| |
Collapse
|
15
|
Sahebkar A, Sathyapalan T, Guest PC, Barreto GE. Identification of difluorinated curcumin molecular targets linked to traumatic brain injury pathophysiology. Biomed Pharmacother 2022; 148:112770. [PMID: 35278853 DOI: 10.1016/j.biopha.2022.112770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Traumatic brain injury (TBI) affects approximately 50% of the world population at some point in their lifetime. To date, there are no effective treatments as most of the damage occurs due to secondary effects through a variety of pathophysiological pathways. The phytoceutical curcumin has been traditionally used as a natural remedy for numerous conditions including diabetes, inflammatory diseases, and neurological and neurodegenerative disorders. We have carried out a system pharmacology study to identify potential targets of a difluorinated curcumin analogue (CDF) that overlap with those involved in the pathophysiological mechanisms of TBI. This resulted in identification of 312 targets which are mostly involved in G protein-coupled receptor activity and cellular signalling. These include adrenergic, serotonergic, opioid and cannabinoid receptor families, which have been implicated in regulation of pain, inflammation, mood, learning and cognition pathways. We conclude that further studies should be performed to validate curcumin as a potential novel treatment to ameliorate the effects of TBI.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Paul C Guest
- Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
16
|
Gareri P, Veronese N, Cotroneo AM. An Overview of Combination Treatment with Citicoline in Dementia. Rev Recent Clin Trials 2021; 17:4-8. [PMID: 34939548 DOI: 10.2174/1574887117666211221170344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The present article reports an overview of the studies about combination treatment with citicoline of Alzheimer's (AD) and mixed dementia (MD). METHODS A Medline search was carried out by using the keywords Alzheimer's dementia, mixed dementia, older people, treatment with citicoline, memantine, and acetylcholinesterase inhibitors (AchEIs). RESULTS Six studies were found to match the combination treatment of citicoline with AcheIs and/or memantine. The CITIRIVAD and CITICHOLINAGE studies were the first to report the potential benefits of adding citicoline to acetylcholinesterase inhibitors (AchEIs). Then, we added citicoline to memantine in the CITIMEM study, and finally, we demonstrated benefits in terms of delay in cognitive worsening with the triple therapy (citicoline + AchEIs + memantine). Other authors also reinforced our hypothesis through two further studies. CONCLUSIONS Open, prospective studies are advised to confirm the utility of combination therapy with citicoline for the treatment of AD and MD.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido, ASP Catanzaro; Catanzaro. Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo. Italy
| | | |
Collapse
|
17
|
Javaid S, Farooq T, Rehman Z, Afzal A, Ashraf W, Rasool MF, Alqahtani F, Alsanea S, Alasmari F, Alanazi MM, Alharbi M, Imran I. Dynamics of Choline-Containing Phospholipids in Traumatic Brain Injury and Associated Comorbidities. Int J Mol Sci 2021; 22:ijms222111313. [PMID: 34768742 PMCID: PMC8583393 DOI: 10.3390/ijms222111313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Ammara Afzal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
- Correspondence: ; Tel.: +966-114697749
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| |
Collapse
|